
Interactive reconstruction of industrial sites using parametric models

Irene Reisner-Kollmann∗

VRVis Research Center
Anton L. Fuhrmann†

VRVis Research Center
Werner Purgathofer

Vienna University of Technology

Figure 1: The images show (from left to right) an input image and the resulting model overlaid to another input image and from a new
perspective.

Abstract

We present a new interactive modeling technique for reconstruct-
ing 3D objects from multiple images. We specifically address the
problems that arise in industrial environments during camera ori-
entation, image segmentation and modeling. An accurate camera
orientation is ensured by using coded markers and surveyed points
from a total station. Interactive segmentations of edges and regions
in the images are used as input for fitting parametric models to the
scene. We provide an intuitive interface which allows modeling ar-
tificial objects without having extensive knowledge about 3D mod-
eling or photogrammetry.

CR Categories: I.3.5 [COMPUTER GRAPHICS ]: Computa-
tional Geometry and Object Modeling — [I.4.8]: IMAGE PRO-
CESSING AND COMPUTER VISION—Scene Analysis

Keywords: multi-view reconstruction, model fitting

1 Introduction

The modification of an industrial building requires the knowledge
and analysis of the existing building. It is important to know the
size of rooms as well as the size and shape of facilities and ma-
chines. With this information it is possible to plan the rebuilding
and the placement of existing and new facilities. A 3D visualiza-
tion of the plans is often desired for getting a better impression
of the new building. It is necessary to efficiently create 3D models
and accurately measure the size of industrial facilities. Image-based
methods are useful because the actual facilities are only needed for
taking a few photographs. If accuracy is important, the image-based
methods can be supported by additional measurements, e.g. with a
total station.

Several methods for reconstructing a scene automatically from a set
of images have been presented in recent years, e.g. [Furukawa and
Ponce 2007]. These methods usually create three-dimensional ob-
jects with a lot of polygons and depend on short camera baselines
as well as diffuse surfaces. On the other hand, there are photogram-
metric applications [ImageModeler; PhotoModeler] for manually
creating 3D objects based on photogrammetric methods. They need

∗reisner-kollmann@vrvis.at
†fuhrmann@vrvis.at

a lot of user input, mainly creating point correspondences across
multiple views, but in exchange they are independent to lighting
conditions and camera baselines. Another advantage may be that
the resulting 3D models are very simple and only have a few poly-
gons. A drawback is that calculations are very error-prone if the
user makes a mistake or the user input is not accurate enough.

In this paper, we present a new modeling technique which keeps
the advantages of manual photogrammetric modeling but makes the
workflow more convenient for the user. We combine the expertise
of the user with automatic operations in photogrammetry and image
processing. This will take workload off the user and increase the
stability and accuracy of the reconstruction system. Figure 1 shows
an input image and the result of our modeling system for a set of
oriented images.

The application of multi-view reconstruction methods often de-
pends on the input images. Therefore, we provide a set of different
methods which can be used together by the user. If automatic ap-
proaches fail, it is important to have a fallback alternative, even if it
requires more input from the user. The goal of our application is to
make the workflow fast if it is possible, but it has to be successful
in any event.

1.1 Problem statement

The computation of camera poses requires correspondences of
points, lines or patches across multiple images. Industrial sites of-
ten contain objects with highly reflective surfaces or poorly tex-
tured objects. Bad lighting conditions or taking photos with a flash
should not affect the camera orientation. This makes automatic fea-
ture detection and matching very difficult because the scene does
not provide enough view-invariant patches. Automatic matching is
further complicated if only a few images should be sufficient for the
reconstruction and therefore the camera baselines are very wide.

If the accuracy of the reconstructed objects is very important a total
station can be used for measuring several points in the scene. The
survey points provide very accurate metric information about the
scene. They should be integrated into the image-based tools and
used for calculating the camera poses and 3D models. The image-
based techniques further provide a control mechanism for the sur-
vey data. If a lot of measurements are done with a total station, it
can easily happen that the user accidentally selects a wrong corner
of an object. Such mistakes will show up with high re-projection



errors in the camera orientation process.

