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ABSTRACT

Transfer functions have a crucial role in the understanding and visualization of 3D data. While research has
scrutinized the possible uses of one and multi-dimensional transfer functions in the spatial domain, to our
knowledge, no attempt has been done to explore transfer functions in the frequency domain. In this work we
propose transfer functions for the purpose of frequency analysis and visualization of 3D data. Frequency-based
transfer functions offer the possibility to discriminate signals, composed from different frequencies, to analyze
problems related to signal processing, and to help understanding the link between the modulation of specific
frequencies and their impact on the spatial domain. We demonstrate the strength of frequency-based transfer
functions by applying them to medical CT, ultrasound and MRI data, physics data as well as synthetic seismic
data. The interactive design of complex filters for feature enhancement can be a useful addition to conventional
classification techniques.
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1. INTRODUCTION

Scientific visualization is focused on enabling and conveying a better and deeper insight into data and pro-
cesses. In the last decades, technological growth and development have contributed to the improvement of the
visualization pipeline, in particular for the processes of data enhancement and visualization mapping. Special
focus has been given to introducing advanced filtering and mapping techniques. Direct volume rendering (DVR)
is a powerful technique used in the visualization of data generated by computed tomography (CT), magnetic
resonance imaging (MRI), ultrasound scanning and other modalities. DVR directly benefits from the concepts
of data enhancement and mapping. It is based on the idea of mapping data properties to opacities and colors
using transfer functions (TF). The common objective of approaches that use transfer functions is the extraction
and enhancement of features of interest.

Motivated by the idea of transfer functions, in this paper we introduce a framework that enables interactive
modulation of 3D frequencies representing the signal (data). We define frequency modulation as the process of
modifying the harmonics waves, which contribute to building the signal, by multiplication with a scalar in the
frequency domain. As opposed to existing transfer-function techniques that operate in the spatial domain, our
proposed frequency-based transfer function (FbTF) operates in the frequency domain. Since a change in the
frequency domain results in a change in the spatial representation of the data, our FbTF can be considered as
part of the data enhancement step in the visualization pipeline.

An analysis in the frequency domain is central in fields such as signal processing and engineering. Many
problems and events can only be explained through frequency analysis. In communication theory, signals are
decomposed into several simpler signals through filter banks.1 In geology, the study of 3D seismic data in
the frequency domain2 is of particular importance. The earth subsurface resembles a layer-cake model due
to sedimentation. Natural events such as the rise and fall of the sea level leads to a varying thickness of the
sedimentation layers. Seismic horizons, being equal-time sedimentations, can thus be identified by their consistent
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thickness. In the search for pre-historic river sedimentations which typically have carbon-rich deposits, it is looked
for channels which have a different thickness than the sedimentation layer they are embedded in. Finding features
in seismic data based on thickness is therefore crucial for oil exploration. Having an interactive way of exploring
these features is likely to be welcomed in the seismic domain as current methods are slow and offline.

Our framework is designed to aid the understanding of volumetric models by letting the user interactively
manipulate the frequency domain. Volumes, like images, have characteristic patterns in the frequency domain.
Since frequency measures the rate of change of a signal in a particular direction, features like size and shape
can be mapped to specific frequency bands. By using the FbTF we want to enable the visualization of the
spatial response of specific frequencies, highlight anomalies in medical datasets, and enhance data by applying
interactive noise removal. These issues are impossible or nontrivial to solve with existing techniques that operate
in the spatial domain.

The contributions of this work are: a) the introduction of frequency-based transfer functions as a real-time
data enhancement step discussed in Section 3, b) the usage of 1D transfer functions in the modulation of 3D
frequencies based on 2D scatter-plots of frequency amplitude vs. radial-distance frequency discussed in Sections
3 and 3.1, and c) the interactive (real-time) application of a FbTF in data exploration discussed in Section 4.

