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Abstract—There are a lot of image segmentation techniques that 

try to differentiate between background and object pixels, but 

many of them fail to discriminate between different objects that 

are close to each other. Some image characteristics like low 

contrast between background and foreground or inhomogeneity 

within the objects increase the difficulty of correctly segmenting 

images. We designed a new segmentation algorithm based on 

active contours without edges. We also used other image 

processing techniques such as nonlinear anisotropic diffusion and 

adaptive thresholding in order to overcome the images’ problems 

stated above. Our algorithm was tested on very noisy images, and 

the results were compared to those obtained with known 

methods, like segmentation using active contours without edges 

and graph cuts. The new technique led to very good results, but 

the time complexity was a drawback. However, this drawback 

was significantly reduced with the use of graphical programming. 

Our segmentation method has been successfully integrated in a 

software application whose aim is to segment the bones from CT 

datasets, extract the femur and produce personalized prostheses 

in hip arthroplasty.  

Active contours without edges, image segmentation, nonlinear 

anisotropic diffusion, parallel image processing 

I.  INTRODUCTION  

Image processing is a popular technique in many domains, 
like medicine, security and surveillance, traffic control and 
image editing. The human eye can easily distinguish important 
characteristics even in very poor quality images. The aim of 
image-processing software-applications is to interpret images 
in a similar (or even better) way as compared to a human 
being, but only faster. The results obtained by computers can 
be very impressive, for example, the 3D visualization of a CT 
dataset, with the highlighting of some important characteristics, 
like different human tissues. Often these automatic processing 
algorithms may lead to errors. The challenge in this domain is 
to discover fast and fully automatic image processing 
algorithms, or algorithms that require only little human 
intervention.  

The research presented in this paper concentrates on the 
segmentation of poor quality images, like CT images, that have 
a granular aspect, small contrast between foreground and 
background and inhomogeneities regarding the intensity within 
the foreground. The second chapter discusses the state of the 
art in image segmentation. The third chapter describes a series 
of image processing techniques that were used in our algorithm 
and in the segmentation methods that were compared to our 
algorithm. Next, we state our motivation for designing a new 

segmentation technique. The fifth chapter presents the steps of 
our new algorithm. In the sixth chapter we focus on 
implementation details both on the CPU and on the GPU with 
CUDA. In the last chapter we present a comparison between 
the results obtained with our algorithm and the results 
produced by other segmentation algorithms.  

II. RELATED WORK 

There are a lot of image segmentation techniques, some 
based on intensity or texture, others on gradient or shape 
characteristics. Some of the methods that have proven to lead 
to good results in the segmentation of poor quality images are 
briefly presented in this section. 

Kass et al. [1] introduce the concept of snakes, or active 
contours. Snakes are energy-minimizing splines guided by 
external constraint forces and influenced by image forces that 
pull them toward features such as lines and edges. Chan and 
Vese [2] propose active contours without edges. It is a new 
model for active contours, which is based on techniques of 
curve evolution, the Mumford-Shah functional for 
segmentation, and level sets. This method will be detailed in 
the next chapter.  

Boykov and Veksler [3] describe the use of graph cuts in 
computer vision and graphics through theories and 
applications. In image segmentation, a graph is created from 
the image or the set of images. The graph construction and the 
characteristics that divide the pixels into two disjoint parts, i.e., 
the background and the foreground, will be detailed in the next 
section. 

In grey scale mathematical morphology, the watershed 
transform, originally proposed by Digabel and Lantuejoul [4] 
and later improved by Buecher and Lantuejoul [5], is 
considered to lead to very good results in image segmentation. 
Roerdink and Meijster [6] wrote a review of several definitions 
and algorithms of the watershed transform. They describe in 
this review the geographic idea behind the watershed transform 
as that of a landscape or topographic relief which is flooded by 
water. Watersheds are the dividing lines of the domains of 
attraction of rain falling over the region. When the water level 
has reached the highest peak in the landscape, the process is 
stopped, and the result is a landscape partitioned into basins 
separated by dams, called watershed lines.  

