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Abstract

Segmentation of CT-Angiography datasets is an important and
difficult task. Several algorithms and approaches have already been
invented and implemented to solve this problem. In this work, we
present automatic algorithms for the segmentation of these CTA datasets,
implemented in CUDA, and evaluate our results regarding speed and
error rates. Starting with local approaches like thresholding we pro-
ceed to global, object-based algorithms, like region growing and a
newly developed algorithm based on dual energy CT scans (DECT),
the XOR-Algorithm, presented by Karimov et al.[6] A limitation of
using graphics hardware is the restricted amount of memory, which
led us to use a slab-based processing approach (see section 5.3). The
requirement of this work was a complete GPU implementation. But
since not every task is appropriate for parallelizing, it was necessary
to use iteratively parallel algorithms. This strategy though introduced
speed problems that had to be analysed and were partly solved. This
work presents the principle of these GPU methods and compares them
to their CPU counterparts. In the end, the quality of each algorithm
is analysed and they are compared against each other, in order to find
an acceptable completely automatic segmentation algorithm for dis-
tinguishing between different types of tissues (e.g. vessels, bones, soft
tissue, ...).
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1 Introduction

Segmentation and classification of peripheral CT-Angiography data is a very
relevant research field in the field of medical image processing. A lot of
research work tries to solve this challenging task and find automatic segmen-
tation algorithms which would be applicable for practical usage. Most works
focus on finding an optimal solution and not on implementation details like
processing speed. So in this work, we are trying to have a look on the possi-
bility of generating some parallel segmentation and classification algorithms
on GPU and therefore achieve two major goals:

• Distinguish between bone and vessel tissue by minimizing the error rate

• Develop algorithms completely on GPU and gain processing speed in
comparison to the CPU

In the course of this thesis we will have a look on 3 major algorithms: thresh-
olding, a region growing based approach and a newly presented approach,
XOR-Segmentation. Thresholding is considered as the simplest segmentation
algorithm. The more sophisticated algorithm, the region growing approach,
also makes use of several thresholds and uses a classification on a per-object
base. The last presented approach, the XOR-Segmentation, makes use of
additional information. The additional information is provided in form of a
scan of the human body using two energy levels, which delivers information
that can be used for classification. Having a lower and a higher energy scans
is referred to as dual energy CT (DECT).
For the purpose of developing these algorithms on GPU, we made use of
NVIDIA’s Compute Unified Device Architecture (CUDA). These GPU ver-
sions were tested for performance against their CPU counterparts. For de-
picting the practical applicability of the algorithms, we have calculated the
error rates of each algorithm, based on provided ground truth datasets.
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2 Related work

In the field of segmenting CTA datasets, lots of research is going on at the
moment since it is a rather newly emerged problem, and several advanced
techniques have already been presented. State of the art is presented by Felkel
[9], which was a literature review and test of approaches. The threshold-
morphological method by Sramek [12] uses thresholding in combination with
morphologic operations and connected component labeling to segment the
bone tissue. This tissue is masked out, leaving behind a dataset where ves-
sels have the highest density. This dataset is used for further segmentation.
Another approach for example is the Wave Vessel tracking Algorithm by
Zahlten [10], which is based on region growing in waves and enriched by bi-
furcation detection and vessel graph generation. Other approaches are based
on multiple stages like the data enhancement and vessel tracking by Frangi
[11], where a preprocessing step is applied to the dataset to enhance tubular
structures, followed by tracking of these structures through the centerline
with a minimal cost approach.
The range of work presented in this field is ranging from simple general ap-
proaches to more sophisticated algorithms right up to algorithms based on
probabilty information. Examples probabilistic approaches are the Proba-
bilistic Atlas for pCTA Data Segmentation and the Probabilistic Atlas Com-
bined with Watershed Transform as presented in Straka [8]. They take addi-
tional information for object recognition and classification into account, e.g.
location and shape, and generate a probabilistic atlas based on this informa-
tion.

