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Isosurface Similarity (1)
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Volume Visualization: Non-trivial 
mapping of data values to visible 
structures

• Auxiliary Visualizations: Simple 
depictions to assist in finding relevant 
value ranges
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Isosurface Similarity(2)
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Similarity Maps – Key Aspects

Treat isosurfaces as a whole instead of 
individual voxels

Characterize the shape of every 
isosurface

Quantify their similarity by comparing 
all isosurface shapes
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Each isosurface is represented by its 
distance transform

Isosurface Representation
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Similarity Measure (1)

Regard the distances to a pair of isosurfaces
as random variables X, Y

Characterize the amount of information they 
share to evaluate similarity

Mutual Information: Commonly used 
information-theoretic measure

Measures how much knowing one variable 
reduces the uncertainty about the other
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Similarity Measure (2)
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Mutual Information

X and Y are independent: I(X,Y) = 0

X and Y are identical: I(X,Y) = H(X) = H(Y)
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measure

joint entropy of X and Y

marginal entropies of X, Y
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Similarity Measure (3)
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Joint Entropy

Requires knowledge of the joint 
probability distribution of X and Y

Simple estimation method using the joint 
histogram of X and Y

joint probability distribution of X and Y
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Joint Distribution Estimation
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Isosurface Similarity Map
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Depicts the mutual information of each 
combination of isosurfaces
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Similarity-Enhanced Isosurfaces (1)
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Similarity-Enhanced Isosurfaces (2)
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Similarity-based Remapping (1)

Mapping between user interface and isovalue
is typically linear

Examples are slider widgets, mouse 
movement, etc.
Data-dependent nonlinear visual response to 
user interaction
Makes it more difficult to investigate 
transitional value ranges

Control derivative of the mapping function 
using the similarity between neighboring 
isovalues
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Similarity-based Remapping (2)
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Representative Isovalue Detection (1)

Find “good” isovalues for a given data set 
without requiring parameter tuning

Representative: Each isovalues exhibits high 
similarity to many other isovalues

Distinct: The individual chosen isovalues
have low mutual similarity

Reorder all isovalues according to these 
criteria by recursively evaluating the similarity 
distribution
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Representative Isovalue Detection (2)
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Multimodal Surface Similarity (1)
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Multimodal Surface Similarity (2)
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Multimodal Surface Similarity (3)
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Similarity-Based Classification
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Similarity-Based Classification (2)
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Similarity-Based Classification (3)
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Maximum Similarity Isosurfaces (1)
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Maximum Similarity Isosurfaces (2)
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Conclusions

Spatial similarity measures can help us to 
guide visual exploration

Provide insight into the stability of regions in 
parameter space

Task-dependent: difficult to find “one measure 
to rule them all”

Future: Dynamic measures, incorporate user 
knowledge
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