The workflow at the actual scene should be kept very simple and
time efficient in order to keep costs low. A common approach is that
the reconstruction experts measure a few important points with a to-
tal station and take photographs. The interactive calculation of the
camera orientations shows if enough points and images are avail-
able. Additional photographs can be taken by non-experts. These
are necessary if some details needed for modeling are not avail-
able in the existing photographs. Another possibility is that small
changes occurred at the scene and should be incorporated into the
3D reconstruction.

A common goal of multi-view reconstruction is to get information
about the size and general shape of industrial machines. This in-
formation is used for calculating the required space for machines
as well as for visualizing rebuilding plans. Small details of the fa-
cilities are often not important and sometimes even disturbing for
planning the arrangement of machines. Deciding which objects are
important strongly depends on the reconstruction goals and there-
fore should be left to the user.

Individual elements of artificial objects are often quite simple and
can be approximated with geometric primitives like cubes or cylin-
ders. These objects should be reconstructed as simple as possible
because dense vertex geometries are often not desired in the CAD-
workflow. Small elements, e.g. small switches, usually can be in-
cluded only with texturing in order to obtain the simplicity of the
models. On the other hand, if they are important, the user should be
able to explicitly reconstruct these small objects.

Another common type of objects in factories are tubes and pipes.
It is hard to automatically match features of tubes across multiple
views because they often have very homogeneous surfaces. Just
like other objects, the geometry of tubes should be kept as simple
as possible.

The following list summarizes the requirements of our image-based
modeling system:

• simple workflow on-site
• wide camera baselines
• objects may contain reflective surfaces
• should work with textureless objects
• independent from lighting conditions
• fast and accurate camera orientation
• integration of survey points
• models with simple geometry
• intuitive user interface

The workflow of the reconstruction system can be divided into cam-
era orientation, image segmentation and image-based modeling.
Camera orientation uses coded markers in order to achieve short
computation time and accurate results. Detailed information about
camera orientation can be found in Section 2. The next step is to
segment regions and edges of objects or object parts in multiple
images with interactive image segmentation techniques. On the ba-
sis of oriented cameras and image segmentations it is possible to
fit parametric models to the scene. The user selects an appropri-
ate model type, multiple image segmentations and optionally ad-
ditional constraints and the model parameters are automatically fit
to these requirements. Complex objects can be modelled by fitting
primitives to individual parts of the object. Section 3 describes the
model fitting process in detail.

1.2 Related work

A similar modeling approach has been used for reconstructing ob-
jects from single images [Lowe 1987]. For a set of known corre-

spondences between points on a 3D object and 2D points in the
image, the model and projection parameters are estimated with an
iterative optimization technique. The parameters include transla-
tion and rotation of the model and focal length of the camera. Edges
and line segments are detected automatically in the images. Multi-
ple initial matches between 3D and 2D points are created and ver-
ified between objects and line segments grouped by collinearity or
parallelism.

The Façade [Debevec et al. 1996] system uses geometric primitives
for image-based modeling with multiple views. The user defines
line segments in the images and manually links them to the cor-
responding edge of a model. The parameterized models are then
fitted to these correspondences with non-linear minimization.

A system for interactively reconstructing scenes by fitting models
to multiple views has been presented by [van den Hengel et al.
2006]. The basic model is a bounded plane from which more com-
plex models can be constructed. The models are fitted to a dense
point cloud which is created during the structure-and-motion calcu-
lation. Therefore, short camera baselines and diffuse surfaces are
needed. The interactive modeling takes advantage of regular scenes
by replicating already optimized models to other positions.

[Sinha et al. 2008] present an interactive modeling system for archi-
tectural scenes which is supported by automatically detected van-
ishing lines. Global directions are extracted from the vanishing
points in multiple images. The user outlines planar polygons in im-
ages whose pose in 3D is estimated by 3D points obtained during
structure-from-motion calculations. Line segments near a global
direction are snapped to exactly be parallel to the direction.