Nevertheless, no optimal automatic solutions have been fount yet. In our
work, the focus lies on implementing algorithms that run on the GPU. Most
of the algorithms are derived from the CPU versions presented by Kanit-
sar [3] and Karimov et al. [6], with the goal to gain processing speed and
minimizing the error rates.
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3 Datasets

Different segmentation approaches have been applied to Computer Tomogra-
phy Angiography (CTA) scans of humans provided as volumetric datasets by
the AKH Wien and Kaiser-Franz-Josef-Spital. Due to the nature of the scan-
ning protocol and the importance of detailed information within the medical
field those datasets have very high resolution. This is necessary to preserve
fine-structured information of the human body within the scan, like blood
vessels. High quality scans generate large amounts of data, ranging from 0.5
to 2 GB per scan of a human body (e.g. a 512x512x1800 scan having a size
of ∼1 GB).

A new approach for segmentation and classification presented in this work
is based on the information provided by dual energy computer tomography
(DECT) data. With DECT two sets of data from the same human are pro-
duced. One with lower energy (80 kV) and one with higher energy (140 kV).
The reason for this is that the major difference between the two datasets is
the response on calcium-containing tissues leading to additional information
which can be used for classification.

For comparison reasons and testing, a ground truth, manually segmented
and classified, has been provided for a dual energy dataset.
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4 Setup and Framework

4.1 AngioVis

AngioVis1 is a joint scientific project that deals with the visualization of
large CTA datasets with the purpose of detecting peripheral arterial occlu-
sive diseases (PAOD). Semi-automatic algorithms are used for processing the
peripheral CTA datasets to identify vessels and bones and remove the oc-
cluding bone structures. The AngioVis framework provides several ways of
visualizing the results and the possibility to adjust the classification manually
in case of automatically wrongly classified objects. AngioVis is successfully
in use for clinical and research purposes.

The algorithms presented in this thesis have been integrated directly into
this framework within the plugin for bone segmentation.

4.2 CUDA

CUDA2 is a general purpose parallel computing architecture introduced by
NVIDIA in November 2006 [1]. CUDA enables the programmer to make use
of the GPU’s tremendous computing power by outsourcing computationally
complex tasks directly onto the GPU and process the data in a parallel way.
CUDA provides a C-like high-level programming interface, therefore being
very intuitive and due to its parallel nature it is especially profitable for tasks
that include processing of volumetric datasets.

In our implementation we use CUDA Version 4.0. All functions that are
launched on the GPU as parallel threads will always be declared as kernel-
FunctionName. The speed gains of porting the CPU implementations onto
the GPU will be presented at the end of the paper in the section Results (see
7).

4.2.1 Memory arrangement

The datasets described in section 3 are provided as simple arrays that can
be accessed by simply calculating an offset using the x, y and z-information

1http://www.angiovis.org/
2http://www.nvidia.com/object/cuda_home_new.html
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of the voxel to be accessed. This kind of data structure can simply be trans-
ferred to the GPU’s device memory by allocating linear memory on the GPU
[1]. The allocation of this linear memory doesn’t require any pre-processing
of the CPU data structure and the data on the GPU can be accessed just
like an ordinary array on the CPU.

For the presented methods a concurrent access to voxels within the image is
mandatory. Thus the memory arrangement, memory access and kernel calls
in CUDA have been handled similar to the description in [2]. In this thesis
length is refereed to as the maximal x extent, width as the maximal y extent
and height as the maximal z extent of the volume. Arranging the kernel calls
by assigning a grid of width*height blocks with length threads inside each
block makes a concurrent access to each neighbouring voxel straightforward.
The offset for the currently processed voxel within each kernel-thread can be
calculated as

offset = (blockIdx.y ∗ width + blockIdx.x) ∗ length + threadIdx.x

Using this scheme the offsets to access the six neighbouring voxels can then
be easily calculated as follows:

left = offset− 1

right = offset + 1

up = offset− length

down = offset + length

front = offset− width ∗ length
back = offset + width ∗ length
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5 Segmentation Issues

This section provides a short overview over the specific character of the CT
segmentation tasks and the use of the GPU for solving these tasks.

5.1 Goal

Not every algorithm is suitable for implementation on the GPU. The goal
is to parallelize the whole segmentation process and execute it on the GPU.
Since the task of segmenting these datasets contains lots of steps that require
a per-voxel processing, the subtasks can be designed as parallel algorithms
that can be executed by concurrent threads on the GPU. A major speed
gain is expected in comparison with the CPU implementation. For exact
performance measurements refer to the results in Section 7.

