
Adaptive Camera-Based Color Mapping For Mixed-Reality Applications
Martin Knecht∗

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Christoph Traxler†

VRVis - Center for Virtual Reality
and Visualization Research, Ltd.

Werner Purgathofer‡

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Michael Wimmer§

Institute of Computer Graphics and Algorithms
Vienna University of Technology

ABSTRACT

We present a novel adaptive color mapping method for virtual ob-
jects in mixed-reality environments. In several mixed-reality ap-
plications, added virtual objects should be visually indistinguish-
able from real objects. Recent mixed-reality methods use global-
illumination algorithms to approach this goal. However, simulating
the light distribution is not enough for visually plausible images.
Since the observing camera has its very own transfer function from
real-world radiance values to RGB colors, virtual objects look arti-
ficial just because their rendered colors do not match with those of
the camera.

Our approach combines an on-line camera characterization
method with a heuristic to map colors of virtual objects to colors
as they would be seen by the observing camera. Previous tone-
mapping functions were not designed for use in mixed-reality sys-
tems and thus did not take the camera-specific behavior into ac-
count. In contrast, our method takes the camera into account and
thus can also handle changes of its parameters during runtime. The
results show that virtual objects look visually more plausible than
by just applying tone-mapping operators.

Keywords: Tone Mapping, Color Matching, Differential Render-
ing, Mixed Reality

Index Terms: I.1.3 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture; I.4.10 [IMAGE PROCESSING AND COMPUTER
VISION]: Enhancement—Filtering;

1 INTRODUCTION

Some application areas for mixed reality (MR) require a realistic
rendering of virtual objects. Among them are architectural visu-
alization, product design and marketing, and cultural heritage. In
these applications, virtual objects should blend seamlessly into the
real scene and provide a plausible illusion. Recent methods [8, 7]
use advanced lighting simulations to make virtual objects look as
if they were placed into the observed scene by taking shadows and
indirect illumination between real and virtual objects into account.

Even though these methods can be quite accurate, virtual objects
are still recognized easily, because their colors do not match with
those captured by the observing camera. This problem is caused
by the fact that the global illumination (GI) solution has a high
dynamic range and tone mapping must be performed to get color
values that are in the range of the observing camera. However, to

∗e-mail: knecht@cg.tuwien.ac.at
†e-mail: traxler@vrvis.at
‡e-mail: wp@cg.tuwien.ac.at
§e-mail: wimmer@cg.tuwien.ac.at

Figure 1: The left column shows renderings with the tone mapping
operator from Reinhard et al. [9] without any adaption to the char-
acteristics of the observing camera. On the right column our color
mapping method is applied, resulting in better adapted colors as they
were seen through the camera. In each image the color chart and
the book on the right side are real objects.

our knowledge a lot of these tone mapping operators work indepen-
dently of the internal camera settings and only focus on luminance
mapping and ignore color mapping. Especially with upcoming mo-
bile devices, where the camera automatically adapts to the light sit-
uation, our proposed method is a convenient way to enhance the
visual quality of mobile augmented-reality applications.

In this paper we present a new adaptive color-mapping solution
that considers the continuous image stream from the camera in real
time. In this way, virtual objects appear as if also captured by the
observing camera, thus removing a significant visual cue that de-
stroys the plausibility of the illusion. We want to emphasize that our
method focuses on color adjustment. Simulation of other camera
artifacts, such as lens distortions for a better matching appearance
of virtual objects has been addressed by Klein and Murray [6, 5].

Our method is based on Differential Instant Radiosity [7]. We
derive a mapping to the camera color space RGBcam by compar-
ing the computed solution with the images delivered by the camera.
We create color sample pairs of these buffers and derive a mapping
function from them. A heuristic is used to also create color sam-
ple pairs for colors of virtual objects that are not available in these
buffers. The main assumption behind this heuristic is that there is
at least one dominant color channel.

Our contributions are:

• A tone-mapping method that adaptively maps colors of virtual
objects to the colors as if they were seen through the camera.

• A heuristic to generate samples of colors that are not repre-
sented in the real scene.

• A way to temporally smooth the color-mapping operator.

2 RELATED WORK

Klein and Murray [5] introduced a new compositing method for
video-see-through AR that simulates most visible artifacts of small
cameras. The considered effects are distortions, chromatic aber-
rations, blur, Bayer masking, noise, sharpening, and color-space
compression. In this way, the appearance of virtual objects better
matches those of real ones as captured by the camera. However,
they do not attempt to achieve an accurate color matching, which
requires at least an estimation of the real scene’s lighting conditions.

Color management by colorimetric characterization of cameras
is another topic closely related to our work. Light that hits a sensor
element in a camera is mapped to RGB values, forming the device-
dependent color space. The transformation of this color space into a
device-independent one, usually CIEXYZ (CIE tristimulus values),
is called colorimetric characterization and is often described by an
ICC profile.

