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Kurzfassung
Fotorealistisches Rendering von gemessenen Oberflächendaten hat ein grosses
Anwendungsfeld, in erster Linie werden die Daten verwendet um Referenz-
bilder für Analytische Oberflächen-Modelle zu erzeugen. Bevor die Daten
für die Erzeugung von Referenzbilderen verwendet werden können müssen
diese zuerst gemessen, gefittet und interpoliert werden. In dieser Diplomar-
beit werden zwei BRDF (Bidirectional Reflectance Distribution Function) Daten-
banken für gemessene Oberflächendaten, die von zwei verschiedenen Univer-
sitäten gemessen wurden, für die Simulation verwendet. Eine Datenbank enthält
die Oberflächendaten in Form von Spektral Messungen und die andere Daten-
bank enthält die Messungen im RGB Format. Weiteres werden verschiedene
Oberflächen-Modelle und grundlegende Monte Carlo Sampling Methoden betra-
chtet.
Die grundlegende Aufgabe der Diplomarbeit war es die gemessenen
Oberflächendaten in das Advanced Rendering Toolkit (ART) einzubauen um diese
für das Rendering zu verwenden. Das Advanced Rendering Toolkit wird seit 1996
auf der TU-Wien vom Institut für Computergraphik und Algorithmen entwickelt.
Zusätzlich werden zu den gerenderten Bildern auch Polar Diagramme erzeugt,
welche die Reflektionseigenschaften der Materialien zeigen.
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Abstract
Photo realistic rendering of measured data is a widely used method to generate
reference images for analytical models. But before we can render measured data
it has to be acquired and then fitted and interpolated. In this thesis we review two
BRDF (Bidirectional Reflectance Distribution Function) databases from different
Universities. One database consists of Spectral data where the other only mea-
sured the materials in RGB color space. Furthermore we introduce the reader in
the basic BRDF models and in the basics of Monte Carlo sampling methods.
We integrate the rendering of measured BRDF data in the Advanced Rendering
Toolkit (ART), which is developed since 1996 from the Institute of Computer
Graphics and Algorithms of the Vienna University of Technology. Also we evalu-
ate the generated images, with polar plots, to show their reflectance property. Also
we show our trilinear interpolation approach, which was used for the data from
the Cornell University. To present our work we also rendered several images with
the ART pathtracer.



Chapter 1

Introduction

1.1 Light Basics

1.1.1 Historic Background
First some facts about the historical development of light theory. Christiaan Huy-
gens [Huy78] proposed a wave theory of light, he demonstrated how waves in-
terfere to form a wavefront and propagate in a straight line. With his theory he
was able to derive the laws of reflection and refraction, but with his wave theory he
had difficulties to describe the behavior of other materials. Isaac Newton [New04]
published his light theory in 1704, according his theory light is composed of tiny
particles, with his theory he was able to describe reflection and also refraction
through a lens.
The particle theory of Newton [New04] dominated until Thomas Young [You02]
showed, in his experiments, that light behaves like an electromagnetic wave. In
1803 Thomas Young [You02] studied interference and diffraction of light. His
experiment consist of a light source and a plane, with two narrow slits inserted,
which is between the light source and the detector plane. Waves from one slit
are superimposed with waves from the other slit, so they produced a interference
pattern on the detector plane with alternate bright and dark lines. In 1905 Albert
Einstein [Ein5a] created the quantum theory of light, a quantum is a tiny packet
of energy with no mass. Einstein demonstrated with the photoelectric effect ex-
periment that the wave theory alone was not enough. In the end of 1905 Einstein
[Ein5a] also showed that light can behave as a continues wave. So this behavior
is called the duality of light, waves and particles co-exist at the quanta level.

