Interactive Visual Analysis of Multi-faceted Scientific Data

Johannes Kehrer

Visualization Group, Dept. of Informatics University of Bergen, Norway www.ii.UiB.no/vis

Motivation

Increasing amounts of scientific data

medical scanner

computational simulation

time-dependent 3D data

Hard to analyze and understand

"The purpose of visualization" is **insight**, not pictures" [Shneiderman '99]

Different application areas

[Burns et al., 2007]

Typical Visualization Tasks

Visualization is good for

- visual exploration
 - find unknown/unexpected
 - generate new hypothesis

visual analysis (confirmative vis.)
 verify or reject hypotheses
 information drill-down

presentation

show/communicate results

Interactive Visual Analysis (IVA)

Enables visual dialogue between user and data

- drill-down into information ("overview first, zoom and filter, then details on demand" [Shneiderman])
- interpret complex data
- find relations ("read between the lines")
- detect features / patterns that are difficult to describe
- integrate expert knowledge

SimVis Framework for IVA

- coordinated, multiple views
- linking & brushing
- focus+context vis.
- degree-of-interest $(DOI \in [0, 1])$
- on-the-fly data derivation
- interactivity, etc.

Multi-faceted Scientific Data

 Time-dependent scenarios (consider multiple time steps)

 Multi-variate data (multiple data variates, e.g., temperature, precipitation)

 Multi-modal data (simulation, satellite imagery, weather stations, etc.)

Multi-faceted Scientific Data

 Multi-run simulations (simulation repeated with varied model parameters)

Multi-faceted Scientific Data

Contributions

- IVA of multi-run data
- IVA across 2 data parts (multi-model / multi-run data)

- IVA of multi-run data based on statistical moments
- Strategies for IVA for hypothesis generation in climate research
- Design guidelines for glyph-based 3D visualization

Visual Exploration of Climate Data

Hypothesis Generation

- search for potential sensitive & robust indicators for climate change
- characteristic climate signals that deviate from natural variability
- useful to monitor atmospheric change

Usual Workflow

- Set research focus
- Acquire data
- Iterate
 - explore / investigate data
 - formulate particular hypothesis
 - evaluate with statistics

Challenging to come up with new hypotheses

Goal: accelerate process (fast interactive visualization, more informed partner \rightarrow more directed search)

Our Visual Exploration Process

- Integrated data derivation
 - \rightarrow linear trends & signal to noise ratios (SNR)
- Interactive visual exploration for quick and flexible data investigation ("preview on statistics")
- Generated hypotheses evaluated using statistics
 - → trend testing [Lackner et al. 08]
- Narrow down parameters

Focus on Expressive Data

Explore Trend Variation over Time

Analyze Relations between Dimensions

Generated Hypothesis / ECHAM5 temp.

Hypothesis Generation with Visual Exploration

- Kehrer et al. Hypothesis generation in climate research with interactive visual data exploration. IEEE TVCG, 14(6):1579– 1586, 2008.
- Ladstädter et al. SimVis: an interactive visual field exploration tool applied to climate research. In New Horizons in Occultation Research, pages 235–245. Springer, 2009.
- Ladstädter et al. Exploration of climate data using interactive visualization. Journal of Atmospheric and Oceanic Technology, 27(4):667–679, 2010.

IVA across two Parts of Scientific Data

multi-run

data

multi-model

data

multi-variate

data

traditional visualization

time-dependent

data

multi-modal

data

Multi-part scenarios

- Coupled atmosphere-ocean model
- Fluid-structure interactions (FSIs)

How to relate features across different data parts?