Color management is so far only applied to single images,
mainly in digital photography and print. Fairchild mentions that
colors in video are purely device dependent (RGB to RGB) and
presents some theoretical thoughts about how color management
could work for it [3]. His observation is also true for the image
stream of interactive MR applications. It was our intention to close
this gap and find at least a convincing match between the RGB
space of the camera and that of rendered virtual objects. In con-
trast to the classical methods of color management, our approach
is adaptive and fulfills the real-time requirements of mixed reality
systems. We avoid the painstaking process of defining an accurate
colorimetric characterization by using many samples from a broad
range of colors. This allows switching cameras at any time and
promptly reacting to automatic camera adjustments.

Another related topic are tone-mapping operators. A very good
survey was published by Čadı́k et al. [1]. They performed a per-
ceptual evaluation of 14 tone mapping operators. Their analysis
showed that photographic tone reproduction, proposed by Reinhard
et al. [9], is one of the best in terms of image quality and perfor-
mance. Therefore we used a simplified version of this operator in
our work to compare the resulting images.

3 CAMERA-BASED COLOR MAPPING

We assume a mixed-reality setup where a real scene is captured by
a camera and augmented by virtual objects before being presented
to the user. Illumination is captured by a fisheye-camera to allow
the scene to adapt to environment lighting.

When virtual objects are merged with the real video feed from
the see-through camera, it is important that they appear in a visu-
ally pleasing way. Recent methods use tone mappers to calculate
low dynamic range data from high dynamic range images. How-
ever, every time the camera parameters change (saturation, contrast,
auto-shutter, ...) the tone-mapping operators must be adjusted man-
ually (see Figure 1). What we would need is a color mapping from
the virtual objects to the colors of the camera and this in an adaptive
way so that changes over time can be handled adequately.

In our approach, we do not attempt to work in a device-
independent color space. All computations are done in device-
dependent RGB color spaces. The fisheye-camera captures the
light that is defined through device-independent radiance values
XY Zworld . This camera converts the incident light into RGB val-
ues, thus defining the color space that we will denote as reference
color space RGBre f . All elements that interact with light (materials
and light sources) must be defined in that reference color space in
order to get physically correct results.

The observing camera has a completely independent RGB color
space denoted as RGBcam. The method we present in this paper tries
to find an appropriate mapping function τ from RGBre f to RGBcam
as shown in Figure 2.

XY Zworld

RGBre f RGBcam

τre f τcam

τ

Figure 2: This figure illustrates the dependencies of the different color
spaces. The proposed method tries to find a mapping function τ from
RGBre f to RGBcam.

In order to find this mapping function, we need to gather infor-
mation of the RGBre f and RGBcam color spaces that correlate with
each other.

3.1 Methodology
Differential Rendering (DR) by Debevec [2] is a commonly used
method to add virtual objects into a real scene. The method uses
two global illumination solutions of the local scene (LSvr and LSr)
which are defined in the RGBre f color space. LSvr stores the global
illumination solution including real and virtual objects, whereas LSr
stores a global illumination solution taking only the real objects into
account. Then the difference between both buffers is computed and
added to a masked version of the video frame (LS′cam). In DR these
buffers need to be mapped to RGBcam (by function τ) as follows:

∆L = τ(LSvr)− τ(LSr) (1)
LS f inal = LS′cam +∆L (2)

Here, ∆L is the difference image and LS f inal represents the final
composed image in RGBcam color space.

Since we have the LSr solution and the LScam image, the idea is
to find a proper mapping function τ between these two buffers and
then use this mapping for the LSvr solution (where the virtual ob-
jects are visible) too. Our method can be summarized in four main
steps. First color sample pairs are created. Second, to overcome
issues with missing color samples a heuristic is applied. Third, a
mapping function is computed based on the collected color sample
pairs. The last step performs temporal smoothing on the computed
mapping function to avoid flickering artifacts.

3.2 Color sample pair creation
We want good color matching for the virtual objects but we can
only create color sample pairs (denoted as < Cr,Ccam >) from the
LSr and Lcam buffers where real objects are visible. Therefore we
need to find color samples in LSr that are similar to the colors of the
virtual objects.

In order to do this we first collect N color samples on virtual
objects from the LSvr buffer. In a second step, these samples are
used to find similar color samples in the LSr buffer. To compare the
similarity between two colors we use the following equations:

∆h = |h(ca)−h(cb)| (3)
hm = 0.5−min(∆h,1−∆h) (4)

match =
hm

1+ |ca− cb|
(5)

where ca and cb are the two colors to be compared, h(...) con-
verts the color to HSV color space and returns the hue channel, and
match is the final match of colors ca and cb.