1
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1.1.2 Nature Of Light
Light in the particle model consists of tiny packets of energy. These particle can
be reflected or refracted by matter. Every time a particle is reflected or refracted,
an amount of the energy is transferred into heat. The particle packets travel until
all the energy is transferred in another form of energy, the energy conservation
implies that no energy disappear but the energy will be transformed in a other
form.
Light has all the basic properties of an electromagnetic wave like an amplitude,
wavelength, phase, frequency and speed. Because the speed of light is constant
it is possible to match a single frequency to exact one wavelength. The phase in
vacuum, can be different between two waves. If two waves overlap, they interfere
with each other, as shown in Figure 1.1 The interference can be constructive or
destructive. Constructive interference occurs when two interfering waves have a
displacement (amplitude) in the same direction, then the amplitude of the resulting
wave is the sum of the amplitudes of the two waves at a discrete point. Destructive
interference occurs when two waves have a displacement in the opposite direction,
so that the resulting amplitude is the difference between the amplitudes of the two
waves.

Figure 1.1: Interference between waves: A shows the constructive interference; B
shows the destructive interference (image taken from [Wil])

1.1.3 Light And Color
Electromagnetic spectrum that is visible for the human eye, has a range from 380
to 750 nm. These wavelength λ are perceived as colors. Due the fact that the
spectrum is continues there are no real boundaries between colors, but here is an
approximation table:
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Color Wavelength [nm]
violet 380–450
blue 450–495
green 495-570
yellow 570–590
orange 590-620
red 620-750

Table 1.1: Visible Spectrum

For color perception three components needed: a light source, an object and a
detector (in our case the eye) [JN86]. The light source emits light energy which
hits, for example, a blue ball. This ball absorbs all frequencies of visible light,
which comes from the light source, except the frequencies that are perceived from
the eye (the detector) as blue color.
The human eye has three types of color receptors, which are known as cone cells,
and each of them has a different spectra response curve. The three groups of cone
types are defined as:

• L: they responds most to light of long wavelengths, where λ is between
500-700 nm

• M: they responds most to light of medium wavelengths, where λ is between
450-630 nm

• S: they responds most to light of short wavelengths, where λ is between
400-500 nm

Cones are less sensitive to light, but the human eye has rod cells which are more
light sensitive (rods are responsible for night vision). Rods and cones are mutually
interconnected and perform pre-processing tasks like edge enhancement.
The LMS cones are color sensitive, also known as RGB sensors, and the rods are
luminance sensitive, also known as H (hue). The RGBH signal is converted into
the L*a*b color space.
We do not go any deeper in color science in the scope of this thesis, of course
there is much more to learn about it. There are three main interactions when
light hits matter, in Figure 1.2 we illustrate it, they are reflection, absorption and
transmittance. The interactions with light depends on the physical composition
and characteristics of the material and the physical composition of light. Figure
1.2 shows following items:
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Figure 1.2: General light interaction with a matter; Incoming Light: the light en-
ergy which is emitted from a light source; Reflected Light: the amount of light
which is reflected; Internal Reflection: the amount of light which is reflected
within the matter; Transmitted Light: light which go through the matter; Absorb-
tion: light which is absorbed in the matter; Scattering and Emission: light which
is reflected internal and remitted (image taken from [Wyn00])

1.2 Radiometry
Light is a form of energy and it is measured in Joules. 1 Joule is defined by energy
in Watt times unit time.
The ideal light source is a point light source which emits the light energy in all
directions uniformly. However most light sources are not ideal emitter and do
not equally emit light energy. To measure the energy which is emitted in a certain
direction we talk about energy per solid angle or differential solid angle. The solid
angle is a surface patch (as shown in Figure 1.3) on the unit sphere and is defined
as:

dw = (height)(width)

dw = (dθ)(sinθdϕ)

dw = sinθdθdϕ

(θ,φ) is a direction in spherical coordinates (we will describe in the Appendix
A what spherical coordinates are) and angular changes dθ,dφ describe the solid
angle. The unit of the solid angle is 1

steradian , the aberration of steradian is sr. A
unit sphere has 4π steradian energy.
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Figure 1.3: Solid angle dw on the unit sphere (image taken from [Geb03])

1.2.1 Radiance
Radiance is the measure of light energy which is emitted in a certain direction.
When we talk about radiance in connection with the wavelength, we mean the
whole electromagnetic spectrum and not only the range of the visible light. When
we talk about luminance we mean only the visible spectrum, exactly speaking,
luminance is defined as photometrically weighted light energy that leaves the sur-
face.

