
Image Segmentation Based on Active Contours

without Edges

Anca Morar
Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest

Florica Moldoveanu
Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest

Eduard Grӧller
Institute of Computer Graphics and Algorithms

Vienna University of Technology

Abstract—There are a lot of image segmentation techniques that

try to differentiate between background and object pixels, but

many of them fail to discriminate between different objects that

are close to each other. Some image characteristics like low

contrast between background and foreground or inhomogeneity

within the objects increase the difficulty of correctly segmenting

images. We designed a new segmentation algorithm based on

active contours without edges. We also used other image

processing techniques such as nonlinear anisotropic diffusion and

adaptive thresholding in order to overcome the images’ problems

stated above. Our algorithm was tested on very noisy images, and

the results were compared to those obtained with known

methods, like segmentation using active contours without edges

and graph cuts. The new technique led to very good results, but

the time complexity was a drawback. However, this drawback

was significantly reduced with the use of graphical programming.

Our segmentation method has been successfully integrated in a

software application whose aim is to segment the bones from CT

datasets, extract the femur and produce personalized prostheses

in hip arthroplasty.

Active contours without edges, image segmentation, nonlinear

anisotropic diffusion, parallel image processing

I. INTRODUCTION

Image processing is a popular technique in many domains,
like medicine, security and surveillance, traffic control and
image editing. The human eye can easily distinguish important
characteristics even in very poor quality images. The aim of
image-processing software-applications is to interpret images
in a similar (or even better) way as compared to a human
being, but only faster. The results obtained by computers can
be very impressive, for example, the 3D visualization of a CT
dataset, with the highlighting of some important characteristics,
like different human tissues. Often these automatic processing
algorithms may lead to errors. The challenge in this domain is
to discover fast and fully automatic image processing
algorithms, or algorithms that require only little human
intervention.

The research presented in this paper concentrates on the
segmentation of poor quality images, like CT images, that have
a granular aspect, small contrast between foreground and
background and inhomogeneities regarding the intensity within
the foreground. The second chapter discusses the state of the
art in image segmentation. The third chapter describes a series
of image processing techniques that were used in our algorithm
and in the segmentation methods that were compared to our
algorithm. Next, we state our motivation for designing a new

segmentation technique. The fifth chapter presents the steps of
our new algorithm. In the sixth chapter we focus on
implementation details both on the CPU and on the GPU with
CUDA. In the last chapter we present a comparison between
the results obtained with our algorithm and the results
produced by other segmentation algorithms.

II. RELATED WORK

There are a lot of image segmentation techniques, some
based on intensity or texture, others on gradient or shape
characteristics. Some of the methods that have proven to lead
to good results in the segmentation of poor quality images are
briefly presented in this section.

Kass et al. [1] introduce the concept of snakes, or active
contours. Snakes are energy-minimizing splines guided by
external constraint forces and influenced by image forces that
pull them toward features such as lines and edges. Chan and
Vese [2] propose active contours without edges. It is a new
model for active contours, which is based on techniques of
curve evolution, the Mumford-Shah functional for
segmentation, and level sets. This method will be detailed in
the next chapter.

Boykov and Veksler [3] describe the use of graph cuts in
computer vision and graphics through theories and
applications. In image segmentation, a graph is created from
the image or the set of images. The graph construction and the
characteristics that divide the pixels into two disjoint parts, i.e.,
the background and the foreground, will be detailed in the next
section.

In grey scale mathematical morphology, the watershed
transform, originally proposed by Digabel and Lantuejoul [4]
and later improved by Buecher and Lantuejoul [5], is
considered to lead to very good results in image segmentation.
Roerdink and Meijster [6] wrote a review of several definitions
and algorithms of the watershed transform. They describe in
this review the geographic idea behind the watershed transform
as that of a landscape or topographic relief which is flooded by
water. Watersheds are the dividing lines of the domains of
attraction of rain falling over the region. When the water level
has reached the highest peak in the landscape, the process is
stopped, and the result is a landscape partitioned into basins
separated by dams, called watershed lines.

Porwik and Lisowska [7] present the use of the Haar-
wavelet transform in digital image processing. Their paper
describes a method of image analysis by means of the wavelet-

Haar spectrum. Glavasova et al. [8] discuss the wavelet
transform for feature extraction, based on texture analysis, for
the final goal of image segmentation.