Porwik and Lisowska [7] present the use of the Haar-
wavelet transform in digital image processing. Their paper 
describes a method of image analysis by means of the wavelet-



Haar spectrum. Glavasova et al. [8] discuss the wavelet 
transform for feature extraction, based on texture analysis, for 
the final goal of image segmentation.  

There are a lot of other segmentation algorithms, but most 
of them are based to some extent on one of the techniques 
mentioned above. The challenges in image segmentation come 
from the problems previously stated. The small contrast 
between foreground and background makes it difficult to 
extract all the edges or lines that are used for example in active 
contours, graph cuts and watersheds. The inhomogeneities 
within the objects prove to be a drawback for active contours 
without edges, because this method tries to minimize the 
differences within the foreground and the background. The 
lack of a texture pattern could be a problem for the wavelet 
transform based segmentation. Our algorithm takes into 
account the imperfections of poor quality images (like CTs), 
not only differentiating between objects and background, but 
also between different objects. 

III. IMAGE PROCESSING TECHNIQUES 

For the understanding and motivation of our algorithm, we 
shortly describe in this section the existing techniques that we 
used in our image segmentation. We also present some details 
regarding the other segmentation methods that were compared 
to our algorithm. 

A. Noise Reduction Using Gaussian Filtering 

One of the most common types of noise is Gaussian noise 
[9]. Gaussian noise is modeled using a probability density 
function. In our implementation we used a convolution mask 
approximating a 2D Gaussian distribution function. 

B. Nonlinear Anisotropic Diffusion 

Nonlinear anisotropic diffusion [10, 11] reduces noise, but 

preserves the image information. We present in this sub-

section some concepts of diffusion filtering. Diffusion is a 

physical process that balances the concentration changes of a 

certain substance. Having a concentration distribution u, 

Flick’s law states that the concentration gradient determines a 

flow: 

uDj ∇⋅−= .              (1) 

D is the diffusion tensor, a positive-definite symmetric 

matrix. Diffusion represents mass transport without destroying 

or creating new mass. From the continuity equation we can 

derive the following equation: 
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where t denotes time, and ∂tu, the deviation of u with respect 

to t. From (1) and (2) we can deduce the following result: 

)( uDdivut ∇⋅−=∂ .             (3) 

In image processing the image intensity can be seen as 
“concentration”, and image noise as concentration 
inhomogeneities. These inhomogeneities can be smoothed 
through diffusion. In order to preserve edges, the filtering will 
be accomplished in the following manner: 

• no diffusion across edges 

• diffusion parallel to the edges. 

The diffusion tensor is a 2x2 matrix computed with the 
following expression:  
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The eigenvectors v1 and v2 provide the local diffusion 
orientations. Their corresponding eigenvalues give the contrast 
along these directions. The first eigenvector denotes the 
direction of maximum variation. Therefore, v1 represents the 
direction parallel to the image gradient. The other eigenvector 
is determined considering the orthogonality property: 
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The eigenvalues are computed so that diffusion is inhibited 
across the edges, and activated parallel to the edges: 
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The first eigenvalue is determined using the following 
expression proposed by Perona and Malik [12]: 
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The constant Cm is computed so that the diffusion is big for 
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threshold for the gradient. Values bigger than the threshold 
determine edges. In our implementation we have chosen 

4=λ and m = 4. The value of m determines Cm=3.31488. 

After computing the eigenvectors and the eigenvalues of 

the diffusion tensor 
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with finite differences. ∂tu can be replaced through a forward 
difference approximation.  

The obtained explicit scheme allows the iterative 
computation of several versions of the image: 
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where ∆t denotes the time step size, and u(x,y,s) represents the 

image at time ts = s ⋅ ∆t. The standard scheme for the 
approximation of spatial derivatives is based on central 
differences. Fig. 1 presents the results of applying nonlinear 
anisotropic diffusion on a CT image. 