2 Camera orientation

An accurate camera orientation is important for successive re-
construction steps because errors and inaccuracies will propagate
through the reconstruction pipeline. Additionally, the calculation
of extrinsic camera parameters has to be fast in order to get the ori-
entation results on-site. If additional photographs are needed they
should be taken as soon as possible. Longer time steps between
taking photographs increase the possibility of undesired changes in
the scene.

We use pre-calibrated cameras in order to increase the accuracy
and stability of the camera orientation calculations. Coded markers
are used for localizing a planar calibration pattern in the images.
The correspondences between 2D and 3D positions are used for
determining the intrinsic camera parameters as well as the radial
and tangential distortion parameters.

We use point-to-point correspondences for calculating the extrin-
sic camera parameters which are position and orientation. Coded
markers in the scene make the matching of points across multiple
views very accurate and simple. Points can be manually marked in
the images if coded markers cannot be placed in the scene. If the
objects in the scene are textured and they have diffuse surfaces, it
is possible to automatically match natural features, e.g. with SIFT
points [Lowe 2004]. Of course, coded markers, manual points and
automatic feature points can also be used together. In this case the
contribution of coded markers is weighted higher because they are
less error-prone than other points.

We first describe the detection of coded markers in the images and
then how the point-to-point matches are used for the camera pose
estimation.



(a) (b)

(c) (d)

Figure 2: Detecting coded markers in an image. (a) Input image
for marker detection. (b) Detected MSERs. Only regions with the
shape of an ellipse will be used. (c) Original marker which is placed
in the scene. (d) Unwrapped marker: The top section contains the
x-corner in the center. The bottom section contains the visual bit
code of the marker.

2.1 Coded markers

The subpixel-accurate position of coded markers can be easily de-
tected in images, despite low resolution or bad lighting conditions.
Each marker provides a visual bit code which can be assigned to
a unique id. Therefore it is very easy and robust to track a marker
across multiple images.

Figure 2(c) shows an example of our coded markers. A marker
contains a central checkerboard pattern and a rotationally invariant
bit code divided into ten black or white sections. In an image the
marker appear as connected black region in the shape of an ellipse.

We use MSERs (maximally stable extremal regions) to detect pos-
sible marker regions which are significantly darker than the sur-
rounding areas in the image [Nistér and Stewénius 2008]. If mul-
tiple regions are overlapping only the one with the highest stability
is used. We take the outer contour of each region and try to fit an
ellipse to it. Regions are only accepted if their outer shape is close
enough to an ellipse (see Figure 2(b)).

The center of the ellipse is only an approximate position of the
marker due to perspective distortion. An iterative algorithm is used
for detecting the sub-pixel accurate position of the central checker-
board pattern, starting with the center of the ellipse. An ellipse with
the same eccentricity as the outer ellipse is drawn around the current
center inside the checkerboard pattern. All crossings from black to
white and vice versa along the border of the ellipse are extracted
with subpixel-accuracy.

If there are four crossings, the marker position can be refined by tak-
ing lines between oppositely positioned crossings. The intersection
of the two lines is used as new center. This procedure is done iter-
atively and the size of the ellipse is reduced at every iteration. The
algorithm is stopped after a fixed number of iterations. It converges
very fast and the average value of multiple intermediate results is
used to avoid influence of noise.

If there are more or less than four crossings the algorithm is
stopped. In this case the algorithm probably failed and the original

(a) (b)

Figure 3: Correction of marker position. (a) First iteration of the
algorithm. The original position (center of the ellipse) is far from
the actual center of the checkerboard. (b) Second iteration: The
line crossing from the first iteration is used as center of the ellipse.
It is already very near to the actual center.

position of the ellipse is used as center. This happens if the original
position is located nearer to the outer contour of the checkerboard
than to the center of it.