There are a lot of other segmentation algorithms, but most
of them are based to some extent on one of the techniques
mentioned above. The challenges in image segmentation come
from the problems previously stated. The small contrast
between foreground and background makes it difficult to
extract all the edges or lines that are used for example in active
contours, graph cuts and watersheds. The inhomogeneities
within the objects prove to be a drawback for active contours
without edges, because this method tries to minimize the
differences within the foreground and the background. The
lack of a texture pattern could be a problem for the wavelet
transform based segmentation. Our algorithm takes into
account the imperfections of poor quality images (like CTs),
not only differentiating between objects and background, but
also between different objects.

III. IMAGE PROCESSING TECHNIQUES

For the understanding and motivation of our algorithm, we
shortly describe in this section the existing techniques that we
used in our image segmentation. We also present some details
regarding the other segmentation methods that were compared
to our algorithm.

A. Noise Reduction Using Gaussian Filtering

One of the most common types of noise is Gaussian noise
[9]. Gaussian noise is modeled using a probability density
function. In our implementation we used a convolution mask
approximating a 2D Gaussian distribution function.

B. Nonlinear Anisotropic Diffusion

Nonlinear anisotropic diffusion [10, 11] reduces noise, but

preserves the image information. We present in this sub-

section some concepts of diffusion filtering. Diffusion is a

physical process that balances the concentration changes of a

certain substance. Having a concentration distribution u,

Flick’s law states that the concentration gradient determines a

flow:

uDj ∇⋅−= . (1)

D is the diffusion tensor, a positive-definite symmetric

matrix. Diffusion represents mass transport without destroying

or creating new mass. From the continuity equation we can

derive the following equation:










∂

∂
+

∂

∂
−=−=∂

y

j

x

j
jdivut)(, (2)

where t denotes time, and ∂tu, the deviation of u with respect

to t. From (1) and (2) we can deduce the following result:

)(uDdivut ∇⋅−=∂ . (3)

In image processing the image intensity can be seen as
“concentration”, and image noise as concentration
inhomogeneities. These inhomogeneities can be smoothed
through diffusion. In order to preserve edges, the filtering will
be accomplished in the following manner:

• no diffusion across edges

• diffusion parallel to the edges.

The diffusion tensor is a 2x2 matrix computed with the
following expression:

[] []T
vvvvD 21

2

1

21
0

0
⋅








⋅=

λ

λ . (4)

The eigenvectors v1 and v2 provide the local diffusion
orientations. Their corresponding eigenvalues give the contrast
along these directions. The first eigenvector denotes the
direction of maximum variation. Therefore, v1 represents the
direction parallel to the image gradient. The other eigenvector
is determined considering the orthogonality property:

u

u
v

∇

∇
=1

 and









−
=

x

y

v

v
v

1

1

2
. (5)

The eigenvalues are computed so that diffusion is inhibited
across the edges, and activated parallel to the edges:

()2

1 ug ∇=λ and 12 =λ . (6)

The first eigenvalue is determined using the following
expression proposed by Perona and Malik [12]:

() () 





 ∇−−=∇

m

m uCug λ/exp1
22 . (7)

The constant Cm is computed so that the diffusion is big for

],0[
2

λ∈∇u and small for),(
2

∞∈∇ λu . λ denotes the

threshold for the gradient. Values bigger than the threshold
determine edges. In our implementation we have chosen

4=λ and m = 4. The value of m determines Cm=3.31488.

After computing the eigenvectors and the eigenvalues of

the diffusion tensor








=

2221

1211

DD

DD
D , equation (3) is solved

with finite differences. ∂tu can be replaced through a forward
difference approximation.

The obtained explicit scheme allows the iterative
computation of several versions of the image:

)]()()(

)([)1,,(),,(

222112

11

y

u
D

yx

u
D

yy

u
D

x

x

u
D

x
tsyxusyxu

∂

∂

∂

∂
+

∂

∂

∂

∂
+

∂

∂

∂

∂
+

∂

∂

∂

∂
⋅∆+−=

, (8)

where ∆t denotes the time step size, and u(x,y,s) represents the

image at time ts = s ⋅ ∆t. The standard scheme for the
approximation of spatial derivatives is based on central
differences. Fig. 1 presents the results of applying nonlinear
anisotropic diffusion on a CT image.

Figure 1. Nonlinear anisotropic diffusion filtering of a CT image at different

moments in time (different number of iterations)

C. Graph Cuts

The mechanisms of graph cuts for image segmentation are
given in more detail. This provides some insight into the graph
construction algorithm used in the implementation that was
compared to our algorithm. In a tutorial illustrating graph cuts
in the context of computer vision and graphics, Boykov and
Veksler [3] explain general theoretical properties that motivate
their use.

