

Custom Interface Elements for Improved Parameter Control in
Volume Rendering

Marius Gavrilescu, Muhammad Muddassir Malik, and Eduard Gröller

Abstract— In volume visualization interfaces, rendering-
related parameters are often manually editable through
various controls and interface elements. Most of the time
however, these offer little or no beforehand information on
the resulting effects that would occur for certain parameter
values or across the whole value domain. This makes
parameter adjustment a trial and error process. We have
developed techniques to anticipate these changes and display
them on customized versions of popular interface elements,
such as sliders or transfer function editors. Through the use of
visualization means such as graphs, color mapping, and
various other indicators, the influence of potential parameter
changes on the volume rendering output can be assessed
before any actual changes are made. This makes it easier for
the potential user to work with such interfaces, while
receiving feedback on parameter behavior and stability.

I. INTRODUCTION
olume visualization is a segment of computer graphics
which deals with the exploration, classification and

on-screen representation of information from three-
dimensional, or often multi-dimensional datasets. Such
datasets are typically acquired from scanning devices such
as Computed Tomography (CT), Magnetic Resonance
Imaging (MRI) or Rotational X-ray imaging. Volume
visualization techniques are widely used in medical and
industrial imaging, where a 3D representation of the
available data is often more accessible, suggestive and
visually appealing than traditional 2D grayscale slices, and
may yield information otherwise hard to spot. Volume data
is intuitively composed of atomic elements known as voxels
(short for volume pixel), which are the equivalent in 3D
space of the traditional pixels from 2D images. For the

Manuscript revised on 31.08.2010. This work was supported in part by

the "BRAIN - An Investment in Intelligence" doctoral Scholarship
Program, within the Technical University of Iasi, Romania

The presented work has been partially supported by the Bridge-Project
SmartCT and the K-Project ZPT (http://www.3dct.at) of the Austrian
Research Promotion Agency (FFG).

Marius Gavrilescu is a PhD student from the Technical University of
Iasi, Romania, and collaborates with the Vienna University of Technology,
Austria within a joint PhD program (e-mail: mariusgv@cg.tuwien.ac.at,
mariusgav42@yahoo.com).

Muhammad Muddassir Malik is with the School of Electrical
Engineering and Computer Science, National University of Sciences and
Technology, Pakistan (email: mmm@cg.tuwien.ac.at).

Eduard Gröller is associate professor at the Vienna University of
Technology, Austria and adjunct professor of computer science at the
University of Bergen, Norway (e-mail: groeller@cg.tuwien.ac.at).

purposes of computer processing, voxel-based data is at
first discretely sampled, then the samples are traversed and
assigned optical properties, after which they are
composited and projected into a 2D screen-space to
produce an image. The previously mentioned steps are a
loose outline of a generic volume rendering approach.
 A typical volume rendering application consists of one
or several viewports to display the images resulting from
rendering the dataset. Multiple controls are used to
manipulate the data processing. The complexity of these
controls ranges from a simple slider to elaborate transfer
function editing interfaces. While there exist numerous
efforts to automate or semi-automate the visualization of
this type of data [1], [2], [3], many volume rendering
applications mostly leave it to the user to adjust the various
parameters which control the on-screen outcome.
Therefore, in many cases, an image which shows relevant
information from a volume dataset is the result of
parameter tweaking by means of sliders, interactive graphs,
various widgets, and generally speaking, a variety of
interface elements.
 There is, however, a downside to allowing an extensive
degree of manual control. Unless the user is very familiar
with the particular dataset under analysis, the adjustment of
parameters to obtain the desired results may prove to be a
tedious and time-consuming trial-and-error task.
Furthermore, while most volume rendering applications
allow extensive control over the data, few if any relay
feedback to the user as to how a hypothetical change in a
parameter value might influence the resulting images. We
attempt to reverse this situation through the development of
interface elements which provide the user with a-priori
knowledge into how a change in the interface control
would reflect on the on-screen image. This would also aid
in the assessment of parameter behavior and stability across
its value-domain.
 The paper is structured into several sections. After the
introduction, we briefly outline volume rendering in
general, and describe the rendering approach used in the
paper. Section three deals with the metric used for
comparing images resulting from sampled parameter
values, and how this metric relates to the human vision
system. In the following section, we present a couple of
custom interface elements which allow control over their
associated parameters, while at the same time automatically
displaying information on parameter behavior and stability.