The circular marker is unwrapped to a rectangle in order to retrieve
the visual bit code. Figure 2(d) shows an example for an unwrapped
marker. The bottom section in red contains the 10-digit visual bit
code and the top section in blue corresponds to the central checker-
board. The sections are divided into ten respectively four parts and
the average value is taken for each part. The marker is only ac-
cepted if the bit code as well as the central checkerboard can be
easily identified, that means all values clearly point to zero or to
one. The evaluation of the checkboard is an additional check to
avoid the false identification of circular structures which are not
coded markers.

2.2 Pose estimation

Pose estimation calculates initial values for the camera poses and
the triangulated positions of all matched image points. We use
RANSAC [Fischler and Bolles 1981] in order to detect incorrectly
matched points, which is especially necessary for manually added
point correspondences. It is important to point out possible mis-
takes or inaccuracies by the user which easily happen e.g. in the
presence of repeating structures. Due to the small number of point
correspondences only solutions with very few outliers can be ac-
cepted.

We start with two images that have many point correspondences
and compute the relative orientation between them. The five point
algorithm [Nistér 2004] is used because the images are calibrated.
3D positions of the point correspondences are calculated by trian-
gulation which is the intersection of backprojected rays from the
camera centers through the image positions. If the angle between
the oriented images is too small, the images are rejected and an-
other image pair is used for creating a camera network. All other
images are sequentially added to the network with the three-point
algorithm for correspondences between 2D points and known 3D
points. If an image cannot be oriented to the existing network, it is
put to the end of the unconnected image list. Maybe another image
will provide enough 2D-3D correspondences for adding previously



(a) (b)

Figure 4: (a) Basic shapes of superellipsoids with uniform scaling.
(b) The effect of tapering on a cube-shaped super-ellipsoid.

rejected images.

The resulting networks are finally optimized with bundle adjust-
ment [Hartley and Zisserman 2004]. The triangulated positions of
point correspondences and the camera parameters are optimized
with a sparse Levenberg-Marquardt algorithm. The optimization
minimizes the distances between reprojected triangulated positions
and the according image positions.

The accuracy of pose estimation can be enhanced by using measure-
ments from a total station. The survey points are matched to image
points, either manually or the survey points have already been at-
tached to coded markers. The absolute pose of the cameras can be
calculated directly with these 2D-3D point correspondences with-
out using the relative orientation between two starting cameras.

3 Model fitting

Our image-based modeling technique fits parametric models to dif-
ferent constraints that come from image segmentation or other user
input. The user creates an object from a specific model type and
adds image segmentations and other constraints for optimizing this
model. Complex objects are reconstructed by combinining multi-
ple primitives. The connectivity between these primitives can be
ensured by applying constraints to multiple models.

We first describe the possible models and the constraints. Then
we describe how these elements are combined during model fitting.
The last section covers some special considerations for the recon-
struction of tubes.

3.1 Models

Many industrial components can be approximated by simple ge-
ometric primitives. We provide models for the geometric primi-
tives cube, box, sphere, cylinder, pyramid and frustum. Additional
shapes are provided by superellipsoids. More complex objects can
often be created by combining multiple primitives. A special case
are tubes which are represented by 3D spline.

All models are defined by a set of parameters which are modified
during the model fitting process. The parameters include the pose
of the model in world space and the actual shape of the model. The
pose in world space is defined by position, scale and rotation, each
represented by three parameters. The scale and rotation of some
models can be defined with less parameters. Table 1 summarizes
the number of parameters for each model type.

Superellipsoids [Jaklič et al. 2000] can be used for modeling a
wide range of shapes including spheres, cubes, cylinders as well

as shapes in between and non-uniform scaled versions. Superel-
lipsoids contain two parameters e1, e2 in addition to the common
parameters position, scale and orientation. A global deformation
transformation called tapering [Barr 1984] is used to represent even
more shapes including pyramids, cones, frustums of pyramids and
cones, wedges and all shapes in between. Tapering needs two ad-
ditional parameters k1 and k2 which reduce the size of the shape
along two directions. Possible shapes formed by superellipsoids
can be seen in Figure 4.