Let EVG ,= be a graph composed of a set of nodes V

and a set of oriented edges E. The set of nodes { } PtsV ∪= ,

contains two nodes called terminals, i.e., the source s and the
sink t, as well as a set of non-terminal nodes P. Every edge in
the graph is assigned a nonnegative weight w(p,q). An edge is
called t-link if it connects a non-terminal node with a terminal
one. It is called n-link if it connects two non-terminal nodes.
An s/t cut is a partitioning of the graph nodes into two disjoint
sets S and T in a manner that the source s is in S and the sink t
in T.

Starting from an image, the graph is built in a manner that
every pixel in the image defines a non-terminal node of the
graph. The cost of an n-link is based on the “likeliness” of the
neighboring non-terminal nodes. The cost of a t-link is based
on the “likeliness” of the connected non-terminal node and the
terminal one. After the cut, some pixels belong to the source
(being labeled as “object”) and others to the sink
(“background”). The minimal cut minimizes the energy
function introduced by Boykov and Veksler [3]:

∑∑
∈∈

+=
Pp

pp

Qqp

qpqp fDffVfE)(),()(
),(

,
 , (9)

where Dp is the per-pixel term that reflects the penalty of
assigning the label fp to pixel p. Vp,q is the border term that
encourages spatial coherence within the objects and the

background. Q represents the set of all the n-links, fp is the
label assigned to pixel p (“object” or “background”) and P
denotes the set of all non-terminal nodes.

In order to define the border term Vp,q we use the
observation of Boykov and Veksler [3] that pixels with high
image gradient would imply low cost of n-links and vice-versa.
This is why we compute the gradient of the image using a
Sobel filter. For smoother borders, we decided to apply the
Sobel filter after convolving the image with a Gaussian filter
and a nonlinear anisotropic diffusion filter. If the absolute
difference between the gradient magnitude of two neighboring
pixels p and q is greater than a given threshold k, Vp,q is directly
proportional with that difference. If there is a small variation of
the gradient, the value of Vp,q, given by the constant v, is high.
The border term can be defined as follows:








>∇−∇

∇−∇=

otherwisev

kqupuif
qupuV

ff

ffqp

,

)()(,
)()(

1

,

(10)

where uf is the image obtained after applying the Gaussian
filter and the nonlinear anisotropic diffusion filter. This
definition encourages borders in regions where there are abrupt
variations of the gradient magnitude.

Boykov and Jolly [13] designed a technique for general
purpose interactive segmentation of N-dimensional images. In
their workflow, the user marks certain pixels as “object” or
“background”. We extend their approach by marking certain
pixels based on their intensities. We introduce two thresholds,
Tlow and Thigh, that determine the most probable background and
foreground pixels. If the intensity of a pixel is greater than
Thigh, the pixel is most likely an object pixel. If its intensity is
lower than Tlow, there is a high probability that the pixel
belongs to the background. If the pixel does not belong to any
of the two categories, the per-pixel term depends on its
intensity relative to Tlow and Thigh:






















≤≤

=
−

−
⋅−

≤≤

=
−

−
⋅

<=

<=

>=

>=

=

highlow

p

lowhigh

low

highlow

p

lowhigh

low

lowp

lowp

highp

highp

pp

TpuTand

backgroundfif
TT

Tpu
ww

TpuTand

objectfif
TT

Tpu
w

Tpuandobjectfif

Tpuandbackgroundfifw

Tpuandbackgroundfif

Tpuandobjectfifw

fD

)(

"",
)(

)(

"",
)(

)("",0

)("",

)("",0

)("",

)(

0

0

0

0

0

0

. (11)

where u0 denotes the initial image. The constant w assures a
high cost for t-links that connect a non-terminal node and a
terminal one that have the same label (either “object” or
“background”).

Our algorithm was compared to two segmentation methods
based on graph cuts. In the first implementation, the set of n-
links Q contains only 4-connected neighbors. The second
implementation can be used only for volumetric data, because
it considers also connections of pixels from adjacent slices. The
first method is further called 2D graph cuts (2D GC), because it
segments the images individually. The second one is being
referred to as 3D graph cuts (3D GC), because it can be applied
only to 3D images (like CT datasets).

D. Active Contours without Edges

This section presents the active contours model without
edges. Part of the method is included in the workflow of our
algorithm. This technique is also used as a comparison to our
segmentation. In their paper, Chan and Vese [2] propose a new
active contour model for object detection in a 2D image. The
stopping term for the involved curve evolution process does
not depend on the image gradient, but is related to a particular
segmentation of the image.