 

 

 

 

 

Figure 1.  Nonlinear anisotropic diffusion filtering of a CT image at different 

moments in time (different number of iterations) 

C. Graph Cuts 

The mechanisms of graph cuts for image segmentation are 
given in more detail. This provides some insight into the graph 
construction algorithm used in the implementation that was 
compared to our algorithm. In a tutorial illustrating graph cuts 
in the context of computer vision and graphics, Boykov and 
Veksler [3] explain general theoretical properties that motivate 
their use. 

Let EVG ,=  be a graph composed of a set of nodes V 

and a set of oriented edges E. The set of nodes { } PtsV ∪= ,  

contains two nodes called terminals, i.e., the source s and the 
sink t, as well as a set of non-terminal nodes P. Every edge in 
the graph is assigned a nonnegative weight w(p,q). An edge is 
called t-link if it connects a non-terminal node with a terminal 
one. It is called n-link if it connects two non-terminal nodes. 
An s/t cut is a partitioning of the graph nodes into two disjoint 
sets S and T in a manner that the source s is in S and the sink t 
in T. 

Starting from an image, the graph is built in a manner that 
every pixel in the image defines a non-terminal node of the 
graph. The cost of an n-link is based on the “likeliness” of the 
neighboring non-terminal nodes. The cost of a t-link is based 
on the “likeliness” of the connected non-terminal node and the 
terminal one. After the cut, some pixels belong to the source 
(being labeled as “object”) and others to the sink 
(“background”). The minimal cut minimizes the energy 
function introduced by Boykov and Veksler [3]: 
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where Dp is the per-pixel term that reflects the penalty of 
assigning the label fp to pixel p. Vp,q is the border term that 
encourages spatial coherence within the objects and the 

background. Q represents the set of all the n-links, fp is the 
label assigned to pixel p (“object” or “background”) and P 
denotes the set of all non-terminal nodes. 

In order to define the border term Vp,q we use the 
observation of Boykov and Veksler [3] that pixels with high 
image gradient would imply low cost of n-links and vice-versa. 
This is why we compute the gradient of the image using a 
Sobel filter. For smoother borders, we decided to apply the 
Sobel filter after convolving the image with a Gaussian filter 
and a nonlinear anisotropic diffusion filter. If the absolute 
difference between the gradient magnitude of two neighboring 
pixels p and q is greater than a given threshold k, Vp,q is directly 
proportional with that difference. If there is a small variation of 
the gradient, the value of Vp,q, given by the constant v, is high. 
The border term can be defined as follows: 
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where uf is the image obtained after applying the Gaussian 
filter and the nonlinear anisotropic diffusion filter. This 
definition encourages borders in regions where there are abrupt 
variations of the gradient magnitude. 

Boykov and Jolly [13] designed a technique for general 
purpose interactive segmentation of N-dimensional images. In 
their workflow, the user marks certain pixels as “object” or 
“background”. We extend their approach by marking certain 
pixels based on their intensities. We introduce two thresholds, 
Tlow and Thigh, that determine the most probable background and 
foreground pixels. If the intensity of a pixel is greater than 
Thigh, the pixel is most likely an object pixel. If its intensity is 
lower than Tlow, there is a high probability that the pixel 
belongs to the background. If the pixel does not belong to any 
of the two categories, the per-pixel term depends on its 
intensity relative to Tlow and Thigh: 
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where u0 denotes the initial image. The constant w assures a 
high cost for t-links that connect a non-terminal node and a 
terminal one that have the same label (either “object” or 
“background”). 

  

  



Our algorithm was compared to two segmentation methods 
based on graph cuts. In the first implementation, the set of n-
links Q contains only 4-connected neighbors. The second 
implementation can be used only for volumetric data, because 
it considers also connections of pixels from adjacent slices. The 
first method is further called 2D graph cuts (2D GC), because it 
segments the images individually. The second one is being 
referred to as 3D graph cuts (3D GC), because it can be applied 
only to 3D images (like CT datasets). 

D. Active Contours without Edges 

This section presents the active contours model without 
edges. Part of the method is included in the workflow of our 
algorithm. This technique is also used as a comparison to our 
segmentation. In their paper, Chan and Vese [2] propose a new 
active contour model for object detection in a 2D image. The 
stopping term for the involved curve evolution process does 
not depend on the image gradient, but is related to a particular 
segmentation of the image. 