Tubes are represented by a 3D spline and a diameter defining its
thickness. A 3D curve is interpolated through a set of control
points. These control points can be altered during the model fit-
ting process. The number of control points is automatically defined
depending on the length of the reprojected curves in the images.
More details about the reconstruction of tubes can be found in Sec-
tion 3.5.

Name p s r
Cube 3 1 3 0
Box 3 3 3 0
Sphere 3 1 0 0
Cylinder 3 2 2 0
Pyramid 3 2 3 0
Frustum 3 2 3 4 (smaller base position/scale)
Superquadric 3 3 3 4 (coefficients and tapering)
Tube 3 1 0 n (control points)

Table 1: Number of parameters per model type: position p, scale s,
rotation r, and additional parameters

3.2 Image constraints

The image projections of a model provide several constraints in or-
der to find the correct parameters of the model. These constraints
are created by points, edges and regions from multiple images.
Edges and regions are defined by interactive image segmentation,
points were earlier used for camera orientation (see Section 2).

We provide a set of interactive segmentation techniques for defining
edges and regions. We made positive experiences with interactive
graph cuts [Boykov and Jolly 2001] for region-based segmentation
and with intelligent scissors [Mortensen and Barrett 1998] for defin-
ing edges and contours. Any other segmentation technique can be
used as well and depending on the scene it may also be possible to
use automatic segmentation techniques.

The goal of segmentation is to define outlines and edges of the de-
sired 3D objects. It is not necessary to define all possible segmenta-
tions in one image, but rather to provide enough constraints across
multiple images for fitting a model. Not all types of segmentation
have to be provided, especially because outlines are often hard to
segment due to occlusions from other objects. If the user is not sat-
isfied with a fitted model, it is possible to add more constraints and
further optimize the model. Experiments have shown, that rough
segmentations in many images lead often to better results than very
exact segmentations in only few images.

3.2.1 Outlines

Outlines are a very useful constraint for defining the position and
scale of an object. The outline of a specific model is computed an-
alytically or it is retrieved with an image-based technique. Sample
points are taken from the user-defined contour at equal distances.
Using all points of the contour would increase computation time,
whereas the result is nearly unaffected because nearby points have
almost the same effect for model fitting. On the other hand, using



(a) (b) (c)

Figure 5: Optimization of an outline constraint. The distances
between samples (red) of the user-defined outline (green) and the
model outline (blue) are minimized during optimization.

not enough samples increases the influence of outliers in the user-
defined region.

The distances between sample points and the nearest points on the
model projection contour are minimized with

min
∑

I

∑

p

d2(p, outline(I))2,

where d2 is the Euclidean 2D image-based distance, p denotes a
sample point on the user-defined contour and outline calculates
the outline of a model for a specified image I . Figure 5 shows the
distances at various minimization iterations.

3.2.2 Edges

Edges either correspond to the projections of model edges or to the
outline of a model in an image. It does not matter if only parts
of an edge are segmented, or if multiple edges are segmented at
once. Minimization is done in a similar way as for outlines. All
visible edges of the model as well as the outline are calculated for
the camera of the current image. The distances between sample
points of the user-defined edges and the nearest projected object
edge are minimized with

min
∑

I

∑

p

d2(p, visEdge(I)∪ outline(I))2.

3.2.3 Points

Triangulated points from point correspondences can be used as con-
straint for the corners of a model. Corners are often selected as in-
put points for calculating the camera poses because they can be seen
and identified easily across multiple views. The 3D positions of the
2D points have already been calculated and optimized by triangula-
tion and bundle adjustment and form a very accurate constraint for
the model (see Section 2.2).

Points define a constraint in three-dimensional space in contrast to
edges and regions which define constraints in image space. For each
3D point the nearest corner of the model is detected. The model is
fitted by minimizing the distance between the points and the model
corners with

min
∑

P

d3(P, PM )2,

where d3 denotes the Euclidean distance in 3D space, P is a trian-
gulated point from image point correspondences and PM is a corner
of the model. Fitting to the nearest model corners can result in an
undesired local minimum. Section 3.4 describes the initialization
of the models in order to avoid such local minima.