2. RELATED WORK

The design of transfer functions is an active research area. Transfer functions can be classified as image-centric,
i.e., based on the final image, and data-centric, i.e., based on data-value statistics.3 Most data-centric approaches
associate transfer functions with voxel properties related to intensity and gradient values. Gradient4 and curva-
ture information5,6 has been used for enhancing classification through transfer functions. Röttger et al.7 have
included spatial information for adding insight to the histogram of a volume. Correa and Ma8 introduce size-
based transfer functions for volumetric classification based on the local size of features of interest. Caban and
Rheingans9 and Patel et al.10 use scale-space statistical properties derived through data analysis for assigning
color and opacities. Bruckner and Gröller11 introduce style-based transfer functions for enhancing illustrative
visualization. Sereda et al.12 propose LH histograms to enhance volume classification through better detection of
boundaries. Our FbTF, being derived from the amplitude histograms in the frequency domain, can be classified
as a data-centric approach.

Filtering is a well-established step in the visualization pipeline. Depending on the data types and on the
requirements prior to volume rendering, noise removal, low-pass, high-pass and band-pass filters are applied.
Much work has been done for enhancing rendering and visualization through filtering.13,14 Luft et al.15 focus
on enhancing depth perception by unsharp masking the depth buffer. Ritschel et al.16 introduce a local scene
enhancement by unsharp masking over arbitrary surfaces under any form of illumination. Filters can be classified,
based on their domain of application, into spatial or frequency filters. When applied in the frequency domain,
filters show a global behavior and no local spatial assessment of their effect can be conducted directly. In
visualization it is more common to specify a filter in terms of the smoothness of the resulting reconstructed
function and the spatial reconstruction error. Still, when the kernels of the local filters become very complex and
have wide support, applying these filters in the spatial domain becomes unfeasible.17 In our framework, we can
interactively design complex filters in the frequency domain guided by the effects we see in the data. This gives
us the possibility to directly tune the parameters without the need of having some preset filters which usually
are not able to adapt to the noise/distortion or quality level of the signal.

The Fourier, the Cosine, the Sine and Wavelet transforms give a wide range of possibilities to represent signals
in different domains according to the application requirements.18,19 The Fourier transform has also been used for
accelerating volume rendering in techniques known as Fourier Volume Rendering.20,21 The main disadvantage of
using methods such as the Fourier transform, is the loss of spatial information in the frequency domain. Wavelets,
Gabor and Short Time Fourier transforms (STFT) offer a possibility to window the signal and hence to provide
spatial (or temporal) information for the frequency response of the signals.19 For a 1D signal the respective
STFT is a 2D signal, for a 3D signal the response is a 6D signal, and so on. The transfer function design for
2D and 3D data is therefore challenging. For estimating the frequency representation of the 3D data we use the
Fourier transform. Fourier representations are well studied and offer important discriminative information about
the signal they represent.



Filtering out specific frequencies is central in seismic data. During seismic interpretation for oil and gas
detection this filtering is called spectral decomposition.22 To our knowledge, real-time spectral-decomposition
has not been performed earlier. The lack of on-the-fly frequency filtering has lead to two types of approaches.
The first approach extracts from the original data about 80 single-frequency volumes. Seismic data is typically
in the range between 10 and 90 Hz and 1-Hz increments in this range are extracted.23Then each single-frequency
volume is assessed individually. Due to the number of volumes, achieving an overview with this approach is time
consuming. With seismic data reaching Gigabyte sizes, their preprocessing is in the order of hours. Disk space
consumption is also an issue with this approach. The second type of approaches performs different forms of
dimensionality reduction of the frequencies. One method24 maps low, medium and high frequencies to the red,
green, blue color space and visualizes correspondingly colored slices of the volume. Another method visualizes
colored slices by mapping peak frequency to a rainbow colormap modulated with black according to the peak
amplitude.23 As opposed to our approach, these methods require preprocessing. They also remove or collapse
important frequency information.