An evolving curve C, in the image space Ω, can be defined

as the frontier of a subset ω of Ω (ω ⊆ Ω and C=∂ ω). ω

represents the region occupied by foreground pixels. inside(C)
denotes the region ω and outside(C) denotes the region

ω\Ω . The image u0 is assumed to be composed of two

regions of approximately constant intensities c1 (the intensity
of the object) and c2 (the intensity of the background). If the
object’s boundary is C, then inside of C the intensity value
should be equal to c1. Outside of C, the intensity value should
be equal to c2. Chan and Vese [2] introduce the following
energy:

∫∫ −+−

+⋅+⋅=

)(

2

202

)(

2

101

21

),(),(

))(()(),,(

CoutsideCinside

dxdycyxudxdycyxu

CinsideAreaCLengthCccF

ηη

νµ
(12)

where 0≥µ , 0≥ν , 0, 21 >ηη are fixed parameters. The

length of the curve, Length(C), and the area of the region inside
C, Area(inside(C)), are two regularizing terms. Chan and Vese

[2] set 0=ν , 11 =η and 12 =η . We keep the values of ν ,

1η and
2η defined by them, but we also set µ to 0. We explain

in the fifth chapter the reason for omitting the length term. The
image segmentation into foreground and background is
accomplished by solving the minimization problem

),,(inf 21
,, 21

CccF
Ccc

. Let Ω⊂C be defined as the zero level set

of a Lipschitz function R→Ω:φ , so that:









<Ω∈=Ω=

>Ω∈==

=Ω∈=∂=

}0).(:),{(\)(

}0).(:),{()(

}0).(:),{(

yxyxCoutside

yxyxCinside

yxyxC

φω

φω

φω
.

Using the Heaviside function H and the one-dimensional
Dirac measure δ0 defined by Chan and Vese [2], the energy

),,(),,(2121 φccFCccF = can be expressed as follows:

∫

∫

Ω

Ω

−−

+−=

dxdyyxHcyxu

dxdyyxHcyxuCccF

))),((1(),(

)),((),(),,(

2

20

2

1021

φ

φ
. (13)

The constants c1 and c2 can be expressed relative to φ :

∫

∫

Ω

Ω=

dxdyyxH

dxdyyxHu

c

)),((

)),((

)(

0

1

φ

φ

φ
 and (14)

∫

∫

Ω

Ω

−

−

=

dxdyyxH

dxdyyxHu

c

))),((1(

))),((1(

)(

0

2

φ

φ

φ
. (15)

The evolution of φ can be parametrized as follows:

0])())[((2

20

2

100 =−+−=
∂

∂
cucu

t
φδ

φ . (16)

The segmentation algorithm follows an iterative method.

Knowing),,(syxφ at time tst s ∆⋅= ,),(1 sc φ and

),(2 sc φ can be computed by using (14) and (15). Then,

)1,,(+syxφ can be computed by the following discretization

and linearization of (16) in φ :

]))(),(())(),(([

)),,((),,()1,,(

2

20

2

10

0

scyxuscyxu

syxtsyxsyx

−+−−

⋅⋅∆+=+ φδφφ
(17)

where t∆ denotes the time step size and),(0 yxu represents

the initial image.

IV. MOTIVATION

In this chapter we give the reasons for designing a new
segmentation method. The algorithms described in the previous
chapter were tested on ten noisy CT datasets. The aim of the
segmentations was to differentiate between bones and other
tissues, but also to discriminate between different bones. Fig. 2
presents an image before (a) and after being processed with 2D
graph cuts (c), 3D graph cuts (d) and active contours without
edges (e). Compared to the manual segmentation (b), the
results show that, even if the most pixels are correctly labeled
as “object” or “background”, there are some problems with
differentiating between bones.

As previously mentioned, our segmentation is part of a
bigger project, whose aim is to obtain prototypes for
personalized implants in hip arthroplasty. Since one of the
requirements of automatically producing an artificial implant is

to extract the femoral bone and to differentiate it from other
bones, we decided to implement a new segmentation technique.
Our algorithm segments the objects from the background quite
well, without connecting different objects. In the example
provided in Fig. 2, it can be observed that our segmentation (f)
was the closest to the output of the manual segmentation. In
chapter seven we present the results of a comparison with the
other segmentation algorithms on ten datasets, in order to
demonstrate the quality of our algorithm in more detail.

Figure 2. Comparison of different CT image segmentation methods: (a)

original image, (b) image segmented by a human specialist, (c) image

segmented with 2D graph cuts, (d) image segmented with 3D graph cuts, (e)

image segmented with active contours without edges, (f) image segmented

with our algorithm

The algorithm has been exemplified using CT images, but it
can be applied on all kinds of grayscale images that have the
following characteristics:

• The foreground has a higher intensity than the
background

• The images contain multiple objects that are positioned
close to each other and should not be connected

• There are big inhomogeneities within the foreground.