V

219

http://www.cg.tuwien.ac.at/staff/MuhammadMuddassirMalik.html
http://www.3dct.at/

We also present an on-screen approach for the dynamic
visualization of parameter changes. We conclude by briefly
emphasizing the significant aspects of the paper and by
providing information on future work.

II. VOLUME RENDERING APPROACH

 While a description of volume rendering techniques does
not fall within the scope of this paper, we find it necessary
to at least outline the basic methodology and point out the
elements which are relevant to the contents of other
sections.
 The images found throughout the paper are produced
using direct volume rendering (DVR). Unlike older
techniques which employed "proxy geometry" [4] and
triangle based surfaces to indirectly outline elements of
interest from within the volume, DVR operates on the
actual volume data, without the need to use additional
geometric primitives. The dataset is typically uploaded into
video memory as a 3D texture [5] and sampled discretely.
A transfer function maps optical properties to the samples,
which are then composited to form the desired image in
screen-space. A popular algorithm which encompasses
these steps is ray casting [4], which has the advantage of
exploiting the hardware acceleration capabilities and the
parallel architecture of modern graphics processing units
(GPUs) [6], [7]. Fig. 1 shows an example of an image
rendered via GPU ray casting. The corresponding transfer
function is shown below the image.
 The transfer function depicted in Fig. 1 maps opacity
values to voxels according to their densities [8]. Regions of
lower density, located toward the left of the graph in Fig. 1,
have a very low opacity, which is reflected in the
transparent appearance of the skin in the image rendered
above the graph. Similarly, higher density regions such as
bone are assigned a much higher opacity and are fully
visible. Many volume rendering applications allow manual
control over the shape of the transfer function. The control
points in Fig. 1, marked with circles, are movable with the
mouse and the in-between step-wise components of the
function may be linear, cubic or may otherwise have any
desired shape. The resulting image changes in real time to
reflect the changes in the transfer function. The problem, as
previously mentioned, is that such an interface offers little
additional information on parameter effect. In other words,
the users cannot know what the rendered image will look
like if the transfer function is given a certain shape until
they actually modify the transfer function. In Section 4, we
present our method to address this issue.

Fig. 1. Volume rendering of a medical dataset and the corresponding
opacity transfer function

III. METRICS FOR IMAGE COMPARISON

 Our approach to solving the problem of the lack of
information in interface controls is mostly an image-
oriented one. Given a particular parameter, we sample it
across its value-domain and render an image for each
sample. By comparing the resulting images we get an idea
of how the parameter behaves across its domain, and how
different values affect the on-screen outcome. This makes it
possible to tailor popular interface controls to also show
this parameter behavior, in addition to allowing control
over its values. Image comparison is therefore an important
piece of the puzzle and the choice in comparison metrics
may significantly affect the outcome.
 The metrics often involve a pixel-by-pixel comparison of
the images, using some type of formula to assess the
differences between color or intensity values, followed by
an accumulation of these differences in a scalar. Therefore,
for each pair of sampled parameter values, we end up with
a scalar which shows the difference between using one
sampled value versus using the other one. The domain of
the parameter would then be characterized by an array of
such scalars.
 Among the most straightforward and computationally
efficient metrics is the absolute mean difference, which
essentially involves computing the mean of all pixel
differences in the RGB color space, across the two
compared images. Wilson et al. [9] provide an introduction