3. FREQUENCY ANALYSIS

The Fourier transform is a useful theoretical tool for the analysis of signals in the frequency domain. The
discrete Fourier transform (DFT) can be used to represent finite sequences in the frequency domain. There are
several existing approaches for computing the DFT coefficients. We are using the computationally efficient fast
Fourier transform (FFT). We denote the discrete Fourier transform of a finite extent 3-D sequence V (k1, k2, k3)
having spatial resolution N = (Nx, Ny, Nz), as F(x, y, z). The complex numbers F(x, y, z) are called the DFT
coefficients. Two important characteristics are related with the DFT coefficients: the amplitude and the phase.
While the amplitude refers to the magnitude of the frequency oscillations, the phase is concerned with their
angular position.25

The design of one-dimensional transfer functions in the spatial domain is performed by mapping the scalar-
value range of the data to opacities and colors. In the frequency domain, the 3D volume is represented by the
complex entries for each frequency, i.e., the real part and the imaginary part. Choosing a modulation factor
based on the values of these entries has an non-intuitive effect on the spatial domain, since we do not know
which frequencies we are modulating. On the other side, unlike the spatial domain representation, the position
(x, y, z) of each entry in the frequency domain has a special meaning. Each position represents the frequency
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) of the volume. Hence, in order to modulate specific frequencies we should construct our transfer

function based on the position-triplets (x, y, z). We assume that the zero-frequency (DC-)component is at the
center of the volume, and we denote its position with (xDC , yDC , zDC). In our transfer function space, we set the
modulation factor for a specific frequency based on the relative distance from the zero-frequency component, or
more specifically based on the triplet (x− xDC , y − yDC , z − zDC). In order to overcome the non-trivial process
of using a 3D transfer function, we introduce the concept of radial-distance frequency (RDF ). For each entry
(x, y, z) the RDF (x, y, z) is defined as follows:

RDF (x, y, z) =
√

δx(x− xDC)2 + δy(y − yDC)2 + δz(z − zDC)2 (1)

where δx, δy, δz are weights defined in {0, 1} that control which frequency directions are taken into account.
From a geometrical point of view, modulating frequencies that have the RDF equal to a specific value r and
(δx = δy = δz = 1), means selecting all the points on the surface of a sphere with center at the zero-frequency
point and having radius r. The modulation of frequencies based on the RDF principle, forces the same modulation
of frequencies with the same RDF. A vast majority of signals exhibit symmetrical properties in the frequency
domain.26 Such signals can efficiently be analysed with RDF-based modulation. Modulating frequencies that
have the RDF equal to a specific value r and for example (δx = 1, δy = δz = 0) would mean setting the
x-frequency-axis as a discriminating frequency direction. This feature allows for directional enhancement of
data.

3.1 Frequency-based Transfer Function (FbTF)

In one-dimensional transfer functions, data-value histograms are shown in the transfer-function editor in order
to help deciding the assignment of opacities and colors. In the same fashion, we make use of 2D scatter plots



of frequency related statistics, in our case amplitude vs. RDF. Each entry (i, j) in the scatter plot represents
a frequency in the data with RDF j and amplitude i. After setting the opacities for specific radial-distance
frequencies with our FbTF, we modulate both the real and imaginary part of the Fourier coefficients with those
opacities. The modulated volume Vmod is obtained through Equation 2:

Vmod(k1, k2, k3) =
1
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(2)

where O(x, y, z) represents the function that maps the specific RDF to a frequency opacity. More details about
the range of the frequency opacity will be given in the section covering implementation details.

3.2 The Framework Workflow

In Figure 1 we show the flow of our framework. The frequency modulation is applied as a real-time data en-
hancement step during direct volume rendering. By changing the frequency-based transfer function we modulate
the Fourier coefficients and after applying an inverse Fourier transform (IFFT) we obtain and render the spatial
representation of the modulated data. The interactivity allows us to search for the best FbTF setting that
enhances the structures, details or features that the user is interested in.

Volume Data FFT
Frequency

Modulation
IFFT

Modulated

Volume Data

User-defined 

Modulation

Frequency-based Transfer Function (FbTF)

Frequency Data

Figure 1. A 3D signal (dataset) is transformed to the frequency domain through a Fourier transform. Based on a scatter
plot of the amplitudes vs. radial-distance frequencies we modulate specific frequencies of interest. The output is then
transformed back to the spatial domain with an inverse Fourier transform.