3.3 User-defined constraints

The user can provide high-level information in addition to the im-
age segmentations. These constraints form relations between mul-
tiple models or they demand certain shape properties of a model.
A very simple constraint is to set the parameters of different mod-
els to the same value. For example, if two identical objects appear
in a scene, they can be modeled by applying this constraint to all
parameters except position and orientation.

3.3.1 Up vector

This constraint ensures that objects are oriented in the same direc-
tion, but the rotation around this direction can vary. We do not
provide a global up-direction in the reconstruction system, because
the cameras may be registered to an arbitrary coordinate system.
Hence, the up-vector is only defined by the models assigned to this
constraint and do not need to point to a certain direction. The con-
straint minimizes the angle between the up-vectors of all models
with each other.

Some models can be parameterized with different direction vectors
and keep the same shape. For example, the orientation of a box can
be interchanged in all main axes as long as the according scale val-
ues are adapted. During initialization we re-parameterize all mod-
els so that they have approximately the same direction vector while
their shape is not affected.

3.3.2 Ground plane

Objects are often located at the same ground plane. The ground
plane is computed for all models assigned to the constraint by tak-
ing the lowest point of each model along its up-vector. The ground
plane is fitted to these points and updated at every iteration during
minimization. The constraint is then satisfied by minimizing the
perpendicular distance between the plane and the lowest point of
each model along the plane normal.

3.4 Initialization and optimization

We use Levenberg-Marquardt [Lourakis 2004] for the nonlinear op-
timization of several constraints. It is important to find a good initial
model as Levenberg-Marquardt only converges to a local minimum.
The position of a model can be found quite easily by triangulating
the centers of segmentations in every image. For estimating the
scale of the object we compute the median distance between the
center and the outer contour of all segmentations in an image. This
distance is projected back to the model position and the average
value from all images is taken as uniform scale value. This is ob-
viously a very rough initialization, especially for elongated objects,
but the scale values usually converge very fast. Initializing a model
with anisotropic scale values would increase the effort for finding
the right model orientation.

The orientation of the object as well as additional parameters are
more difficult to define in advance. Therefore a set of models is
initialized with random parameters. They are optimized for a few
iterations and the best model is selected for further optimization.

We first optimize the individual cost functions from image segmen-
tations with Levenberg-Marquardt which are independent for each



(a) (b) (c)

Figure 6: Segmentation of tubes: (a) user-drawn curve, (b) region
with skeleton, (c) two edges and intermediate curve

model. Then the models are re-parameterized if it is necessary by
constraints that define relations between multiple models. The last
step is to fit all models simultaneously to all constraints.

The previous sections described the individual cost functions,
which either come from image segmentations or from user-defined
constraints. The goal of optimization is to minimize the sum
of all individual costs. All constraints serve as soft constraints,
that means solutions slightly off the constraint are also accepted.
Weights can be assigned to constraints in order to increase their
importance compared to others.

Models with many parameters, e.g. superellipsoids, usually require
more constraints, i.e. more image segmentations, than models with
only a few parameters. Models which depend highly on a specific
rotation often need more initial guesses and therefore longer com-
putation time.

3.5 Reconstruction of tubes

Tubes are represented by the control points of a 3D spline and a
diameter for its width. The user input and the initialization of the
models are different to other models. Once the initial parameters
are available for the tube, optimization is done as for all other mod-
els.

There are three possibilities for defining image constraints for a
tube. All methods lead to a 2D curve in the center of the tube and
a value defining the width of the tube at a certain 2D position (see
Figure 6).

• One user-drawn curve in the center of the tube and one line
specifying the width of the tube.

• A region which corresponds to the outline of the tube. It is
also possible to segment only a part of the tube, if it is par-
tially occluded. The skeleton of the region is calculated and
smoothed by sequential thinning with structuring elements
[Sonka et al. 2007, p. 675]. The width of the tube is deter-
mined by the distance between the skeleton and the region
border.