An evolving curve C, in the image space Ω, can be defined 

as the frontier of a subset ω of Ω (ω ⊆ Ω and C=∂ ω). ω 

represents the region occupied by foreground pixels. inside(C) 
denotes the region ω and outside(C) denotes the region 

ω\Ω . The image u0 is assumed to be composed of two 

regions of approximately constant intensities c1 (the intensity 
of the object) and c2 (the intensity of the background). If the 
object’s boundary is C, then inside of C the intensity value 
should be equal to c1. Outside of C, the intensity value should 
be equal to c2. Chan and Vese [2] introduce the following 
energy: 
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where 0≥µ , 0≥ν , 0, 21 >ηη  are fixed parameters. The 

length of the curve, Length(C), and the area of the region inside 
C, Area(inside(C)), are two regularizing terms. Chan and Vese 

[2] set 0=ν , 11 =η and 12 =η . We keep the values of ν , 

1η and 
2η defined by them, but we also set µ to 0. We explain 

in the fifth chapter the reason for omitting the length term. The 
image segmentation into foreground and background is 
accomplished by solving the minimization problem 
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of a Lipschitz function R→Ω:φ , so that: 









<Ω∈=Ω=

>Ω∈==

=Ω∈=∂=

}0).(:),{(\)(

}0).(:),{()(

}0).(:),{(

yxyxCoutside

yxyxCinside

yxyxC

φω

φω

φω
. 

Using the Heaviside function H and the one-dimensional 
Dirac measure δ0 defined by Chan and Vese [2], the energy 

),,(),,( 2121 φccFCccF = can be expressed as follows: 
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The constants c1 and c2 can be expressed relative to φ : 
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The evolution of φ can be parametrized as follows: 
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The segmentation algorithm follows an iterative method. 

Knowing ),,( syxφ at time tst s ∆⋅= , ),(1 sc φ  and 

),(2 sc φ can be computed by using (14) and (15). Then, 

)1,,( +syxφ can be computed by the following discretization 

and linearization of (16) in φ : 
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where t∆  denotes the time step size and ),(0 yxu represents 

the initial image. 

IV. MOTIVATION 

In this chapter we give the reasons for designing a new 
segmentation method. The algorithms described in the previous 
chapter were tested on ten noisy CT datasets. The aim of the 
segmentations was to differentiate between bones and other 
tissues, but also to discriminate between different bones. Fig. 2 
presents an image before (a) and after being processed with 2D 
graph cuts (c), 3D graph cuts (d) and active contours without 
edges (e). Compared to the manual segmentation (b), the 
results show that, even if the most pixels are correctly labeled 
as “object” or “background”, there are some problems with 
differentiating between bones. 

As previously mentioned, our segmentation is part of a 
bigger project, whose aim is to obtain prototypes for 
personalized implants in hip arthroplasty. Since one of the 
requirements of automatically producing an artificial implant is 



to extract the femoral bone and to differentiate it from other 
bones, we decided to implement a new segmentation technique. 
Our algorithm segments the objects from the background quite 
well, without connecting different objects. In the example 
provided in Fig. 2, it can be observed that our segmentation (f) 
was the closest to the output of the manual segmentation. In 
chapter seven we present the results of a comparison with the 
other segmentation algorithms on ten datasets, in order to 
demonstrate the quality of our algorithm in more detail.  

 

 

 

 

 

 

 

 

 

Figure 2.  Comparison of different CT image segmentation methods: (a) 

original image, (b) image segmented by a human specialist, (c) image 

segmented with 2D graph cuts, (d) image segmented with 3D graph cuts, (e) 

image segmented with active contours without edges, (f) image segmented 

with our algorithm 

The algorithm has been exemplified using CT images, but it 
can be applied on all kinds of grayscale images that have the 
following characteristics: 

• The foreground has a higher intensity than the 
background 

• The images contain multiple objects that are positioned 
close to each other and should not be connected 

• There are big inhomogeneities within the foreground. 