In Figure 2 we show a detailed overview of our framework with the renderings of the original dataset in the
bottom left and the modulated dataset in the bottom right. Two transfer functions are used. One for setting the
opacity and color mappings to densities in the spatial domain and one for the frequency-modulation factors in
the frequency domain. A data-value histogram is attached to the spatial transfer function, and an amplitude vs.
RDF 2D scatter plot is attached to the frequency transfer function. The same color-opacity transfer function is
applied to the original and the modulated dataset. In the shown example, the frequencies are modulated with a
linear function that starts with a high value at the low part of the frequency spectrum and diminishes gradually.
The output can be interpreted as a selection of layers from the input data. We will give more details about this
dataset in the results section.

4. IMPLEMENTATION DETAILS

Our test platform is an Intel Dual Core 2.70 GHz processor machine with 8GB of RAM equipped with an NVidia
GeForce GTX 260 graphics card. For the direct volume rendering we have implemented a GPU-based raycaster
using the OpenGL shading language and C++.

The implementation of the frequency filters requires a forward and inverse Fourier transform. For the imple-
mentation of the Fourier transform we have used the FFTW library for the CPU-based implementation27 and
the CUFFT CUDA library for the GPU-based implementation.28 The speed of the Fourier transform depends
on the dimensions of the dataset and hence influences the real-time response of our framework. We compared
the performance of these two libraries. The CPU-based FFTW has a better performance for very small datasets,
but starting from 64 × 64 × 64 datasets the performance of the GPU-based CUFFT prevails and is up to ten
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Figure 2. Detailed overview of our frequency-based visualization framework.

times faster for a 256×256×256 dataset. Table 1 shows the framerates with a viewport 512×512 and raycasting
stepsize of 0.1. Our framework decides on the fly which FFT library to use, depending on the size of the dataset.

Table 1. Frames per second for GPU-based vs. CPU-based implementation. We measure the time needed for a whole
cycle including frequency modulation, inverse FFT and ray casting with a step size equal to 0.1.

Dataset Size GPU-based CPU-based

64× 64× 64 15 9
128× 128× 128 7 0.93
256× 256× 256 1 0.09

The frequency-based transfer function specifies the modulation of the RDF frequencies. The horizontal axis
of the frequency transfer function maps from left to right, low to high RDF-frequencies. The vertical axis defines
the modulation of the respective frequency amplitudes. It is mapped to the unit interval where amplitudes below
1
2
are weakened and amplitudes above 1

2
are strengthened.

In order to improve the usability of the framework, features like zooming in and out of the frequency-based
transfer function and anisotropic scaling of the amplitudes have been implemented. These features enable us to
select frequencies with higher precision and to better analyze signals when oscillations in amplitudes are very
high.



One important detail in frequency modulation is the processing of the zero-frequency (DC-)component, which
represents the average data value of the spatial representation. Since we want to have similar data-range values
before and after the frequency modulation, we ensure that this component remains unaltered.

5. RESULTS

In the following subsections we demonstrate the usability of the frequency-based transfer function by applying
it on several different modalities achieving a wide range of effects. We do not advocate the replacement of well-
established methods such as pre-filtering which are clearly useful for many purposes, nor do we propose FbTF as
a sole classification method. Instead, we want to demonstrate that FbTF provides additional information which
can be employed to improve volume visualization. Unless stated otherwise, in all our experiments we will use
δx = δy = δz = 1 as default values in Eq. 1.

5.1 Enhancement of MRI and Ultrasound Data

Filtering is a useful procedure in signal processing, that can be used as an enhancement or restoration step. By
reducing high frequency components, we blur the data, and conversely by increasing the magnitude of the high
frequencies, we sharpen the data.

(a) (b)

Figure 3. Renderings of: a) original MRI head dataset, and b) MRI head dataset modulated with a tuned FbTF.