220

into some of the more common metrics, such as the root
mean square (RMS), the signal to noise ratio, as well as
their own ∆g metric, based on the Sobolev norm and the
Hausdorff metric. Chan et al. [10] have developed an image
comparison method based on the Canny edge detection
algorithm. However, such metrics are mathematically
defined around pixel differences. They do not take into
account aspects pertaining to subjective human perception,
though they may incidentally correlate with the human
vision system. Furthermore, it is difficult to assess the
robustness and efficiency of such metrics, since it is the
user who has to relate the information obtained from
applying the metrics to actual on-screen changes.
 A more straightforward approach to defining a suitable
metric is to design bottom-up. We design a metric around
the human vision model, considering aspects of the human
perception of color and intensity. Efforts in this direction
have been made and are well documented in literature [11],
[12], [13]. Such metrics could be described as perception-
based image comparison metrics. They take into account
factors such as hue angle, color distance, pixel placement
or an estimated viewer distance, among others. As is often
the case, there is also a trade-off between the complexity of
the metric and the processing speed. Perception-based
metrics are typically computationally intensive. As the
complexity of the metric increases, performance becomes a
significant problem, and the processing of complex metrics
at high resolutions and for hundreds of parameter values
may take hours even on a relatively powerful machine.
 Considering the above, we have developed a metric
which takes into account some of the previously mentioned
perceptual aspects, while attempting to provide an efficient
means of image comparison. The metric is processed in the
following steps:

- the general area of the volume in screen space is isolated
from the rest of the image, since the background presents
no relevant information

- the behavior of the human eye, which only looks at a few
details at a time as opposed to the image as a whole, is
approximated by analyzing a finite number of random
rectangular sub-regions within the image. These regions are
then weighed according to their size and color uniformity.
This is based on an approach proposed by Matkovic [14].

- a noise removal filter is applied, since changes in noise
have little impact on the perceived change in the image. In
other words, noise, even when it changes significantly, is
still perceived as noise.

- for the purpose of assessing pixel differences, we change
to the CIE-Lab color space [15], which is perceptually
closer to the human interpretation of color than the RGB
model.

- the accumulated difference for corresponding rectangular
regions between each pair of images is calculated using the
color distance ∆E*

ab [15].

- finally, the amount of variation between each pair of
images is computed as the weighted mean of the values
from the rectangular regions.

 The accuracy and relevance of the metric are difficult to
assess, since they are, to a significant degree, subjective
matters. Performance-wise, migrating some of the
previously mentioned steps to the GPU has shown
improvement, though still insufficient for use in real time.
However, the trade-off between complexity and speed has
so far proven satisfactory on commercial hardware.

IV. CUSTOM INTERFACE CONTROLS

 For demonstrative purposes, we consider two basic
parameters involved in volume rendering: the step size
used when sampling the volume during ray casting and a
basic transfer function control which adjusts the threshold
of an isosurface and its opacity.
 The information regarding the behavior of these
parameters across their domain is incorporated into
common interface elements by means of information
visualization techniques.

Fig. 2. Rendered dataset with traditional and custom sliders which control
the step size. The custom slider also depicts information on parameter
behavior

 Slider widgets are frequently used for the adjustment of
one-dimensional parameters such as the step size.
However, a basic slider does not provide any a-priori
information regarding the changes that would happen upon

221

changing the position of the pointer (Fig. 2a). Unless the
user is very familiar with the volume under consideration,
moving the slider to get the desired result is a matter of trial
and error. The slider in Fig. 2b shows the magnitude of
change which occurs in the rendered image when the
pointer is moved to a neighboring location.
 The slider may be further customized as needed, as seen
in Fig. 3. Often it might be necessary to more closely
inspect a region of the slider where significant changes
occur. For this purpose, the specific region can be selected
(Fig. 3a) and non-linearly scaled to fill a larger portion of
the slider (Fig. 3b). It can take up the entire available
length. The borders of the regions keep their initial values,
but there is more space along the length of the slider thus
allowing more precision in selecting a desired position for
the pointer. This process of fine tuning is useful for
portions of the slider where there is an abrupt variation in
the amount of parameter effect.