1.2.2 Irradiance
Irradiance is the amount of energy which is received at a surface point. As in the
case of radiance we talk also about the whole spectrum; if we only talk about the
visible spectrum, we talk about illuminance. The irradiance is defined as energy
per area. If we move the light source away from the surface, the energy which
arrives at the surface is reduced proportional to the inverse square distance.

1.3 Rendering Equation
A surface is visible to human perception when a light source exists, so what we
need is a way to describe the light transport in a scene.
Kajiya [Kaj86] introduced 1986 the rendering equation, which describes the light
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transport in a scene with one equation. The definition of the rendering equation is

I(x,x′) = g(x,x′)∗ [e(x,x′)+
∫

S
p(x,x′,x′′)∗ I(x′,x′′)∗dx′′] (1)

where:

• I(x,x′) is the light energy which pass from a point x′ to point x.

• g(x,x′) is the geometry term which is usually 1
r2 where r is the distance

between the points and it is zero if one of them is occluded.

• e(x,x′) the emission term defines how much light energy is emitted from x′

to x.

• p(x,x′,x′′) how much light energy is scattered from x′′ to x through a patch
of surface x′; it encodes how light from a given direction is modified upon
reflection from a surface.

•
∫

S is the integral over S =
⋃

Si, the union of all surfaces.

Equation (1) is a Fredholm Integro-differential of second grade which is impossi-
ble to solve analytically, due its recursive nature. The rendering equation can be
described as a pair of two points (as above) or for a point and a direction.

I(x,ω) = Ie(x,ω)+
∫

Ω

fr(x,ω′,ω)∗ I(x,ω′)(ω′.n)∗dω
′ (2)

where:

• I(x,ω) is the light energy from point x in direction ω

• Ie(x,ω) emitted from point x in direction ω

• fr(x,ω′,ω) is the BRDF, which defines the proportion of light energy that
is reflected at the position x

• I(x,ω′) is the incoming light energy from the position x and direction ω′

• (ω′.n′) is the attenuation of the incoming light energy due to incident angle

•
∫

Ω
is the integral over the complete hemisphere
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1.4 BRDF
The Bidirectional Reflectance Distribution Function (BRDF) definition depends
on the radiance / irradiance ratio. As we already mentioned, radiance tells us how
much light energy a point distritbute and irradiance,the counterpart to radiance,
tells us how much light energy arrives on a surface patch.
The BRDF is given by:

fr(ωi→ ωr) =
Ir(ω)

Ii(ωr)cos(θi)dωr
(3)

• fr(ωi→ ωr) is the BRDF with the unit 1
sr

• Ir(ω) is the radiance

• Ii(ωr)cos(θi)dωr is the irradiance, the cosine is the projection from the solid
angle to the surface patch

Equation 3 shows that the BRDF is not in the range [0,1] because of the cosine
term. The vectors ωr and ωo are normally parameterized through spherical co-
ordinates. In spherical coordinates a vector is described through two angles, the
azimuth angle φ and the decline angle θ, both illustrated in Figure 1.4. How to
calculate a vector to spherical coordinate and back to cartesian coordinates is de-
scribed in the appendix A.

Figure 1.4: Spherical coordinates: θ the azimuthal angle in the x, y plane; φ is the
polar angle from the z-axis; r is the distance from the origin. (image taken from
[Wei])

In the next chapter we present several BRDF models which different material
types.
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1.4.1 Properties
Each BRDF has two fundamental properties. The first is that they reciprocity has
to be valid. That means if we swap the incoming ray and the outgoing ray the
resulting reflectance value must be the same.

fr(ωi→ ωr) = fr(ωr→ ωi) (4)

The second property is that the energy conservation law holds.∫
Ω

fr(ωi→ ωr) <= 1 (5)

The first property is important for raytracing application. Due the symmetry it
does not matter if we shoot rays from the eye or if we shoot rays from the light
source, the result must be same. But we also can save storage memory of mea-
sured BRDF’s, with the first property, because we only need to store the half
hemisphere.
The second property guarantees that a surface is not emitting more energy than
the incoming light energy. Violating this property would result in a BRDF which
would glow. Not every BRDF full fill the last property. Also note that these
properties are unique to reflection.