5.2 CTA Data Characteristics

The main problem for segmentation and classification is due to the special
nature of the CTA datasets. The classification step distinguishes between
bone and vessel tissue. Simple classification usually fails due to several rea-
sons [3]:

• Density Overlapping: The densities of low-density bone and marrow
overlap the density values of enhanced blood in the vessels. Similarly,
the high-density bone values overlap the density values of calcifications
within the vessel’s walls.

• Adjacency of bones and vessels: Vessels touching the bones can also
complicate the classification due to non-sufficient resolution (Partial
Volume Effects)

• Special cases: Cases not considered in the segmentation process, like
stents or metal implants

Another difficulty is the fact of large datasets versus limited GPU memory.
Most of the datasets are far too large to fit completely onto existing device
memories making it impossible to process the volume all at once. This (in
addition to some other facts) was the reason for processing the data slabwise
as described in Section 5.3.
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5.3 Slab-processing

Due to the size, the datasets are not processed at once but as so called
slabs. A slab consists of several consecutive volume slices, whereas the exact
number can be predefined (usually ∼30). The implemented algorithms work
on these slabs. It is possible to either run the algorithm on a single slab,
or run it on the whole volume. The latter is just a special case where the
algorithm is applied sequentially on each slab of the whole volume as shown
in Figure 1. The data of each slab is copied to the GPU’s device memory
where the algorithms are applied to it. After finishing, the processed data is
transferred from the device memory back to the CPU’s host memory.

Figure 1: Concept of slab-processing
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6 Segmentation

The following section gives a detailed description of used segmentation meth-
ods, simple thresholding and two more advanced methods. In particular the
latter methods consist of two separate steps: segmentation and classification.
The segmentation step is necessary to find potential objects and separate
them from the background. The following classification step is then used to
distinguish between vessel and bone objects. Each step of the algorithms has
been ported to GPU. The kernels execute for every voxel of the currently
processed slab.

6.1 Thresholds

The usage of parameters, like thresholds and object size limits (measured
in number of voxels), is required for simple, and also for more advanced
segmentation algorithms. In the course of our implementation we make use
of several parameters that are predefined by trial and error approach and can
be adjusted by the user for each slab independently during segmentation. The
following enumeration describes the thresholds and limits that were used to
segment and classify the objects and are based on the parameters as described
in [3], p.54. (The exact values in Hounsfield Units that were used for testing
are mentioned in the footnotes):

• High and Low Energy Thresholds: 3 the density thresholds used in the
case of dual energy XOR segmentation

• Main Hard Limits and Soft Limit: 4 thresholds for a general distinction
of objects

• Bone Hard Limit and Soft Limit: 5 soft limit as minimum required
density threshold for a bone object and the hard limit where we assume
that the voxel is a bone voxel

• Bone Size Limit: 6 minimum required size of an object to be classified
as bone tissue

3Low Energy: Max=3071, Min=176; High Energy: Max=3071, Min=356
4Hard Limit=376, Soft Limit=166
5Hard Limit=626, Soft Limit=476
630
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• Vessel Soft Limit: 7 minimum required density for vessel object

• Vessel Size Limits: 8 minimum required size of object to be classified
as vessel

• Gradient Limit: 9 maximum limit for the gradient magnitude as crite-
ria for the region growing

6.2 Thresholding

Simple density thresholding [3] is a local (per-voxel) segmentation method
commonly used and for comparison the outcome and performance gains of
GPU-thresholding will be mentioned here. Due to the overlapping of den-
sities we don’t simply use an upper and lower threshold. We make use of
thresholding similar to the XOR approach ([6]) which is described in detail
in the later section 6.4.3. The advantage of this method is that we can make
use of dual energy CT scans even using this simple approach. The following
Algorithm 1 shows the thresholding kernel used in our implementation:

Algorithm 1 Kernel for (XOR)-Thresholding

if curV oxellow ≥Min AND curV oxellow ≤Max then
if curV oxelhigh ≥Min AND curV oxelhigh ≤Max then

// both within - Bone
Mark curV oxel as Bone-Voxel

else
// only lower Energy within - Vessel
Mark curV oxel as Vessel-Voxel

end if
else

// no object voxel
end if

If the processed dataset is only single energy, then the ”low” and ”high”
energy Voxels used in the kernel both origin from the same scan and therefore
have the same value. To ”fake” the dual energy solution, the second Min
threshold is chosen to be slightly higher than the first one so that the voxel
is only classified as bone tissue if it is within both Min-Max ranges.