• Two edges along the outlines of the tube. The edges do not
have to denote the whole tube, but the two edges should ap-
proximately mark the same segments of the tube. The central
curve is approximated in the center of the input edges.

Initial 3D positions on the tube are created by triangulating point
correspondences across multiple views. Tubes often do not pro-
vide any image features which could be used for matching points.
Therefore, initial matches are created solely based on the input 2D
curve and epipolar geometry.

A corresponding point in another image has to lie on the crossing of
the 3D-projection of the tube and the epipolar line. If the epipolar
line meets the 2D curve in another image only once, the probability

(a) (b)

(c) (d)

Figure 7: Initialization of tubes: (a) Sample point in image 1. (b)
Image 2: The blue epipolar line from image 1 led to one corre-
sponding point. This point is confirmed by a green epipolar line
from image 3. (c) Image 3: The blue epipolar line from the first
image led to two corresponding points, but the green epipolar line
from image 2 validated only one point. (d) Reconstructed tube and
epipolar lines from another viewpoint. The blue line originates
from image 1, the green from image 2 and the red lines from im-
age 3. It can be clearly seen that the intersection of the blue and
red line is not located on the 3D curve.

for a correct point match is very high. Of course, this is only true if
the whole tube is visible and has been segmented by the user.

If the epipolar line crosses the 2D curve in more than one point, it
is not possible to determine the correct match if there are only two
images. If there are more images, all possibly correspondending
points in all other images are computed. The corresponding points
are validated by computing their epipolar line for every other image.
Corresponding points are only accepted, if the epipolar lines from
points from different images meet in the same point. This procedure
is visualized in Figure 7.

It can happen that points are incorrectly matched, especially if the
tube is only segmented in two images. Points which are neighbored
in one image, are probably also neighbored in another image. Some
points may be missing in another image, but in any case, a sequence
of points must appear in the same order in all image. Points which
occur in different sequences in different images are removed. The
last step is to fill in additional points into large gaps along the 2D
curves. The neighboring points provide clues for deciding between
possible corresponding points. Finally the control points are re-
parameterized at equal distances in 3D space. Figures 10(e) - 10(h)
show the reconstruction of a tube.

4 Results

Figure 8 shows the input and result of camera orientation for images
of an office room. We used eight images with 21 megapixels each.
The detection and matching of coded markers needed 118 seconds1,

1All tests were done on an Intel Q6600 2.4 GHz processor



(a)

(b)

Figure 8: Camera orientation with coded markers. (a) Input im-
ages with detected markers (red points). (b) Oriented cameras and
triangulated marker positions viewed from top of the scene.

calculating camera poses and bundle adjustment was done in 2.4
seconds. In total, 266 MSERs were detected, from which 75 el-
lipses and 58 valid coded markers were extracted. 13 unique coded
markers were detected across all images, from which 11 3D posi-
tions were triangulated during pose estimation. Two markers could
not be triangulated because they were only visible in one image.

Figure 10 shows image segmentations and results for single models.
An example where multiple models were used for reconstructing a
scene can be seen in Figure 9. The scene was modeled with 19
primitives based on 9 images. The optimization contained 376 pa-
rameters and 21075 measurements from image segmentations and
other constraints. The optimization of all models, i.e. the initializa-
tion and individual optimization of each model and the combined
optimization of all models, was done in 9 minutes.

5 Conclusion and future work

We presented a new reconstruction system for modeling industrial
facilities from a set of images. The system is easy to use and does
not require any knowledge about 3D modeling or photogramme-
try. Special solutions were presented for handling difficulties which
arise in industrial environments.

The calculation of accurate camera parameters and 3D points in
the scene is important for determining the size of objects and for
providing exact input information for the model fitting process. The
camera orientation is supported by coded markers and survey points
from a total station.