The screen-space coordinates (xi,yi) of the pixel with the highest
color match to the ith virtual object’s color sample will be used to
create a color sample pair <Cr[i],Ccam[i]> from the LScam and LSr
buffers:

Cr[i] = LSr(xi,yi) (6)
Ccam[i] = LScam(xi,yi) (7)

3.3 Finding missing color samples
In the previous step, we assumed that the virtual objects have simi-
lar colors as the real objects. However, in typical AR applications,
this will not always be the case, and then no suitable mapping func-
tion can be found for missing colors.

For these cases we propose a heuristic that tries to cover missing
colors by creating new color samples before the mapping function
τ is computed. The heuristic is based on the assumption that at least
one dominant color (ranging from zero to full intensity) is available
on the real objects. So for this dominant color a meaningful map-
ping can be found. By simply swapping color channels for each
color sample pair, the mapping characteristics of one color channel
can be transferred to another one.

In other words the volume covered by a mapping function that
relies only on the dominant color is very small. If the dominant
color is distributed into the other color channels, the mapping func-
tion is forced to cover a larger volume and thus other colors can
be mapped to RGBcam even though they are not directly available.
Note that for these new colors, the exact mapping would be differ-
ent. However, the main mapping properties are similar to the ones
of the dominant color and thus, fewer visual artifacts appear than
without any heuristic. For a given color sample pair the heuristic
would randomly create a new one as follows (with RGB→ GRB):

c′r.rgb = cr.grb (8)
c′cam.rgb = ccam.grb (9)

3.4 Finding a mapping function
In the previous sections we created a set of N color sample pairs that
represent corresponding colors in the RGBre f and the RGBcam color
spaces. In order to calculate a mapping function, we use polynomial
regression. Polynomial regression is commonly used in camera cal-
ibration, or, in a more general sense, for input/output device calibra-
tion. It is described in more detail in the book by Kang [4]. For our
method we implemented three different types of polynomials:

• Ccam(r) = a0 +a1r, Ccam(g) = a0 +a1g, Ccam(b) = a0 +a1b

• Ccam(r,g,b) = a0r+a1g+a2b

• Ccam(r,g,b) = a0 +a1r+a2g+a3b

Note that a∗ represent the coefficients calculated by the regres-
sion method.

3.5 Temporal smoothing
The samples are created in screen-space and thus, changes in the
view point or simply image noise may result in different color
samples every frame. This causes temporal flickering artifacts be-
tween the adjacent frames. To dampen these sudden color changes,
we temporally smooth the resulting mapping function on a per-
component level. We use exponential smoothing [10] as follows:

ai = uai +(1−u)a′i (10)

where a are the component values after the regression, i is the
index variable from 0 to the number of used coefficients and a′ is

the value from the previous frame. The smoothing value u is used to
steer the influence of every new result value. In our case a value of
0.3 led to pleasing results while still getting fast adaption to camera
parameter changes.

4 RESULTS

The PC used for the test results has an Intel Core2 Quad CPU 9550
at 2.8GHz with 8GB of memory. The graphics card is an NVIDIA
Geforce GTX 580 with 1.5GB of dedicated video memory. The op-
erating system was Microsoft Windows 7 64 bits and the framework
was developed in C#. All result images were rendered at a resolu-
tion of 1024x768 pixels using the DirectX10 API in conjunction
with the SlimDX library. In all images the heuristic was activated.

We set up two different scenarios that should give an impression
how our solution performs compared to simply using the tone map-
ping operator from Reinhard et al. [9]. These two scenarios should
represent two extreme cases. Scenario A shows a real color checker
board (Gretagmacbeth - ColorChecker Digital SG) in which our
method can find a large number of different color samples. Sce-
nario B is more challenging, since the only real object visible is a
wooden desk with a more or less uniform brownish color.

The implementation supports three different regression modes,
which are listed in Section 3.4. Table 1 shows a comparison
between different polynomials for the regression, and the tone-
mapping operator by Reinhard et al. [9]. Furthermore, we have
adjusted the parameters of the cameras and show the adaption to it
by the proposed method. In camera settings A, we reduced the sat-
uration and increased the brightness. Setting B is the opposite, here
the saturation was increased and the brightness decreased. Note that
the implementation is not aware of any camera parameter settings.
They were altered during runtime directly by the camera driver soft-
ware. Furthermore we used similar real and virtual objects for com-
parison but there is no need to have equal objects in the scenes. The
frame numbers in the brackets belong to Scenario A.

The results show that regression mode C leads to the best results
in comparison to the other regression modes.