A desired data-enhancing effect during filtering is noise smoothing or noise removal. In the spatial domain,
noise removal can be achieved by the convolution of the data with smoothing kernels of different sizes and
structures. Special attention must be taken to avoid excessive smoothing, since it can corrupt the data and
features/structures. In our framework we can interactively tune our FbTF until a good balance is achieved
between the removed noise and the preservation of structures/features. In Figures 3 and 4 we show examples
from a human head MRI and a human abdominal ultrasound scan where a lot of noise is present in the original
data. With our FbTF we can clearly enhance the visual appearance of the data without blurring the structures
of interest. For the ultrasound data we select δx = δy = 0, δz = 1 in order to better discriminate directional
frequencies that represent the layers in the data. Achieving the same result through spatial convolution would
be non-trivial, since it would require the construction of a complex filter-kernel. Furthermore, the noise to
be removed depends strongly on the data. By using spatial-domain filters or preset filters the degree of noise
removal cannot be controlled. Our framework gives all the necessary freedom and possibility to enhance the data
according to the user’s requirements.



(a) (b)

Figure 4. Renderings of: a) abdominal ultrasound dataset, and b) abdominal ultrasound dataset modulated with a tuned
FbTF.

5.2 Single-frequency Isolation

In signal processing it is often required to detect or select specific frequencies. This is particularly important in the
visualization of ultrasound waves where specific primary frequencies are hidden among many other frequencies
corrupted with noise. With transfer functions operating in the spatial domain it is impossible to detect or
highlight materials or parts of a signal that only consist of specific frequencies. With our FbTF it is easy to
isolate and hence segment specific frequencies that are of interest.

In Figure 5 we show a synthetic dataset consisting of three principal frequencies. In our 2D scatter plot the
spectrum of the dataset is represented by three entries, so it is trivial to discriminate between them. Achieving
the same result with a preset filter or a convolution filter operating in the spatial domain is impossible since the
data is created by the sum of three 3D sine waves, each of which covers the complete value range of the data in
the spatial domain.

(a) (b) (c)

Figure 5. a) Corner of a cube dataset consisting of three principal frequencies, b) The modulated dataset consisting only
of one frequency (lowest), and c) The modulated dataset consisting only of one frequency (highest).

5.3 Thickness-based Sediment Selection in Seismic Data

Seismic data is created by processing sound reflections that have been sent into the ground. Sound reflections
from sedimentations have a specific and characteristic expression in the frequency domain that indicates the
sedimentation thickness.29 Currently, for an accurate interpretation of seismic data, it is necessary to visualize



and interpret several single-frequency volumes created from a single input dataset. This is a very time consuming
process and much research in the seismic domain deals with different ways to address this issue. We believe our
work can give an efficient solution to this problem. As shown in previous examples, interactive single-frequency
isolation can be achieved quite easily with our transfer function. High quality seismic data is an important asset
for oil companies and hard to get hold of. It is also typically noisy and complex to understand for non-experts.
Therefore, we demonstrate the frequency transfer function on a synthetic seismic dataset with a simplified
sedimentation model. The sedimentation has a decreasing thickness from top to bottom and is generated from
Equation 3:

V (k1, k2, k3) =
1 + sin

(

k̂3 · w ·
(

sin(k̂1) + sin(k̂2) + k̂3

))

2
(3)

where k̂1 = k1 · π/Nx (k̂2, k̂3 are defined analogouly), and w is a constant that controls the number of layers in
the dataset.

The synthetic dataset in Figure 6(a) is created by showing all frequencies and applying the spatial transfer
function as defined in Figure 2. The spatial transfer function is defined to map only strong reflection values (the
lowest and highest values) to full opacity while intermediate low-energy reflections are transparent. Frequency
ranges and single frequencies can be filtered as seen in Figure 6(b)-(f). The ability to isolate/enhance single
layers in real-time, guided by the amplitude vs. RDF scatter plot, demonstrates the usefulness of our proposed
frequency-based transfer function.