7156
8minimum size: 3, maximum size: 10000
9650
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6.3 Region Growing

We use connected component threshold region growing as described in [4],
controlled by the gradient magnitude. The implementation is a GPU version
based on the segmentation and classification method in [3], pp. 53-58. The
basic algorithm consists of the following steps:

1. Find Seedpoints

2. Grow

3. Close Holes

4. Detect Objects

5. Classify Objects

The algorithm starts with segmentation steps (1 to 4) where it separates
objects in the volume from the background. In the last step (5) a classifi-
cation is being applied to distinguish between bone and vessel tissue. Local
thresholding classifies each voxel according to its density value. In order
to obtain clearly segmented and classified objects, and not just classified
voxels, our region growing and XOR-Segmentation are both object-based
approaches. Step 5 is responsible for identifying and classifying the different
objects within the CT scan.

6.3.1 Find Seedpoints

An important aspect of this segmentation algorithm is that it runs without
any user interaction. Seedpoints are selected by thresholds. In our approach
we choose the main hard limit (MainHL) as a necessary condition for a voxel
to be defined as seedpoints. The simple kernel depicted in Algorithm 2 is
called once and checks for every voxel to be a definite object-voxel which will
serve as seedpoints for the next step.

Algorithm 2 Kernel for finding seedpoints used for region growing
kernelFindSeedPoints
if curV oxeldensity ≥MainHL then

Mark curV oxel as Bone-Voxel
end if
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Note: Since the majority of the segmented objects will be bone-objects the
complete algorithm will start marking every detected object as bone and
perform a re-classification in the classification steps.

6.3.2 Grow

After finding seedpoints, the actual region growing process can start. The
parallel kernel depicted in Algorithm 5 is iteratively called until no more
changes occur. This change is monitored by allocating a counter or flag in
device global memory that can be set in either of one of the threads. In
particular, before each kernel call, the global flag is initialized with false
and if any of the threads during kernel execution changes it to true (due
to changes still occurring in in the thread) the kernel will be invoked again
until no more changes occur in any of the threads. Algorithm 3 depicts the
concept of the iterative calling.

The algorithm expands the seed regions by looking at the neighbours of bone-
marked voxels and checking if the growing criteria is fulfilled. The index of
the neighbour voxels is calculated as described in Section 4.2.1. The growing
criteria in the current implementation is that it is within the general object
thresholds main hard limit threshold (MainHL) and main soft limit thresh-
old (MainSL) supported by checking the gradient magnitude limit threshold
(MainGL). For the exact definition refer to Algorithm 4.

Algorithm 3 Loop that keeps calling the grow-kernel until no changes occur

if changed ≤ true then
kernelRegionGrowing(...)

end if

Algorithm 4 Check if, given a density and gradient magnitude value, the
voxel can be identified as an part of an object
belongsToObject(density, gradientMagnitude)

if density ≥MainHL then
return true

else if density ≥MainSL ∧ gradientMagnitude ≤MainGL then
return true

else
return false

end if
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Algorithm 5 The iteratively called Region Growing Kernel
kernelRegionGrowing

if curV oxel not marked as bone then
. No seed or region voxel - exit thread

return
else

for all neighbourV oxels do
neighbourgradiehnt ← calculateGradient(neighbourV oxel)
if belongsToObject(neighbourdensity, neighbourgradient) then

Mark neighbourV oxel as Bone-Voxel
changed← true

end if
end for

end if

The computation time for this parallel region growing algorithm depends
on the number of seed points found, the structure of the objects and the
number of objects in the processed slab. The more seed points, the fewer
iteration steps. For snake like shaped objects and for a high number of
objects the number of iterations and therefore the computation time will
increase accordingly.