V. SEGMENTATION ALGORITHM

This chapter presents our new segmentation technique. The
steps of the algorithm are identified in the workflow of Fig. 3
and are described in detail in the following subsections.

Step 1: Gaussian and Active Contours (G + AC)

As mentioned before, our segmentation is based on the
active contours model by Chan and Vese [2]. Here we state our
reasons for making some changes to the original algorithm.
The first change was the omission of the length term in
equation (12). We tested the original algorithm on images
where two different objects were positioned very close to each
other. The output image contained a single object, composed of
the two initial objects. An explanation could be the one given
by Chan and Vese [2] regarding the use of the length term as a
scale parameter. If the constant µ from (12) is small, then also

smaller objects will be detected. If it is larger, then only larger
objects are detected, or objects that are grouped together. We
do not want different objects close to each other to be

interpreted as a single object. This is the reason we decided to
set 0=µ in (12), and to use (17) for the computation of φ .

Most of the tested images had a lot of noise. In order to
remove this noise we smooth the initial image u0 with a
Gaussian filter. The image segmentation that divides the pixels

based on the value of φ relative to 0 is too rough in the sense

that it leads to a binary image (the white pixels belong to the
foreground and the black pixels belong to the background). The
original active contours approach without edges also requires a
large number of iterations in order to get to a stable
configuration (the final segmentation). An alternative to
converting the image into a binary segmented one could be a
segmentation where the active contours model represents only
an enhancement step.

Figure 3. Image segmentation workflow

After computing the values of φ based on (17), in the last

iteration we normalize the values of φ to [-1,1]. In the original

active contours approach without edges, if 0<φ , then the

segmented image 0),(1 =yxu and if 0≥φ ,
max1),(Iyxu = .

The biggest change to the original algorithm is in computing
the output image by normalizing φ to [0,Imax], where Imax is the

maximum level of intensity (255 in our case):

2

)),(1(
),(

max

1

Iyx
yxu

⋅+
=

φ
. (18)

With our approach, the output image u1 will have shades of
gray, with an enhanced contrast between foreground and
background. Fig. 4(b) presents a CT image after applying the
first step from our algorithm.

Step 2: Gaussian and Nonlinear Anisotropic Diffusion

(G+NAD)

For the removal of small discontinuities within the object
(and especially near the borders) we apply a Gaussian filter on
the image u1. We also apply a nonlinear anisotropic diffusion
filter, considering the image gradient, in order to avoid
connecting different objects. Fig. 4(c) presents the output
image u2 after applying these two smoothing filters.

Figure 4. Output images in the image segmentation steps: (a) original image,

(b) image enhanced with active contours without edges (Step 1), (c) image

smoothed with nonlinear anisotropic diffusion (Step 2), (d) result of adaptive

thresholding (Step 3), (e) output image after applying an adaptive threshold on
the original image (Step 4), (f) image obtained by combining the images u3

and u4 (Step 5), (g) image resulting from connecting the foregorund pixels into

slice islands and removing those islands with a low intensity (Step 6), (h) final

image after applying the hole filling step (Step 7)

Step 3: Adaptive thresholding (AT)

This sub-section states the reasons for introducing another
processing step, an adaptive thresholding. The intensities of the
image u2 are between 0 and Imax. A simple segmentation would
be to separate the pixels based on their intensity relative to
Imax/2. But there are two problems with this segmentation:

• Some pixels with intensity close to the threshold Imax/2
but lower than Imax/2 should belong to the foreground.
We set the interval to search for these pixels to [Imax/2

– ∆I,Imax/2], where ∆I is a fixed parameter.

• There are some pixels whose intensities are close to the
threshold Imax/2 but greater than Imax/2 which should
belong to the background. We set the interval to search

for these pixels to [Imax/2,Imax/2 + ∆I].

In order to eliminate the above problems, we use two

thresholds T1= Imax/2 – ∆I (low) and T2= Imax/2 + ∆I (high). All
the pixels with intensity value lower than T1 are labeled as
background pixels (the intensity is set to 0). All the pixels with
intensity value greater than T2 are considered foreground pixels
(their intensity remains unchanged). For the pixels that belong
to the interval [T1,T2] we apply an adaptive threshold. This

filter removes pixels that could wrongly connect different
objects. Choosing a window of neighbors Wp of size nxn for
the current pixel p we compute the average intensity,

multiplied by a fixed parameter α :

α⋅=

∑
∈

2

2)(

n

qu

M pWq . (19)

M is a threshold for dividing the pixels into foreground and
background. If u2(p) < M, then p is labeled as background

pixel. If 1=α , there are still some pixels wrongly considered

as part of the foreground. This is why we set a slightly higher

threshold with αα ∆+= 1 , where 0>∆α is very close to 0.

