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data distribution per cell

Considering “scientific” data f, i.e.,
some  data values f(p) 
(e.g., temperature, pressure values)
measured/simulated wrt. a  domain p
(e.g., 2D/3D space, time, simulation 
input parameters)

If dimensionality of  p > 3, then 
traditional visual analysis is hard

Reducing the data dimensionality 
can help (e.g., computing statistical aggregates)

Higher-dimensional Scientific Data
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3D time-dependent 
multi-run simulation data
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Reducing the Data Dimensionality

Statistics: assess distributional 
characteristics along an independent 
data dimension  (e.g., time, spatial axes)

Integrate aggregated statistics into 
visual analysis through 
attribute derivation

[from IPCC AR #4, 2007]

average temp. in ten years
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CLIMBER-2 model: Meltwater outburst of Lake Agassiz
3D atmosphere
250 time steps
240 runs (7 model parameters)

 Compute local statistics wrt. 
multiple runs

Example: Multi-run Climate Simulation Data

timestep 80
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Moment-based Visual Analysis

Get big picture (data trends & outliers)

Multitude of choices, e.g,
statistical moments
(mean, std. deviation, skewness, kurtosis)
traditional and 2 robust estimates
compute relation 
(e.g., differences, ratio) 
change scale
(e.g., data normalization, log. scaling,
measure of “outlyingness”)

How to deal with this “management challenge”?
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4
×3

×2

×3

= 72 possible configurations per axis
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Moment-based Visual Analysis
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quantile plot
(focus+context)

multi-run data aggregated data

Iterative view transformations
alter axis/attribute configuration
(construct a multitude of informative views)
maintain mental model of views

classification of moment-based views

Relate 
multi-run data aggregated data
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Visualizing Data Distributions
Sample quantile q(p) of a distribution {x1,…,xn}

at least n· p observations ≤ q(p)
at least n·(1-p) observations ≥ q(p)

Examlpes: median q2 = q(½), quartiles q1, q3

Quantile plot
shows all data items of a distribution
assess data characteristics
(normal dist., symmetrical, skewness, 
possible outliers, etc.)
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Outlier influence traditional estimates

Robust estimates of std. deviation
0.741· interquartile range (IQR)

median absolute deviation 
MAD(x1,…,xn) = 1.483 · med1 ≤ i ≤ n (| xi – median |)
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Robust Statistics
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Robust Statistics
Estimates of skewness

traditional

median/MAD-based

octile-based

Analogous estimates 
for kurtosis
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Iterative View Transformations
Change axis/attribute configuration of view

change order of 
moment 
robustify moment

compute relation 
(e.g., difference or ratio)
change scale
(e.g., normalize, z-standardization)
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traditionalmed/MAD-based octile-based

Closer related to 
data tranformations



change order of 
moment

 study relations
btw. moments

 investigate basic
characteristics
of distributions

Basic View Setup: Opposing Different Moments

multi-run data aggregated data

quantile plot
(focus+context)

1st vs. 2nd moment 3rd vs. 2nd moment

3rd vs. 4th moment
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Views: Opposing Different Moments
robustify moment
 assess influence 

of outliers
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traditional
estimates

octile-based
estimates



Views: Traditional vs. Robust Estimates
robustify moment
 assess influence 

of outliers
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Other View Transformations
compute relation 
(e.g., difference or ratio)

change scale
(e.g., z-standardization,
normalize to [0,1])

z-score 
(measure of 
outlyingness)

distance to median
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quantiles of 
original data



Other View Transformations

change scale
 compare with 

theoretical distribution

Q-Q plot detrended Q-Q plot
x-axis subtracted

from y-axis

Kehrer et al.: Brushing Moments in Interactive Visual Analysis 14

compute relation
(e.g., difference)



Analysis of Multi-run Climate Data
CLIMBER-2: Meltwater outburst of Lake Agassiz

(7 model parameters)
3D atmosphere
250 time steps
240 runs
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Conclusion

Data aggregation enables complex analysis
relating higher-dimensional data  aggregated statistics
analyst can work with both (original data, stat. properties)

Traditional and robust estimates of moments
(many opportunities also create management challenge)

Iterative view transformations
helps analyst to maintain a mental model of views
matches the iterative nature of visual analysis

Classification of informative views
opposing different moments
traditional vs. robust estimates of same moment
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