6.3.3 Close Holes

The bone marrow inside the bones has a much lower density than the bone
itself. Distinction through a threshold is not possible and the gradient mag-
nitude is too high for the voxels to be reached by region growing. Thus
the bone marrow would not be classified as bone tissue. Therefore a different
approach has been made to ensure correct detection (through CCL) and clas-
sification of bone marrow in the later steps. Generally speaking its a region
growing applied to the background. At first the outside borders are checked
for background voxels (with very low density). Then the growing is initiated
and iteratively repeated until no more changes occured. The major difference
to the above mentioned algorithm is that the growing process works per slice
to prevent a leaking-through through non-relevant small holes somewhere
within the slab. After the growing has finished, all Voxels that haven’t been
reached by the background-growing are marked as bone-voxels. Figure 2 de-
picts how a slice might look after region growing and what happens after the
”Close Holes” step is applied to the slice.
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Figure 2: Slice after region growing and before filling holes compared to the
same slice after filling holes

6.3.4 Detect Objects

Connected Component Labeling (CCL) has been used to detect all objects
and is a necessary step for classification to find objects as a whole and make
it possible to calculate object properties. In the course of this thesis we im-
plemented a simplified version of the parallel algorithm described in [5]. The
basic idea is to initially give each voxel a unique label (we chose the offset of
the voxel which represents the index in the array). Then the kernel is itera-
tively executed wihin a loop until no more changes occur. The monitoring of
changes is done using a global flag (changed) as described in Section 6.3.2.
For each non-background voxel the neighbours and labels are checked and
the minimum label is used as the new current label. This is repeated until
no more changes occur (see Algorithm 6) leading to a unique label for each
connected region.

6.3.5 Classify Objects

Given the labeled objects it is now possible to calculate the properties of
each object in parallel using CUDA with its provided atomic functions [1].
The following properties have been calculated:

• Object size

• Average object density

The new information, in combination with the defined soft thresholds (bone
and vessel soft limit (BoneSL, VesselSL), bone and vessel size limit (BoneML,
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Algorithm 6 Iteratively called kernel for Connected Component Labeling
kernelCCL
if curV oxel marked as background then
. No object voxel - exit thread

return
else

minimum← labelcurV oxel

for all neighbourV oxels not marked as background do
if labelneighbourV oxel < minimum then
minimum← labelneighbourV oxel

end if
end for
if minimum < labelcurV oxel then

labelcurV oxel ← minimum
changed← true

end if
end if

VesselSizeMin, VesselSizeMax )), is used to further refine classification, as
depicted in Algorithm 7. Depending on the size of the object and the average
density each object is checked and classified as vessel if necessary, otherwise
it remains classified as bone. Furthermore very small detected objects are
discarded and very large objects with lower average density are left to be
bones and not classified as Vessel. The reason for treating large objects this
way is is that most of the time the kneecap is classified as vessel due to its
lower density.

6.4 XOR-Segmentation

XOR-Segmentation is a new approach for classification based on DECT pre-
sented by Karimov et al.[6] The algorithm makes use of the different responses
on calcium-containing tissues in lower energy and higher energy scans. In
particular lower energy scans allow segmentation of bones and vessels tissues
by thresholding, whereas in higher energy scans thresholding can be used to
segment bone tissues. Figure 3 gives an overview of the difference between
low and high energy. Combining the resulting masks using an ordinary logi-
cal ”exclusive or” (XOR) operation leads to a difference mask which is used
in the final classification step (see section 6.4.3).

The steps of the XOR-Segmentation are similar to those of the region grow-
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Algorithm 7 Classification of the objects due to avg density and object size
classifyObject

for all objects do
if (avgDensity > BoneHL) OR
(avgDensity > BoneSL AND size > BoneML) then

Keep Bone Label
else

if avgDensity > V esselSL AND V esselSizeMin < size <
V esselSizeMax then

Map To Vessel
else if size < V esselML then

Map To Nothing
end if

end if
end for

ing, except a modification in the classification step where the XOR-difference
mask is applied. This thesis presents a parallel version of the basic XOR al-
gorithm and is completely implemented on GPU.

1. Define XOR Mask

2. Mark Object Voxels

3. Close Holes

4. Detect Objects

5. Classify Objects

6.4.1 Define XOR Mask

For computation of the XOR mask we made use of two new thresholds, a
maximum and minimum threshold. As mentioned above and seen in Figure
3, low and high energy scans respond differently to the same thresholds. This
characteristic is used to create the above mentioned difference mask. At first
we check if density value of the lower and higher energy scan is within the
thresholds. If the lower energy voxel is within the thresholds and the higher
energy voxel is also within, then this position within the difference mask gets
marked as bone tissue voxel. If only the lower energy scan voxel is within
the thresholds and the higher energy is not, then the mask gets marked as

18



Figure 3: Difference between a) low energy scan thresholding and b) high
energy scan thresholding [6]

vessel tissue voxel. The GPU kernel for defining this mask is depicted in
Algorithm 8. The resulting mask is used for the later classification step (see
section 6.4.3).