Fig. 4(d) shows the result u3 of applying the adaptive
thresholding to image u2.

Step 4: Adaptive thresholding and Gaussian (AT+G)

Due to Step 3, there are fewer wrongly labeled pixels.
However, in case of objects that are very close to each other, or
small contrast between foreground and background, there could
still be pixels that connect different objects. For this problem
we decided to apply another adaptive threshold, but this time,
on the initial image u0. We also smooth the output with a
Gaussian filter. This adaptive threshold does not use T1 and T2
but is applied to all the image pixels. Applying the second
adaptive threshold assures the removal of the pixels that could
have been wrongly labeled as “object” because of the
smoothing steps (the two Gaussian filtering and the nonlinear
anisotropic diffusion). Fig. 4(e) presents the output image u4
after applying the adaptive threshold on the initial image u0.

Step 5: Combining images (CI)

The next step consists of combining the images u3 and u4 in
order to obtain an image with very few or no pixels that
connect different objects. For the current pixel p, if u3(p)>0 and
u4(p)<T3 (where T3 is an experimentally determined threshold),
then the combined image u5(p)=0, else u5(p)=u3(p). Fig. 4(f)
shows the output image u5 after combining images u3 and u4.

Step 6: Island extraction (IE)

The low value of the threshold T2 from Step 3 removes
small discontinuities within the objects. However, this also
adds wrongly labeled pixels. We treat this problem in the
following manner: the foreground pixels that are connected are
grouped into islands. For every island, the average intensity Iavg
is computed. If Iavg<T4, where T4 is a fixed parameter, then the
current island is considered to belong to the background. This
way we are assured that only those low intensity pixels which
are connected to a large number of high intensity pixels are
considered to belong to the foreground. Fig. 4(g) presents the
output image u6 after removing the low intensity islands from
image u5.

Step 7: Hole filling (HF)

The last step in the segmentation process solves the
problem of inhomogeneities within the object. Starting from
the first black pixel in the image (from upper left to lower

right) we do a breadth-first-search (BFS) in order to visit all the
background pixels connected to the first one. All the other
pixels that have not been visited in the BFS are considered to
be part of the foreground, as in Fig. 4(h). This step is called
hole filling because it re-labels all the background pixels that
are located inside a closed foreground island. The problem of
this step is in not differentiating between inhomogeneities
within an object and real holes. This drawback can be
overcome in the following way: if we can be sure that a pixel
belongs to a real hole, and not an inhomogeneity within the
object, this pixel can be set as another seed point for the BFS
that searches for all the connected background pixels.

VI. IMPLEMENTATION

The segmentation algorithm was implemented both on the
CPU and on the GPU. Even for relatively small datasets, the
CPU implementation takes a lot of time. On the other hand, the
CUDA architecture [14] provides the possibility of running the
same instructions for each pixel in a parallel manner,
decreasing the computing times considerably. Based on the
implementation of the Sobel filter from the CUDA SDK
example [15] and the paper by Bojsen-Hansen [16], we
parallelized almost all the steps in our algorithm. Table 1
shows all the processing steps that were implemented in
CUDA. It also provides a comparison between the running
times on a dataset of 256 images (each of size 512

2
) for the

implementation on the CPU and on the GPU. We set the size of
the Gaussian filters to 9x9 and the size of the neighborhood
window for the adaptive thresholds to 21x21. The maximum
number of iterations for active contours without edges is 50
and the maximum number of iterations for nonlinear
anisotropic diffusion is 20. The tests were made on an i7-
2600K 3.40 GHz processor with 8GB RAM and an Nvidia
GeForce GTX 590 GPU card with 1.5 GB RAM. The island
extraction and the hole filling step were not implemented on
the GPU, because they are based on recursion (BFS) and
cannot be intuitively approached in a parallel manner.

TABLE I. COMPUTING TIMES FOR OUR ALGORITHM ON THE CPU AND

THE GPU

Step in the algorithm Time on CPU (sec) Time on GPU (sec)

Step 1: G + AC 2245.71 4.02

Step 2: G + NAD 340.19 2.85

Step 3: AT 11.78 0.39

Step 4: AT + G 205.98 1.21

Step 5: CI 0.14 0.1

Steps 1-5 2803.8 8.79

The CUDA implementation has a great impact on the speed
of the segmentation process. Thus, with the help of the GPGPU
paradigm we now have a quite fast algorithm. In the next
chapter we will see how accurate this algorithm is.