V. SEGMENTATION ALGORITHM 

This chapter presents our new segmentation technique. The 
steps of the algorithm are identified in the workflow of Fig. 3 
and are described in detail in the following subsections. 

Step 1: Gaussian  and Active Contours (G + AC) 

As mentioned before, our segmentation is based on the 
active contours model by Chan and Vese [2]. Here we state our 
reasons for making some changes to the original algorithm. 
The first change was the omission of the length term in 
equation (12). We tested the original algorithm on images 
where two different objects were positioned very close to each 
other. The output image contained a single object, composed of 
the two initial objects. An explanation could be the one given 
by Chan and Vese [2] regarding the use of the length term as a 
scale parameter. If the constant µ from (12) is small, then also 

smaller objects will be detected. If it is larger, then only larger 
objects are detected, or objects that are grouped together. We 
do not want different objects close to each other to be 

interpreted as a single object. This is the reason we decided to 
set 0=µ  in (12), and to use (17) for the computation of φ . 

Most of the tested images had a lot of noise. In order to 
remove this noise we smooth the initial image u0 with a 
Gaussian filter. The image segmentation that divides the pixels 

based on the value of φ relative to 0 is too rough in the sense 

that it leads to a binary image (the white pixels belong to the 
foreground and the black pixels belong to the background). The 
original active contours approach without edges also requires a 
large number of iterations in order to get to a stable 
configuration (the final segmentation). An alternative to 
converting the image into a binary segmented one could be a 
segmentation where the active contours model represents only 
an enhancement step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Image segmentation workflow 

After computing the values of φ based on (17), in the last 

iteration we normalize the values of φ to [-1,1]. In the original 

active contours approach without edges, if 0<φ , then the 

segmented image 0),(1 =yxu  and if 0≥φ , 
max1 ),( Iyxu = . 

The biggest change to the original algorithm is in computing 
the output image by normalizing φ to [0,Imax], where Imax is the 

maximum level of intensity (255 in our case): 
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With our approach, the output image u1 will have shades of 
gray, with an enhanced contrast between foreground and 
background. Fig. 4(b) presents a CT image after applying the 
first step from our algorithm. 

 



Step 2: Gaussian and Nonlinear Anisotropic Diffusion 

(G+NAD) 

For the removal of small discontinuities within the object 
(and especially near the borders) we apply a Gaussian filter on 
the image u1. We also apply a nonlinear anisotropic diffusion 
filter, considering the image gradient, in order to avoid 
connecting different objects. Fig. 4(c) presents the output 
image u2 after applying these two smoothing filters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Output images in the image segmentation steps: (a) original image, 

(b) image enhanced with active contours without edges (Step 1), (c) image 

smoothed with nonlinear anisotropic diffusion (Step 2), (d) result of adaptive 

thresholding (Step 3), (e) output image after applying an adaptive threshold on 
the original image (Step 4), (f) image obtained by combining the images u3 

and u4 (Step 5), (g) image resulting from connecting the foregorund pixels into 

slice islands and removing those islands with a low intensity (Step 6), (h) final 

image after applying the hole filling step (Step 7) 

Step 3: Adaptive thresholding (AT)  

This sub-section states the reasons for introducing another 
processing step, an adaptive thresholding. The intensities of the 
image u2 are between 0 and Imax. A simple segmentation would 
be to separate the pixels based on their intensity relative to 
Imax/2. But there are two problems with this segmentation: 

• Some pixels with intensity close to the threshold Imax/2 
but lower than Imax/2 should belong to the foreground. 
We set the interval to search for these pixels to [Imax/2 

– ∆I,Imax/2], where ∆I is a fixed parameter. 

• There are some pixels whose intensities are close to the 
threshold Imax/2 but greater than Imax/2 which should 
belong to the background. We set the interval to search 

for these pixels to [Imax/2,Imax/2 + ∆I]. 