5 LIMITATIONS

Our approach currently requires a representation of the real scene,
i.e., the geometry and BRDF estimation of real objects. This im-
plies it does not work for conventional MR applications. Therefore,
camera-based adaptive color mapping is tailored for MR systems
that consider the real environment for rendering.

Another obvious limitation of our solution is the heuristic. It is
based on the assumption that there is at least one dominating color
on real objects and if that is not true, the heuristic will fail and
visual artifacts may appear. There are some special cases where
our solution will fail or produce undesired effects:

• When the tracking for real objects is too inaccurate, the see-
through image will not exactly coincide with the GI solution
for real objects (LSr). Therefore wrong color pairs will be
mapped to each other.

• In a situation where no real objects are visible because a vir-
tual object completely occludes them, a color characterization
cannot be calculated.

• Wrong color adjustment occurs when real objects are captured
by the camera for which no representation for rendering ex-
ists. This usually happens when hands of interacting users are
visible in the camera stream.

• If the discrepancy between real and virtual colors is too ex-
treme, for example colorful virtual objects are placed into a
gray-scale real environment, a mapping cannot be obtained
and there would be no basis for our heuristic.

Mode Scenario A Setting A Setting B Scenario B

Reinhard (45 fps)

A (30 fps)

B (27 fps)

C (26 fps)

Table 1: In this table the different regression modes are compared to each other using the two scenarios as well as two different camera
parameter settings. Setting A has low saturation and high brightness. Parameter setting B has high saturation and low brightness. The tone
mapper of Reinhard et al. [9] does no approximation to camera colors at all, while the other modes do. Mode C yields the best approximation.
The frame numbers in the brackets belong to Scenario A.

6 CONCLUSION AND FUTURE WORK

In this paper we presented a novel adaptive color-mapping method
that can be used in mixed reality applications. Every frame we
calculate a color mapping function that automatically adapts to the
internal changes of the camera behavior. In this way, the virtual
objects have colors as if seen by the camera. To enhance the quality
of our mapping method, we proposed a heuristic that allows our
method to function even if the needed colors are not available in
the image. Furthermore, we exploit temporal coherence between
adjacent frames to temporally smooth the mapping function and
thus get better non-flickering results.

In the future, we want to find a more elaborate heuristic that
adapts to a broader range of possible scenarios. Furthermore, we
want to find solutions for some of the other limitations.

ACKNOWLEDGEMENTS

The authors wish to thank Raphael Grasset for the ISMAR logo
model and Ralf Habel. This work was supported by a grant from
the FFG-Austrian Research Promotion Agency under the program
“FIT-IT Visual Computing” (project nr. 820916). Studierstube
Tracker is kindly provided by Imagination Computer Services.

REFERENCES

[1] M. Čadı́k, M. Wimmer, L. Neumann, and A. Artusi. Evaluation of hdr
tone mapping methods using essential perceptual attributes. Comput-
ers and Graphics, 32(3):330–349, 2008.

[2] P. Debevec. Rendering synthetic objects into real scenes: bridging tra-
ditional and image-based graphics with global illumination and high

dynamic range photography. In SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and interactive tech-
niques, pages 189–198, 1998.

[3] M. D. Fairchild. A color scientist looks at video. 3rd International
Workshop on Video Processing and Quality Metrics (VPQM), 2007.

[4] H. R. Kang. Computational Color Technology (SPIE Press Mono-
graph Vol. PM159). SPIE- International Society for Optical Engineer-
ing, 2006.

[5] G. Klein and D. Murray. Compositing for small cameras. In Pro-
ceedings of the 7th IEEE/ACM International Symposium on Mixed
and Augmented Reality, ISMAR ’08, pages 57–60. IEEE Computer
Society, 2008.

[6] G. Klein and D. W. Murray. Simulating low-cost cameras for aug-
mented reality compositing. IEEE Transactions on Visualization and
Computer Graphics, 16:369–380, 2010.

[7] M. Knecht, C. Traxler, O. Mattausch, W. Purgathofer, and M. Wim-
mer. Differential instant radiosity for mixed reality. In Proceedings
of the 9th IEEE International Symposium on Mixed and Augmented
Reality, ISMAR ’10, pages 99–108, 2010.

[8] S. A. Pessoa, G. de S. Moura, V. Teichrieb, and J. Kelner. Photoreal-
istic rendering for augmented reality: A global illumination and brdf
solution. In Virtual Reality, pages 3–10, 2010.

[9] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic
tone reproduction for digital images. ACM Transactions on Graph-
ics, 21(3):267–276, 2002.

[10] D. Scherzer, S. Jeschke, and M. Wimmer. Pixel-correct shadow maps
with temporal reprojection and shadow test confidence. In Rendering
Techniques 2007 (Proceedings Eurographics Symposium on Render-
ing), pages 45–50. Eurographics Association, 2007.