VII. RESULTS

Our segmentation algorithm was tested on ten CT datasets
with different number of slices, each of size 512x512. The

parameters from the fifth chapter were the same for all the

images: ∆I = 30 => T1 = 97.5 and T2 = 157.5; 29/1=∆α =>

0345.1≈α ; T3 = 50 and T4=110. The initial curve C is a

circle located in the center of the image with a radius of 100:

100)256()256(
22 +−+−−= yxφ .

Our implementation was compared with three other
segmentation methods:

• Active contours without edges, described in subsection
III.D, with the following parameters: the maximum

number of iterations for computing φ is 100, and the

parameters from (12) are 11 =η , 12 =η ,
2

2552.0 ⋅=µ and 2
25501.0 ⋅=ν .

• The segmentations using 2D and 3D graph cuts,
described in subsection III.C, with the following
parameters: k = 3, v = 5 and w = 3.

Depending on the difficulty of correctly labeling the
foreground (bones) and the background pixels (other tissues),
the CT datasets were divided into two categories: low and high
difficulty. The images segmented by the four algorithms were
compared with the segmentation made by a human specialist.
The tests consisted of counting the correctly labeled pixels, the
foreground pixels that were wrongly labeled as background
pixels (false negatives), the background pixels that were
wrongly labeled as foreground pixels (false positives), and the
number of images where two different objects were wrongly
connected. If F1 is the number of correctly labeled foreground
pixels, and F2 is the number of false negatives, then the false

negative percentage is EF = F2 / (F1 + F2) ⋅ 100. Similarly, the

false positive percentage is BF = B2 / (B1 + B2) ⋅ 100, where B1 is
the number of correctly labeled background pixels and B2 is the
number of false positives. Table 2 presents the false positive
and the false negative error for the low difficulty datasets.

TABLE II. ERRORS IN LABELING PIXELS FOR THE LOW DIFFICULTY

DATASETS (%)

Alg.
Data1 Data2 Data3 Data4 Data5

BF EF BF EF BF EF BF EF BF EF

Our alg. 0.028 0.691 0.068 0.651 0.56 0.897 0.247 1.214 0.922 1.342

2D GC 0.015 0.497 0.0337 0.676 13.724 0.677 23.905 0.663 0.258 1.584

3D GC 0.068 0.772 0.11 0.811 4.564 1.525 12.029 11.332 0.927 1.116

AC 0.015 0.585 0.027 0.814 0.861 0.814 0.128 0.434 0.859 0.818

Table 3 presents the percentage of images where two
different objects were wrongly connected, for the low difficulty
datasets.

TABLE III. PERCENTAGE OF IMAGES WHERE DIFFERENT OBJECTS WERE

WRONGLY CONNECTED FOR THE LOW DIFFICULTY DATASETS

Algorithm
Percentage of images (%)

Data1 Data2 Data3 Data4 Data5

Our algorithm 0 0 0 10.42 0

2D graph cuts 0 0 4.16 14.58 34.09

3D graph cuts 0 0 8.33 29.16 13.63

Active contours 0 0 8.33 18.75 21.59

The high difficulty datasets have more noise, more
inhomogeneities within the objects, and a bigger change in
intensity between different images of the same dataset. Table 4
presents a comparison regarding the false positive and false
negative errors between our algorithm and the other
segmentation algorithms, for the high difficulty datasets.

TABLE IV. ERRORS IN LABELING PIXELS FOR THE HIGH DIFFICULTY

DATASETS (%)

Alg.
Data6 Data7 Data8 Data9 Data10

BF EF BF EF BF EF BF EF BF EF

Our alg. 0.999 1.163 1.441 1.342 2.79 0.369 6.331 1.569 6.83 1.76

2D GC 4.59 1.219 0.361 2.629 2.924 0.847 4.573 21.75 8.276 6.653

3D GC 2.396 1.689 1.147 1.631 3.404 0.505 10.774 8.96 23.748 3.138

AC 0.752 2.037 0.45 1.725 3.533 0.405 2.977 1.937 6.2 4.275

Table 5 presents the comparison between the segmentation
algorithms regarding the percentage of images were different
objects are wrongly connected, for the high difficulty datasets.

TABLE V. PERCENTAGE OF IMAGES WHERE DIFFERENT OBJECTS WERE

WRONGLY CONNECTED FOR THE HIGH DIFFICULTY DATASETS

Algorithm
Percentage of images (%)

Data6 Data7 Data8 Data9 Data10

Our algorithm 0 0 0 21.73 8.69

2D graph cuts 10 100 10.46 69.56 86.95

3D graph cuts 30 30 6.58 73.91 30.43

Active contours 60 90 10.85 100 91.30

The results in computing the pixel labeling error for our
algorithm were comparable to or even better than the other
algorithms’ results. The big difference can be observed in the
percentage of images where different objects were wrongly
connected. Our algorithm discriminated quite well between
different objects, even on noisy images. This does not hold for
the other algorithms. In order to obtain an overview of the
differences between the four segmentation algorithms, we have
computed, for all the datasets, the average of the false negative
and false positive error in labeling the pixels, and the average
percentage of images where different objects were wrongly
connected. These differences can be seen in Fig. 5.