In order to eliminate the above problems, we use two 

thresholds T1= Imax/2 – ∆I (low) and T2= Imax/2 + ∆I (high). All 
the pixels with intensity value lower than T1 are labeled as 
background pixels (the intensity is set to 0). All the pixels with 
intensity value greater than T2 are considered foreground pixels 
(their intensity remains unchanged). For the pixels that belong 
to the interval [T1,T2] we apply an adaptive threshold. This 

filter removes pixels that could wrongly connect different 
objects. Choosing a window of neighbors Wp of size nxn for 
the current pixel p we compute the average intensity, 

multiplied by a fixed parameter α : 
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M is a threshold for dividing the pixels into foreground and 
background. If u2(p) < M, then p is labeled as background 

pixel. If 1=α , there are still some pixels wrongly considered 

as part of the foreground. This is why we set a slightly higher 

threshold with αα ∆+= 1 , where 0>∆α is very close to 0. 

Fig. 4(d) shows the result u3 of applying the adaptive 
thresholding to image u2. 

Step 4: Adaptive thresholding and Gaussian (AT+G) 

Due to Step 3, there are fewer wrongly labeled pixels. 
However, in case of objects that are very close to each other, or 
small contrast between foreground and background, there could 
still be pixels that connect different objects. For this problem 
we decided to apply another adaptive threshold, but this time, 
on the initial image u0. We also smooth the output with a 
Gaussian filter. This adaptive threshold does not use T1 and T2 
but is applied to all the image pixels. Applying the second 
adaptive threshold assures the removal of the pixels that could 
have been wrongly labeled as “object” because of the 
smoothing steps (the two Gaussian filtering and the nonlinear 
anisotropic diffusion). Fig. 4(e) presents the output image u4 
after applying the adaptive threshold on the initial image u0. 

Step 5: Combining images (CI) 

The next step consists of combining the images u3 and u4 in 
order to obtain an image with very few or no pixels that 
connect different objects. For the current pixel p, if u3(p)>0 and 
u4(p)<T3 (where T3 is an experimentally determined threshold), 
then the combined image u5(p)=0, else u5(p)=u3(p). Fig. 4(f) 
shows the output image u5 after combining images u3 and u4. 

Step 6: Island extraction (IE) 

The low value of the threshold T2 from Step 3 removes 
small discontinuities within the objects. However, this also 
adds wrongly labeled pixels. We treat this problem in the 
following manner: the foreground pixels that are connected are 
grouped into islands. For every island, the average intensity Iavg 
is computed. If Iavg<T4, where T4 is a fixed parameter, then the 
current island is considered to belong to the background. This 
way we are assured that only those low intensity pixels which 
are connected to a large number of high intensity pixels are 
considered to belong to the foreground. Fig. 4(g) presents the 
output image u6 after removing the low intensity islands from 
image u5. 

Step 7: Hole filling (HF) 

The last step in the segmentation process solves the 
problem of inhomogeneities within the object. Starting from 
the first black pixel in the image (from upper left to lower 



right) we do a breadth-first-search (BFS) in order to visit all the 
background pixels connected to the first one. All the other 
pixels that have not been visited in the BFS are considered to 
be part of the foreground, as in Fig. 4(h). This step is called 
hole filling because it re-labels all the background pixels that 
are located inside a closed foreground island. The problem of 
this step is in not differentiating between inhomogeneities 
within an object and real holes. This drawback can be 
overcome in the following way: if we can be sure that a pixel 
belongs to a real hole, and not an inhomogeneity within the 
object, this pixel can be set as another seed point for the BFS 
that searches for all the connected background pixels. 