Fig. 3. The selection (a) and non-linear scaling (b) of a slider region for
fine tuning purposes

 The technique may be fully automated by partitioning
the slider into small regions and assigning each region a
portion of the slider of a length proportional to the variation
taking place within the region. We thus end up with a
perceptually uniform slider, where the perceived changes in
the rendered image are proportional to the distance by
which the pointer was moved along the slider.
 Performance-wise, we took 300 samples from the
domain of the parameter, to generate values for the graph

of the slider. We rendered and compared the images
obtained for each pair of sampled parameter values. The
computations for processing the custom slider and
rendering the volume in Fig. 2 took approximately 16.2
seconds on our test machine, an Intel Core I7 with 6 GB of
RAM and a GeForce GTX 280 GPU.

Fig. 4. Custom isosurface control where the magnitude of change is color-
coded. (a) and (b) show two positions of the pointer at opposite ends of a
region of transition which signifies a variation in parameter stability

 The concept of parameter behavior displayed on a
custom version of a frequently used interface element also
extends to transfer function controls. For this purpose, we
consider a simplified version of the editable graph depicted
in Fig. 1. The simplified graph allows the adjustment of an
isosurface threshold when the pointer is moved
horizontally, and the adjustment of the opacity of the
isosurface, when the pointer is moved vertically. As

222

previously, the parameters are sampled and the
corresponding images are rendered and compared.

Fig. 5. Changes illustrated on the rendering of the volume for two
positions on the step size slider

Fig. 4a and 4b show an isosurface control where the
influence of parameter changes is color coded through a
red-blue color range. Red areas correspond to positions of
the pointer which cause significant changes in the rendered
image (shown above the control), whereas blue areas
denote regions where the change in parameter values has
little effect on the outcome. The purple transition area in-
between the red and blue is a region of varying stability,
whereby the parameters gain stability as the pointer is
moved from the red region toward the blue one.

We took 50 samples on the horizontal axis and 20 on the
vertical axis, for a total of 1000, to generate values for

color coding. Our test machine took around 49 seconds to
process the isosurface control from Fig. 4.
 Changes occurring when manipulating an interface
control can be shown on the rendered volume itself, as
depicted in Fig. 5. The changes are shown using a red
coloration of varying intensity. When the pointer is in the
low variation region on the slider, little changes are visible.
If the pointer is moved to an area showing greater
variations, this is reflected in the more frequent intensely
red regions on the volume.
 However, this approach has the downside of being
intrusive and inflicting possibly unwanted changes in the
final resulting image. The direct color encoding of image
variation may obstruct desired information when
superimposed on the volume rendering. One way to avoid
this is to use a viewing lens, i.e. to restrict the display of
changes to a bordered circular region which the user can
freely move using the mouse, as illustrated in Fig. 6.

Fig. 6. The viewing lens restricts the display of changes to a mouse-
controlled circular region

V. CONCLUSIONS

 Interface elements customized to offer information on
parameter behavior are meant to make parameter
adjustment more efficient and straightforward. The
approaches described thus far do not provide an exhaustive
analysis of the parameters involved in volume rendering.
They do offer a-priori information on the variations which
would manifest upon certain changes in the discussed
parameters, which may aid in making volume exploration
and related interface elements easier to interact with.
 There is naturally a lot of room for improvement and
extension in this area, mostly in the direction of expanding

223

the mentioned techniques to more complex contexts, while
at the same time working on new information visualization
methods for the purposes of parameter analysis. Future
development in this direction includes the extension of the
concept of customized interface elements to single and
multidimensional transfer function controls, while focusing
on other potentially more relevant parameters and
improving the metrics used for image comparison.