Figure 5. Comparison between our algorithm and other segmentation

algorithms regarding the average of the false positive and false negative error

in pixel labeling and the average percentage of images where different objects

were wrongly connected

Even if the average error in pixel labeling from the active
contours without edges segmentation is comparable to the
result obtained with our algorithm, the average percentage of
images where different objects are wrongly connected shows
that our implementation is superior. From the tests described in
the previous section and from Fig. 5 we can draw the
conclusion that our algorithm is 98% and 99% accurate
regarding the labeling of background and foreground pixels,
respectively, and 96% accurate in discriminating between
different objects in CT images. Also, we can observe that in
seven cases out of ten, our algorithm differentiated perfectly
between objects. The percentage of slices where different
objects were wrongly connected is 0% in these cases. The next
step in our research is to connect segmented CT images in
order to obtain the whole volume occupied by bones. Also, we
want to reconstruct the interior of the femoral bone, for the
purpose of obtaining the 3D model of a personalized implant.

REFERENCES

[1] M. Kass, A. Witkin, D. Terzopoulos, “Snakes: active contour models”,
in International Journal of Computer Vision, 1988, pp. 321-331.

[2] T.F. Chan, L.A. Vese, ”Active contours without edges”, in IEEE
Transactions on Image Processing, 2001, Issue 2, pp. 266-277.

[3] Y. Boykov, O. Veksler, “Graph cuts in vision and graphics: theories and
applications”, in Math. Models of C. Vision: The Handbook, Springer,
2006.

[4] H. Digabel, C. Lantuejoul, “Iterative Algorithms”, in Actes du Second
Symposium Europeen d’Analyse Qantitative des Microstructures en
Sciences des Materiaux, Biologie et Medicine, 1978, pp. 85-99.

[5] S. Beucher, C. Lantuejoul, “Use of watersheds in contour detection”, in
Proc. International Workshop on Image Processing, Real-Time Edge and
Motion Detection/Estimation, 1979.

[6] J. B. T. M. Roerdink, A. Meijsetr, “The watershed transform:
definitions, algorithms and parallelization strategies”, in Fundamenta
Informaticae, 2000,Issue 41(1-2), pp. 187-228.

[7] P. Porwik, A. Lisowska, ”The Haar-wavelet transform in digital image
processing: its status and achievements”, in Machine Graphics & Vision,
2004, vol. 13, no. 1/2, pp. 79-98.

[8] A. Gavlasova, A. Prochazka, M. Mudrova, “Wavelet based image
segmentation”, in Proc. of the 14th Annual Conference Techincal
Computing, Prague, 2006.

[9] R.C. Gonzales, R.E. Woods, Digital Image Processing, Prentice-Hall,
2002, pp. 222-224.

[10] J. Weickert, Anisotropic Diffusion in Image Processing, B.G. Teubner
Stuttgart, 1998.

[11] S. Tabik, E.M. Garzon, I. Garcia, J.J. Fernandez, “Implementation of
anisotropic nonlinear diffusion for filtering 3D images in structural
biology on SMP clusters”, in Parallel Computing: Curent & Future
Issues of High-End Computing, Proceedings of the International
Conference ParCo, 2005, Vol 33, pp. 727-734.

[12] P. Perona, J. Malik, “Scale-space and edge detection using anisotropic
diffusion”, in Proceedings of IEEE Computer Society Workshop on
Computer Vision, 1987, pp. 16-22.

[13] Y. Boykov, M. P. Jolly, “Interactive graph cuts for optimal boundary &
region segmentation of objects in N-D images”, in Computer Vision
2001, ICCV 2001, Proceedings, Eighth IEEE International Conference
on Computer Vision, pp. 105-112, 2001

[14] Nvidia Corporation, NVIDIA CUDA C Programming Guide, Version
4.0, 2011, available at www.nvidia.com last visited in 18.05.2012.

[15] Nvidia Corporation, CUDA SDK Example, available at
www.nvidia.com last visited in 18.05.2012.

[16] M. Bojsen-Hansen, “Active contours without edges on the GPU”, in
Project Paper for the Course in Parallel Computing for Medical Imaging
and Simulation, 2010.