VI. IMPLEMENTATION 

The segmentation algorithm was implemented both on the 
CPU and on the GPU. Even for relatively small datasets, the 
CPU implementation takes a lot of time. On the other hand, the 
CUDA architecture [14] provides the possibility of running the 
same instructions for each pixel in a parallel manner, 
decreasing the computing times considerably. Based on the 
implementation of the Sobel filter from the CUDA SDK 
example [15] and the paper by Bojsen-Hansen [16], we 
parallelized almost all the steps in our algorithm. Table 1 
shows all the processing steps that were implemented in 
CUDA. It also provides a comparison between the running 
times on a dataset of 256 images (each of size 512

2
) for the 

implementation on the CPU and on the GPU. We set the size of 
the Gaussian filters to 9x9 and the size of the neighborhood 
window for the adaptive thresholds to 21x21. The maximum 
number of iterations for active contours without edges is 50 
and the maximum number of iterations for nonlinear 
anisotropic diffusion is 20. The tests were made on an i7-
2600K 3.40 GHz processor with 8GB RAM and an Nvidia 
GeForce GTX 590 GPU card with 1.5 GB RAM. The island 
extraction and the hole filling step were not implemented on 
the GPU, because they are based on recursion (BFS) and 
cannot be intuitively approached in a parallel manner.  

TABLE I.  COMPUTING TIMES FOR OUR ALGORITHM ON THE CPU AND 

THE GPU  

Step in the algorithm Time on CPU (sec) Time on GPU (sec) 

Step 1: G + AC 2245.71 4.02 

Step 2: G + NAD 340.19 2.85 

Step 3: AT 11.78  0.39 

Step 4: AT + G 205.98 1.21 

Step 5: CI 0.14 0.1 

Steps 1-5 2803.8 8.79 

 

The CUDA implementation has a great impact on the speed 
of the segmentation process. Thus, with the help of the GPGPU 
paradigm we now have a quite fast algorithm. In the next 
chapter we will see how accurate this algorithm is. 

VII. RESULTS 

Our segmentation algorithm was tested on ten CT datasets 
with different number of slices, each of size 512x512. The 

parameters from the fifth chapter were the same for all the 

images: ∆I = 30 => T1 = 97.5 and T2 = 157.5; 29/1=∆α => 

0345.1≈α ; T3 = 50 and T4=110. The initial curve C is a 

circle located in the center of the image with a radius of 100:   

100)256()256(
22 +−+−−= yxφ .                 

Our implementation was compared with three other 
segmentation methods: 

• Active contours without edges, described in subsection 
III.D, with the following parameters: the maximum 

number of iterations for computing φ is 100, and the 

parameters from (12) are 11 =η , 12 =η , 
2

2552.0 ⋅=µ and 2
25501.0 ⋅=ν . 

• The segmentations using 2D and 3D graph cuts, 
described in subsection III.C, with the following 
parameters: k = 3, v = 5 and w = 3. 

Depending on the difficulty of correctly labeling the 
foreground (bones) and the background pixels (other tissues), 
the CT datasets were divided into two categories: low and high 
difficulty. The images segmented by the four algorithms were 
compared with the segmentation made by a human specialist. 
The tests consisted of counting the correctly labeled pixels, the 
foreground pixels that were wrongly labeled as background 
pixels (false negatives), the background pixels that were 
wrongly labeled as foreground pixels (false positives), and the 
number of images where two different objects were wrongly 
connected. If F1 is the number of correctly labeled foreground 
pixels, and F2 is the number of false negatives, then the false 

negative percentage is EF = F2 / (F1 + F2) ⋅ 100. Similarly, the 

false positive percentage is BF = B2 / (B1 + B2) ⋅ 100, where B1 is 
the number of correctly labeled background pixels and B2 is the 
number of false positives. Table 2 presents the false positive 
and the false negative error for the low difficulty datasets. 

TABLE II.  ERRORS IN LABELING PIXELS FOR THE LOW DIFFICULTY 

DATASETS (%) 

Alg. 
Data1  Data2  Data3 Data4  Data5 

BF  EF BF EF BF EF BF EF BF EF 

Our alg. 0.028 0.691 0.068 0.651 0.56 0.897 0.247 1.214 0.922 1.342 

2D GC 0.015 0.497 0.0337 0.676 13.724 0.677 23.905 0.663 0.258 1.584 

3D GC 0.068 0.772 0.11 0.811 4.564 1.525 12.029 11.332 0.927 1.116 

AC 0.015 0.585 0.027 0.814 0.861 0.814 0.128 0.434 0.859 0.818 

 

Table 3 presents the percentage of images where two 
different objects were wrongly connected, for the low difficulty 
datasets. 