6.4.2 Mark Object Voxels

In a next step we launch a single kernel-call to mark all voxels in the volume
that are potential objects. This is done by using the same function that
is used as growing criteria for the region growing (see Algorithm 4). The
difference is that this criteria is applied to every voxel, and not just voxels
that are neighbours of seed or region points. Algorithm 9 depicts the kernel
that is called once.
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Algorithm 8 Kernel applying an XOR operation for calculating the differ-
ence mask
kernelDefineXORMask

if curV oxellow ≥Min AND curV oxellow ≤Max then
if curV oxelhigh ≥Min AND curV oxelhigh ≤Max then

// both within - Bone
xorMaskcurV oxel ← BONE

else
// only lower Energy within - Vessel
xorMaskcurV oxel ← V ESSEL

end if
else

// no object voxel
xorMaskcurV oxel ← 0

end if

Algorithm 9 Check for each voxel if it satisfies the object-condition
kernelMarkObjectVoxels

if belongsToObject(curV oxeldensity, curV oxelgradient) then
Mark curV oxel as Bone-Voxel

end if
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6.4.3 Classify Objects

After the detection of objects as described in Sections 6.3.3 and 6.3.4 the
final step is the mapping of voxels currently classified as bone tissue to vessel
tissue voxels if necessary. As in the classification step of the region growing
(see section 6.3.5), the properties can be computed per object. Taking the, by
using dual energy, computed XOR difference mask into account, the following
object properties are used for reclassifictaion:

• Object size

• Both bone voxels (bone indicator voxels): Voxels that responded to the
thresholds in both (high and low energy) scans (i.e. marked as bone
in the XOR mask). They are a cue that the object might really be a
bone object. The fewer voxels of an object are ”bone indicators”, the
higher the probability of the object being a vessel.

Using these two properties, we use Algorithm 10 to reclassify the objects.
They are classified as vessels if too less voxels within an object (beneath 10%
of the object’s voxels) are ”bone indicators” according to the XOR mask.

Algorithm 10 Classification of the objects due to XOR mask and object
size
XORclassifyObject

for all objects do
if avgBoneIndicator < 0.1 AND size < 10000 then

Map To Vessel
end if
if size < V esselML then

Map To Nothing
end if

end for
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7 Results

The results stated in this section have been performed on a computer with a
NVIDIA GeForce GT 425M and 4 GB RAM memory. The dataset used for
testing the segmentation is a DECT scan of extent 512x512x855 and has a
size of 427 MB for each scan (high and low energy scan).

7.1 Speed

Using the GPU as a general computing device has proven to be a very useful
tool for parallelizable computationally intensive tasks. Nevertheless, in our
implementation, in most cases the GPU versions were not able to outperform
their CPU counterparts. Table 1 shows the mean durations (in seconds) of
our segmentation algorithms on GPU compared to the CPU versions of the
algorithms when segmenting the whole volume.

CPU (s) GPU (s) diff
Thresholding 3.77 1.22 67.64 %
Thresholding (DECT) 3.77 1.44 61.80 %
Region Growing 91.65 139.82 52.56 %
XOR-Segmentation 129.75 315.34 143.04 %

Table 1: Speed comparisons of GPU and CPU versions

As expected, for the a simple algorithm like Thresholding, a great speed gain
of more than 60% has been achieved since a single kernel is able to process
each voxel in parallel. Transferring the data from host to device and back
again takes up the main part of processing time (e.g. ∼0.035 seconds per
slab - ∼0.95 seconds for the whole volume) and the kernel is executed in
a few milliseconds. Knowing this, the lesser speedgain when using DECT
information is also logical, since two volumes have to be transferred to GPU.

Having a look at the speeds of the more sophisticated algorithms, we can
see that the GPU implementation causes a major speed loss. Therefore we
took a closer look on the single steps of the algorithm to find the bottlenecks
of our implementation. A look at the processing time of each slab shows that
the duration varies from 2 seconds to up to 35 seconds per slab. This is due
to the concept of our implementation, which makes a lot of use of iteratively
calling the parallel kernels. The number of kernel calls is not fixed for each
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slab. For example, the number, and therefore the processing time, depends
mainly on the number of objects detected in the slab. This correlation can
be seen in Figure 4, which shows a plot of the number of objects in a slab
versus its processing time.