1.4.2 Isotropic And Anisotropic Materials
These two classes of BRDF surfaces define a certain behavior dependant on the
viewers position and orientation. So anisotropic material change their reflection
behavior when the viewing angle is changed, brushed metal is e.g. an example for
an anisotropic material. The exact definition is that reflectance properties change
with respect to rotation of the surface around the normal vector.
Anisotropic materials can also change the reflection in a dynamic manner, the
human skin is an example for this behavior. But most of the materials are almost
rotation invariant, so we can ignore the anisotropic effect for them.
Isotropic materials do not depend on the viewer angle, smooth plastic or paints are
e.g. examples for isotropic materials. That means that the BRDF for a isotropic
material only needs 3 parameters to describe the reflectance. These parameters
are Θi,Θr,Φdi f f . The parameter Φdi f f do not need any alignment in world space
its defined as the difference between Φi and Φr, the angles are shown in Figure
1.3.
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Figure 1.5: Left a isotropic material; Right a anisotropic material (image taken
from [Geb03])

1.4.3 Beyond BRDF’s
The BRDF is restricted to describe the reflection of a surface, where the bidirec-
tional transmittance distribution function (BTDF), describes the transmission part
of the surface. The BTDF is restricted to the other side of the sphere as we can
see in Figure 1.6. The bidirectional scattering distribution function (BSDF) is the
union of BRDF and BTDF on each side of the sphere, so BSDF is defined over a
unit sphere.
We define the symmetry property for a general BSDF:

fr(ωi→ ωr)
ηr2 =

fr(ωr→ ωi)
ηi2

(6)

Where ηi,ηr are the refractive indices of the materials. The energy conservation
law is also defined for the BSDF.
However the BSDF formalism has several disadvantages. One is that it cannot
encode subsurface scattering effects. Thus, a more general formalism is needed,
namely the bidirectional surface scattering reflectance function (BSSRDF). The
BSSRDF is defined as:

S(xi,yi,θi,φi,xr,yr,θr,φr) (7)

The BRDF is actually a special case of the BSSRDF where we assume that light
enters and leaves at the same surface point. BSSRDF are quite expensive to solve.
When light is reflected many times in a material the details of a single scattering
becomes unimportant and the appearance is approximated by diffusing the light
away from the enter position.
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Figure 1.6: Left: BRDF describes the reflection off the surface; Right: BRDF +
BTDF describes light rays which are reflected through the microfacet structure of
the surface. (image taken from [Wik])

1.5 Purpose and Outline
The main purpose of thesis is to integrate measured BRDF data from the Mit-
subishi Electric Research Laboratories (merl) [MPBM03] and data from the Cor-
nell University in ART (Advanced Rendering Toolkit). ART is a photorealistic
rendering toolkit which is developed by the Institute of Computer Graphics and
Algorithms of the Vienna University of Technology.
The merl database has over 100 isotropic materials which are very dense mea-
sured, the color space of the data is RGB. To calculate the solid angle for each
ray pair we had to resample the data once for each material. The Cornell database
has 11 different isotropic materials, the measurement are present as spectral data
in different sampling rates and are also present as RGB data without any gamut
mapping, the data contains negative red values. The main purpose of this is to
generate reference images to test the analytical surfaces in other words to create
ground truth images.
In the next chapter we present different reflectance models then we talk about
BRDF acquisition and describe the acquisition process. The chapter about Monte
Carlo renderings introduces the reader in the basics of the Monte Carlo methods
which are essential for image synthesis. Finally we show our implementation and
the rendering results.
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Representing BRDFs

There are different ways to describe materials through a BRDF representation.
The first way is the measure and fit approach-we could measure a material with
a Gonioreflectometer and use the measured data for the rendering. Measuring a
surface is time consuming and could take several hours ([Mat03]). The fact that
the BRDF is a four dimensional function makes the measuring process technical
challenging, but the measuring approach is necessary for verification purposes,
although thats not the only area where measured data are needed.
For example, the NASA has a Reflectometer(SOC-200) which they use to de-
sign paints for Stealth aircrafts. These paints absorb and reflect electromagnetic
waves in the wrong direction and making the painted object invisible for the radar.
Measured BRDF’s are also used in the movie ”The Matrix 2” for realistic cloth
rendering ([Bor03]).
Another representation of BRDF is the approximation through analytical re-
flectance models. The two types of analytical reflectance models are the physical
plausible models and empirical reflectance models (also known as phenomeno-
logical reflectance model). Physical plausible reflectance models try to take care
of the physical properties of the material, so that each parameter has a physical
meaning, and could be theoretically measured. Empirical (or phenomenological)
reflectance models describing reflectance with parameters that do not have any
physical mean such as the Phong [Pho75] reflectance model. But before we de-
scribe some BRDF models, we present some material classification in the next
section.