TABLE III.  PERCENTAGE OF IMAGES WHERE DIFFERENT OBJECTS WERE 

WRONGLY CONNECTED FOR THE LOW DIFFICULTY DATASETS 

Algorithm 
Percentage of images (%) 

Data1 Data2 Data3 Data4 Data5 

Our algorithm 0 0 0 10.42 0 

2D graph cuts 0 0 4.16 14.58 34.09 

3D graph cuts 0 0 8.33 29.16 13.63 

Active contours 0 0 8.33 18.75 21.59 



The high difficulty datasets have more noise, more 
inhomogeneities within the objects, and a bigger change in 
intensity between different images of the same dataset. Table 4 
presents a comparison regarding the false positive and false 
negative errors between our algorithm and the other 
segmentation algorithms, for the high difficulty datasets. 

TABLE IV.  ERRORS IN LABELING PIXELS FOR THE HIGH DIFFICULTY 

DATASETS (%) 

Alg. 
Data6  Data7 Data8 Data9 Data10 

BF EF BF EF BF EF BF EF BF EF 

Our alg. 0.999 1.163 1.441 1.342 2.79 0.369 6.331 1.569 6.83 1.76 

2D GC 4.59 1.219 0.361 2.629 2.924 0.847 4.573 21.75 8.276 6.653 

3D GC 2.396 1.689 1.147 1.631 3.404 0.505 10.774 8.96 23.748 3.138 

AC 0.752 2.037 0.45 1.725 3.533 0.405 2.977 1.937 6.2 4.275 

 

Table 5 presents the comparison between the segmentation 
algorithms regarding the percentage of images were different 
objects are wrongly connected, for the high difficulty datasets. 

TABLE V.  PERCENTAGE OF IMAGES WHERE DIFFERENT OBJECTS WERE 

WRONGLY CONNECTED FOR THE HIGH DIFFICULTY DATASETS 

Algorithm 
Percentage of images (%) 

Data6 Data7 Data8 Data9 Data10 

Our algorithm 0 0 0 21.73 8.69 

2D graph cuts 10 100 10.46 69.56 86.95 

3D graph cuts 30 30 6.58 73.91 30.43 

Active contours 60 90 10.85 100 91.30 

 

The results in computing the pixel labeling error for our 
algorithm were comparable to or even better than the other 
algorithms’ results. The big difference can be observed in the 
percentage of images where different objects were wrongly 
connected. Our algorithm discriminated quite well between 
different objects, even on noisy images. This does not hold for 
the other algorithms. In order to obtain an overview of the 
differences between the four segmentation algorithms, we have 
computed, for all the datasets, the average of the false negative 
and false positive error in labeling the pixels, and the average 
percentage of images where different objects were wrongly 
connected. These differences can be seen in Fig. 5.  

 

 

 

 

 

 

 

Figure 5.  Comparison between our algorithm and other segmentation 

algorithms regarding the average of the false positive and false negative error 

in pixel labeling and the average percentage of images where different objects 

were wrongly connected 

Even if the average error in pixel labeling from the active 
contours without edges segmentation is comparable to the 
result obtained with our algorithm, the average percentage of 
images where different objects are wrongly connected shows 
that our implementation is superior. From the tests described in 
the previous section and from Fig. 5 we can draw the 
conclusion that our algorithm is 98% and 99% accurate 
regarding the labeling of background and foreground pixels, 
respectively, and 96% accurate in discriminating between 
different objects in CT images. Also, we can observe that in 
seven cases out of ten, our algorithm differentiated perfectly 
between objects. The percentage of slices where different 
objects were wrongly connected is 0% in these cases. The next 
step in our research is to connect segmented CT images in 
order to obtain the whole volume occupied by bones. Also, we 
want to reconstruct the interior of the femoral bone, for the 
purpose of obtaining the 3D model of a personalized implant. 
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