Figure 4: Duration of the single steps of the XOR Segmentation and its
correlation to the number of objects detected in the slab using XOR segmen-
tation

The plot shows clearly that a main part of the processing time is taken by
the Relabel Objects step, which is part of the Connected Component Labeling
algorithm implemented. This is due to its linear dependence on the number
of objects detected in the slab. In particular, the kernel gets called once
for each object detected in the slab. That the GPU implementation is not
always slower than the CPU version is depicted in Figure 5.

In this plot we can see, that the duration for processing a slab on the CPU
is constant and independent of the number of objects in the slab in contrast
to the GPU version. But from this plot we can also observe that the GPU
implementation is faster than the CPU implementation if only less than 5̃00
objects are detected within the slab. So the next step to gain a speed-up
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Figure 5: Slab Duration of the CPU XOR Segmentation compared to the
GPU version

would be either to decrease the number of unnessecary objects detected in
the beginning, or implement a more sophisticated Connected Component
Labeling algorithm which is independent of the amount of objects, or imple-
ment this part of the algorithm on CPU where we have to consider additional
memory transfers from GPU to CPU (and vice versa).

Another potential for gaining some speed is the step Fill holes which has
been implemented to take care of the bone marrow inside the bones and is
implemented using an iterative parallel Region Growing algorithm for the
background. That omitting this step doesn’t have that much influence on
the error rate (see 7.2) can be seen when having a short look at Figure 6.
Here we can see that our provided Ground Truth segmentation also does not
take the bone marrow into account. The drawback in this approach is that
within the Bone Marrow there might be objects detected as vessel which can
be seen by the red colored voxels within the bone marrow in the rightmost
image in Figure 6.
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Figure 6: Comparison of the Ground Truth dataset with algorithms using
the Fill Holes step and algorithms without this step by an example in form
of a single slice.

To depict the speed gains we have also implemented both algorithms without
this step and the results are summarized in Table 2.

CPU (s) GPU (s) diff
Region Growing (w/o. fill holes) 91.65 66.65 27.28 %
XOR-Segmentation (w/o fill holes) 129.75 261.30 101.39 %

Table 2: Speed comparisons of GPU (without filling holes) and CPU versions

Here we achieved a speed gain, since this step took about 2.5 to 3 seconds in
each slab. The speed gain for the region growing algorithm sufficed to make
it faster than the CPU version. For the XOR-Segmentation we also achieved
a gain, but the algorithm is still slower than its CPU counterpart.
For the sake of completeness Figure 7 shows also a plot of the correlation
between processing speed and number of objects for the XOR-Algorithm
without hole filling. In this plot we can see the major contribution of the
Relabel objects step to processing time which linearly depends on the number
of objects, whereas the durations of every other step are mainly constant and
independent of the amount of objects.

Note also, that when executing the GPU-based algorithms for the first time,
the process of transferring the data (which usually takes a few milliseconds)
might take up lots of time (up to 20 seconds), since the memory is internally
arranged for the first time and then used multiple times in the following
procedure.
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Figure 7: Duration of the single steps of the XOR Segmentation (w/o hole
filling) and its correlation to the number of objects detected in the slab using
XOR segmentation

7.2 Error rate

This section deals with the error rates based on the Ground Truth segmen-
tation that has been provided and is depicted in Figure 8. Consider the
following error percentages with caution, since the provided ground truth
dataset does not always mark the bone marrow as bone tissue (as mentioned
before).

The error rates for the validation have been calculated separately for the
bone and vessel class and are given in percentages derived from the confusion
matrix as described in [7]. The following error rates have been calculated:

• False Positive Rate (FPR): also referred to as Type I error

• False Negative Rate (FNR): also referred to as Type II error

• True Positive Rate (TPR): 1-FPR
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• True Negative Rate (TNR): 1-FNR

The two tables (Table 3 and Table 4) summarize the error rates for each im-
plemented algorithm for the vessel and bone segmentation and are discussed
in the following part of this section.