ACKNOWLEDGMENT
 Marius Gavrilescu thanks the members of the Vis-Group
from the Institute of Computer Graphics and Algorithms of
the Vienna University of Technology for their invaluable
support and help with research. He would also like to thank
Professor Vasile Manta from the Technical University of
Iasi, Romania, for his help and supervision.

REFERENCES

[1] J. Zhou, M. Takasuka, “Automatic transfer function generation using

contour tree controlled residue flow model and color harmonics”,
IEEE Trans. Vis. Comput. Gr., vol. 15, no. 6, pp.1482-1488, 2009.

[2] P. Kohlmann, S. Bruckner, A. Kanitsar, and E. Gröller, “LiveSync:
Deformed Viewing Spheres for Knowledge-Based Navigation”,
IEEE Trans. Vis. Comput. Gr., vol. 13, no 6, pp. 1544-1551, October
2007.

[3] F. F. Bernardon, L. K. Ha, S. P. Callahan, J. L. D. Comba, and C.T.
Silva, “Interactive Transfer Function Specification for Direct
Volume Rendering of Disparate Volumes,” SCI Institute Technical
Report, No. UUSCI-2007-007, University of Utah, 2007.

[4] M. Hadwiger, J. M. Kniss, C. Rezk-Salama, D. Weiskopf, and K.
Engel, Real-time Volume Graphics. Wellesley, MA: A K Peters,
2006.

[5] O. Wilson, A. Van Gelder, and J. Wilhelms, “Direct volume
rendering via 3D textures”, University of California, Santa Cruz, CA,
Tech. Rep. UCSC-CRL-94-19, 1994.

[6] A. Kratz, M. Hadwiger, R. Splechtna, A. Fuhrmann, and K. Bühler,
“High quality volume rendering of medical data for virtual
environments”, in Proc. Int. Conf. Computer Aided Surgery Around
the Head (CAS-H 2007), Innsbruck, Austria, 2007, pp. 83-85.

[7] I. Viola, A. Kanitsar, and E. Gröller, “GPU-based frequency domain
volume rendering”, in Proc. Spring Conference on Computer
Graphics (SCCG 2004), Budmerice, Slovakia, 2004, pp. 49-58.

[8] G. Kindlmann, “Transfer functions in direct volume rendering:
Design, interface, interaction”, in SIGGRAPH 2002 Course Notes,
2002.

[9] D. L. Wilson, A. J. Baddeley, and R. A. Owens, “A new metric for
grey-scale image comparison”, Int. J. Comput. Vision, vol. 24, no. 1,
pp. 5-17, 1997.

[10] W. C. Chan, M. V. Le, and P. D. Le, “A wavelet and Canny based
image comparison”, in Proc. 2004 IEEE Conf. Cybernetics and
Intelligent Systems, Singapore, pp. 329-333.

[11] M. Pedersen, and J. Y. Hardeberg, “A New Spatial Hue Angle
Metric for Perceptual Image Difference”, in Computational Color
Imaging: Second International Workshop (CCIW 2009), Saint-
Etienne, France, 2009, pp 81-90.

[12] S. I. Titov, “Perceptually Based Image Comparison Method”, in
Proc. Int. Conf. Graphicon 2000, Moscow, Russia, 2000, pp 8-16.

[13] J. P. Farrugia, S. Albin, and B. Peroche, “A perceptual adaptive
metric for computer graphics”, in Proc. WSGC2004, Plzen, Czech
Republic, 2004, pp. 49-52.

[14] K. Matcovic, “Tone mapping techniques and color image difference
in global illumination”, Ph.D. dissertation, Vienna University of
Technology, Austria, 1997.

[15] Y. Ohno, “CIE fundamentals for color measurements”, in Proc.
IS&T NIP16 International Conference on Digital Printing
Technologies, Vancouver, Canada, 2000, pp. 540-545.

224