IVA across an Interface

- Relate grid cells across data parts
- Transfer features (DOI values) in both directions

Keep feature specification up to date

Heat Exchange in an FSI Scenario

Transfer vortex feature to solid

Relation: vortical flow \Leftrightarrow heating in solid

Higher-dimensional Scientific Data

• "Scientific" data:

- some data values f(p)
 (e.g., temperature, pressure values)
- measured/simulated wrt. a domain p (e.g., 2D/3D space, time, simulation input parameters)

- If dimensionality of *p* > 3, then traditional visual analysis is hard
- Reducing the data dimensionality can help (e.g., computing stat. aggregates)

Reducing the Data Dimensionality

[from IPCC AR #4, 2007]

 Statistics: assess distributional characteristics along an independent dimension (e.g., time, spatial axes)

Integrate into IVA through attribute derivation

2090 - 2099

average temp. in ten years

Integrating Statistics and IVA

year 100

Pacific

20

10

-10

20

median temp

1.75

1.75

temp-20

Integrating Statistics and IVA

Example: Multi-run climate data

Compute statistics wrt. the multiple runs

Moment-based Visual Analysis

- Get big picture (data trends & outliers)
- Multitude of choices, e.g.
 - statistical moments 4 (mean, std. deviation, skewness, kurtosis)
- traditional and 2 robust estimates **x**3 **•**
- compute relation **x**2 (e.g., differences, ratio)
 - change scale
- x3 (e.g., data normalization, log. scaling, measure of "outlyingness")
- = 72 possible configurations per axis

to manage complexit. How to deal with this "management challenge"?

right skewed peaked vs.flat

uctured approach

Moment-based Visual Analysis

- Iterative view transformations
 - alter axis/attribute configuration (construct a multitude of informative views)
 - maintain mental model of views
 - classification of moment-based views

Relate multi-run data 🗇 aggregated data

> quantile plot (focus+context)

aggregated data

Iterative View Transformations

Change axis/attribute configuration of view

- change order of moment
- robustify moment

- compute relation (e.g., difference or ratio)
- change scale (e.g., normalize, z-standardization)

Closer related to data tranformations

Basic View Setup: Opposing Different Moments

Views: Opposing Different Moments

robustify moment

→ assess influence of outliers

Other View Transformations

IVA across two Parts of Scientific Data

J. Kehrer, P. Muigg, H. Doleisch, and H. Hauser. **Interactive visual** analysis of heterogeneous scientific data across an interface. *IEEE TVCG*, *17*(7):934–946, 2011.

Moment-based Visual Analysis

J. Kehrer, P. Filzmoser, and H. Hauser. **Brushing moments in interactive visual analysis.** *CGF*, 29(3):813–822, 2010.

Design aspects of glyph-based 3D vis.

Glyphs

- Map data variate → visual property (e.g., color, size, shape, orientation, curvature)
- "Just" combining different visual properties is not enough

Glyph Instantiation

Glyph orthogonality (perceive each property individually)

upper/lower shape

+size

+rotation

+aspect ratio

Rendering

Enhance depth perceptionhalos/contours

chroma depth

Diesel Particulate Filter

Size & color: flow temp.

Glyph rotation (-45°, 45°): O_2 fraction ₃₇

Glyph-based 3D Visualization

A. Lie, J. Kehrer, and H. Hauser. **Critical design and realization aspects of glyph-based 3D data visualization**. In *Proc. Spring Conference on Computer Graphics (SCCG 2009), pages 27–34, 2009.*

Conclusions

- Study of multi-faceted data
- IVA across 2 data parts
 - relating multi-run data aggregated statistics
 - analyst can work with both parts (e.g., check validity)
- Integration of statistical moments
 - traditional vs. robust statistics, outliers
 - iterative view transformations
 - interactive statistical plots (linking & brushing)
- Workflow for hypothesis generation
- Design considerations for glyph-based 3D vis.

Acknowledgements

- Helwig Hauser, VisGroup @ UiB
- Helmut Doleisch, Philipp Muigg, Wolfgang Freiler
- Florian Ladstädter, Andrea Steiner, Bettina Lackner, Barbara Pirscher, Gottfried Kirchengast
- Peter Filzmoser, Andreas Lie, Ove Daae Lampe

Wegener Center www.wegcenter.at

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

- Thomas Nocke, Michael Flechsig
- Armin Pobitzer, C. Turkay, Stian Eikeland
- many others

Potsdam Institute for Climate Impact Research