BONE FPR FNR TPR TNR
Thresholding 0.094 % 48.59 % 51.41 % 99.91 %
Thresholding (DECT) 0.003 % 65.32 % 34.68 % 99.997 %
Region Growing 0.868 % 1.58 % 98.42 % 99.13 %
Region Growing (w/o. fill holes) 0.301 % 2.03 % 97.97 % 99.70 %
XOR-Segmentation 0.774 % 3.17 % 96.83 % 99.23 %
XOR-Segmentation (w/o fill holes) 0.233 % 1.05 % 98.95 % 99.77 %

Table 3: Error rates for class BONE

VESSEL FPR FNR TPR TNR
Thresholding 1.331 % 67.47 % 32.53 % 98.67 %
Thresholding (DECT) 2.057 % 51.23 % 48.77 % 97.94 %
Region Growing 0.050 % 86.14 % 13.86 % 99.95 %
Region Growing (w/o. fill holes) 0.053 % 86.14 % 13.86 % 99.95 %
XOR-Segmentation 0.152 % 56.97 % 43.03 % 99.85 %
XOR-Segmentation (w/o fill holes) 0.017 % 56.90 % 43.10 % 99.98 %

Table 4: Error rates for class VESSEL

Having a closer look at the bone segmentation, we can see that the Type II
errors (FNR) are very high for the simple thresholding algorithms, because
they use a per-voxel based classification and missclassify a lot of voxels within
and near the bone as vessels, because classification is only based on thresh-
olds and nothing else. That the per-voxel approach is not sufficient enough
for our purpose can be seen in the two figures Figure 9 and Figure 10. The
slightly higher False Type I errors (FPR) of the ordinary XOR-Segmentation
and Region Growing is due to the nature of the ground truth dataset which
has not marked the bone marrow as bone. Otherwise, the results for Bone
Segmentation look quite promising for the more sophisticated algorithms,
with error rates lower than 4%.

Regarding the vessels, the task and error rates are more subtle. The Vessel
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structure within the human body is finely branched leading to very small
structures which cannot be easily classified. This phenomena can be ob-
served looking at the Type II errors (FNR). These high error rates depict
the fine structures that haven’t been classified as vessels by our automatic
segmentation approaches. Note, that the XOR-Segmentation approach in
comparison to the region growing provides better results by also finding thin
vessel structures within the body, which can also be seen comparing the image
results of region growing (see Figure 11) and XOR (see Figure 12). Compar-
ing the outcomes of the new XOR-Algorithm with the ground truth shows
lots of similarities and results that are very promising for being suitable for
practical usage in the field.
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Figure 8: MIP images and direct volume rendered images of the ground truth
dataset.
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Figure 9: Sample slice segmented with thresholding on a per-voxel basis
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Figure 10: Thresholding: MIP - Vessel image and direct volume rendered
image of vessels and bones
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Figure 11: Region Growing: MIP - Vessel and MIP - All image and direct
volume rendered image of vessels and bones
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Figure 12: XOR-Segmentation: MIP - Vessel and MIP - All image and
volume rendered image of Vessels and Bones
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8 Conclusion

Correct segmentation of CTA datasets has proven to be a very difficult task
due to overlapping of densities, close spatial vicinity and other problems.
Therefore a complete automatic segmentation algorithm cannot substitute
user interaction and intervention in form of manual segmentation or user-
drive approaches [8]. Simple algorithms do not suffice at all and more so-
phisticated algorithms, like region growing, fail in recognizing small vessel
structures within the body. However, the new XOR-Algorithm approach,
making use of dual energy information and presented by [6], has proven to
deliver improved results, by also detecting some of the fine vessel structures,
which could be used for further improvements of correctness manually or by
a more sophisticated additional approach, like taking into account the geo-
metric structures of vessels and bones.

Porting all presented segmentation methods to parallel algorithms on GPU
was also a main task of this thesis and has proven to be quite difficult as
well. Although speed gains could be achieved for the simple thresholding
algorithms, the speed gains for region growing and the XOR-Algorithm have
not turned out to be as expected and partly resulted into speed losses. Skip-
ping one step made it possible to speed up the region growing algorithm
and make it faster than its CPU counterpart, despite its dependence on the
number of objects detected within the volume. But for the XOR-Algorithm
this goal could not be achieved yet, due to its nature of detecting even very
small objects in the segmentation process. For future work, to solve this
problem, there are several options. Parts of the algorithm could be left on
CPU (which would mean additional CPU-GPU transfers). Since the CCL-
Algorithm implemented in this thesis is a rather simple one, another solution
to the problem could be the implementation of a more sophisticated CCL-
Algorithm as presented in [5].
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