(a) (b) (c)

(d) (e) (f)

Figure 6. Renderings of the synthetic layer dataset: a) original dataset, b-c) modulated dataset consisting of only 3
layers with decreasing but similar thickness, and d-f) modulated dataset consisting only of single layers with decreasing
thickness. See Figure 7 for the respective transfer-function settings.
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(b)

(c)

(d)

(e)

(f)

Figure 7. Settings of: a) color-opacity TF. The horizontal axis represents the data-value range and the vertical axis
controls the mapping of opacities to the data values. b-f) FbTFs for Figure 6. The horizontal axis represents the RDF
range and the vertical axis controls the amplitude modulation for the selected RDFs. The red line shows where the
frequency opacity is equal to one.

5.4 Image-space Enhancement on CT Data

The frequency response of a signal represents the rate of change of the signal. Fast changes contribute to high
frequencies and vice-versa. Gradient information can be deduced from the upper part of the frequency spectrum
(i.e., the high frequencies). On the other hand, structures with similar or constant density contribute to the lower
part of the frequency spectrum. With a tuned bandpass filter, structures of different sizes can be detected. This
idea is similar to the approach presented by Correa and Ma,8 where analysis and size-based feature enhancement
is done through multi-scale Gaussian filtering. Whereas Correa and Ma perform the time consuming Gaussian
convolution in the spatial domain and create a derived volume from this to obtain real-time interaction, our
frequency transfer function can express this convolution and perform it in real-time without need to create a
derived volume.



In Figure 8 we show results of an aneurism dataset, obtained from a rotational C-arm X-ray scan of the
arteries of the right half of a human head. By amplifying the frequencies of a specific frequency band, we are
able to detect the aneurism. In Figure 8(c) we show the output result by using image compositing with an ”over”
operator30 defined as follows:

Iout = α · IFFT + (1− α) · Iin (4)

where Iin is the image rendered from the input dataset, IFFT is the image rendered from the modulated dataset,
Iout is the final image result and α controls the compositing operation. We use α = 0.3 in Figure 8(c). From a
mathematical aspect, the usage of FbTF in feature detection is a generalization of the concepts introduced by
size-based and scale-based segmentation. A properly tuned FbTF offers the opportunity to discriminate features
based on shape and size.

(a) (b) (c)

(d)

(e)

Figure 8. a) An aneurism dataset, b) The aneurism after applying a global low-pass filter in the frequency domain, c)
In the middle in green is the aneurism after applying a band-pass filter, rendered with the original data as background
context, d) Setting of FbTF for Figure 8(b), and e) Setting of FbTF for Figure 8(c).

6. CONCLUSION AND FUTURE WORK

We presented an interactive framework that extends the common visualization pipeline by including frequency
modulation as an interactive data enhancement step. We implemented and compared a CPU and a GPU based
application of FFT. The FFT implemented with CUDA provides a fast and interactive way of analyzing 3D
signals in the frequency domain.

We showed different scenarios related to the construction of complex filters, the enhancement of structures
and detection of features of interest. The versatility of data modalities and problems demonstrates the strength
of our proposed approach. Each of the problems described in the Results section requires specific and tailored



processing which has long processing times and possibly needs space for storing intermediate representations.
Our transfer function represents a simpler and unified real-time solution to these problems while requiring no
extra storage.

The interactivity of our framework creates possibilities for a better and quicker exploration of signals in the
frequency domain and for the linking to the spatial-domain representation of those signals. We observed that
changing specific frequencies may lead to undesired changes or the corruption of the overall structures of the
data. In our future work we plan to put more emphasis on the scientific linking between the modulation of
specific frequencies and the impacts on the spatial data representation. One other possible way to extend our
framework is by including spatially local information into the frequency data.

We showed that important information can be extracted from the frequency spectrum. In addition further
investigation will be pursued in understanding the impact of frequency modulation on structures and features
of interest. Considering seismic spectral decomposition as one of the fields that may directly benefit from our
framework, we plan to coordinate with geology experts in order to develop the framework in accordance with
their needs.

The introduced framework is, to our knowledge, the first attempt to connect and interact in real time with the
spatial and frequency domain by means of transfer functions. We showed several cases where such an interaction
is useful.
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