We use parametric models for reconstructing a scene with sim-
ple geometry. These models are either geometric primitives, su-
perquadrics or tubes. The models are fitted to image constraints
which correspond to outlines, edges or corners of the model and to
user-defined constraints that contain high-level information about
the scene.

For future work we will support the user during image segmenta-
tion. This part is the most time-consuming task for the user in the
current system. We will propagate segmentations to other views
with the help of photogrammetry and image processing techniques.

(a) (b)

(c) (d)

Figure 9: This scene was reconstructed with 19 models based on
segmentations in 9 images.

Acknowledgements

This work has been funded by Austrian Research Society (FFG)
under the project Reconstruction for Integrated Facility Planning
(FFG Basisprogramm 818114).

Special thanks to Michael Jenewein of vra Ziviltechniker GmbH.

References

BARR, A. H. 1984. Global and local deformations of solid primi-
tives. In SIGGRAPH ’84, ACM, New York, NY, USA, 21–30.

BOYKOV, Y. Y., AND JOLLY, M.-P. 2001. Interactive graph cuts
for optimal boundary & region segmentation of objects in n-d
images. In ICCV ’01, vol. 1, 105–112.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Mod-
eling and rendering architecture from photographs: A hybrid
geometry- and image-based approach. SIGGRAPH ’96, 11–20.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Communications of
the ACM 24, 6, 381–395.

FURUKAWA, Y., AND PONCE, J. 2007. Accurate, dense, and ro-
bust multi-view stereopsis. In CVPR ’07, 1–8.

HARTLEY, R. I., AND ZISSERMAN, A. 2004. Multiple View Ge-
ometry in Computer Vision, second ed. Cambridge University
Press, ISBN: 0521540518.

IMAGEMODELER. http://www.imagemodeler.com.

JAKLIČ, A., LEONARDIS, A., AND SOLINA, F. 2000. Segmenta-
tion and recovery of superquadrics: computational imaging and
vision. Kluwer Academic Publishers, Norwell, MA, USA.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 10: (a) - (d) Edges in two images are used for modeling a box. The image in (a) provided 219 and the image in (b) 165 sample points.
(e) - (h) A tube with 30 control points is modeled by an edge (181 sample points) and a region (277 sample points) in two images. (i) - (l)
Outlines in two images with 106 and 126 sample points are used for modeling a cylinder.

LOURAKIS, M., 2004. levmar: Levenberg-Marquardt
nonlinear least squares algorithms in C/C++.
http://www.ics.forth.gr/˜lourakis/levmar/.
Accessed on 24 Feb. 2010.

LOWE, D. G. 1987. Three-dimensional object recognition from
single two-dimensional images. Artificial Intelligence 31, 3,
355–395.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision 60, 91–110.

MORTENSEN, E. N., AND BARRETT, W. A. 1998. Interactive
segmentation with intelligent scissors. Graphical Models and
Image Processing 60, 349–384.

NISTÉR, D., AND STEWÉNIUS, H. 2008. Linear time maximally
stable extremal regions. In ECCV ’08, Springer-Verlag, Berlin,
Heidelberg, 183–196.

NISTÉR, D. 2004. An efficient solution to the five-point relative
pose problem. IEEE Trans. on Pattern Analysis and Machine
Intelligence 26, 6, 756–770.

PHOTOMODELER. http://www.photomodeler.com.

SINHA, S. N., STEEDLY, D., SZELISKI, R., AGRAWALA, M.,
AND POLLEFEYS, M. 2008. Interactive 3d architectural mod-
eling from unordered photo collections. ACM Trans. Graph. 27,
5, 1–10.

SONKA, M., HLAVAC, V., AND BOYLE, R. 2007. Image Pro-
cessing, Analysis, and Machine Vision, third ed. Thomson-
Engineering.

VAN DEN HENGEL, A., DICK, A., THORMÄHLEN, T., WARD, B.,
AND TORR, P. H. S. 2006. Building models of regular scenes
from structure-and-motion. In BMVC ’06, 197–206.