2.1 Material Classification
We already introduced isotropic and anisotropic materials. Now we introduce
optical material properties for material classification: ideal diffuse, ideal specular,

11



CHAPTER 2. REPRESENTING BRDFS 12

directional diffuse and rough specular.

• Ideal diffuse reflectors e.g. chalk, clay some paints have - at the micro-
scopic level - a very rough surface. This microscopic variations reflect the
incoming light equally in all directions over the hemisphere. The reflection
is view direction independent.

• Ideal specular reflectors are perfect mirrors, where the microscopic ele-
ments are oriented in same direction as the surface. The reflection is view
independent and the light rays bounce off the surface in a mirror like fash-
ion.

• Rough specular reflectors reflect light not only in the ideal direction -
because of microscopic surface variations. Some of the light is reflected
slightly offset from the ideal specular angle.

• Directional diffuse reflectors are a combination (superposition of BRDF’s)
of a rough specular reflector and an ideal diffuse reflector. This reflector
type is difficult to model analytically.

Figure 2.1: Left: A sphere rendered with a ideal diffuse reflector; Middle: A
sphere rendered with a ideal specular reflector; Right: A sphere rendered with a
directional diffuse. (image taken from [Hua02])

2.2 Empirical Reflectance Models
As we mentioned earlier empirical reflectance models or phenomenological mod-
els have no physical meaning but they are approximations of different surface
behaviors.



CHAPTER 2. REPRESENTING BRDFS 13

2.2.1 Lambert Reflectance Model
The Lambert reflectance model is a simple model to describe diffuse reflection
of a surface. The model it self is defined by Johann Heinrich Lambert [Lam]
over 250 years ago. The Lambertian model reflects the indicant light equally in
all directions. A Lambertian reflector is independent from the viewing direction,
it only depends on the angle Θ which is defined as the cosine between surface
normal and indicant light vector.
The Lambertian distribution function is defined as :

fr(λ) =
1
π
∗ kd(λ)

The color is wavelength dependent. kd is defined through kd = cos(Θi), Lamberts
cosine law. The light energy which leaves the Lambertian surface is proportional
to the cosine of Θi.

Figure 2.2: A diffuse sphere using the Lambert reflectance model. (image taken
from [Geb03])

2.2.2 Phong Reflectance Model
1975 Phong Bui Tong developed the Phong model [Pho75], the original model
is not physically plausible. Phong extended the Lambert model with a specular
term.
The Phong specular term is defined as:

fr(l,v) = ks ∗
(v · r)specexp

n · l
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Where l is the light vector (vector from the surface point to the light source), v is
the view vector (from viewer to the surface point), r reflection vector (in which
direction the light is reflected), ks is the specular coefficient and specexp is the
specular exponent. For this model, Phong made two assumptions, namely all light
sources are moved to infinite and that the viewer is also moved to infinite.
Since this equation only describes the specular term, the full equation is the sum
(superposition) of the diffuse (Lambert) term and the specular term:

fr(l,v) =
1
π
∗ kd + ks ∗

(v · r)specexp

n · l

There is also a modification of the Phong model by Lewis [Lew93] which make it
physical plausible.

2.2.3 Lafortune Reflectance Model
The Lafortune et al. [LFTG97] model is a generalization of the cosine lobe model
from Lewis which is based on the Phong model. Lafortune et al. [LFTG97] de-
veloped a model which can describe various BRDFs like non-Lambertian diffuse
reflection, specularity at grazing angles, off-specular reflection, retro reflection
and anisotropic reflection. The main drawback of the original cosine lobe model
is that there are several problems with directional-diffuse reflectance.
The definition of the generalization of the classical cosine lobe model is:

fr(L,V ) =
kd

π
+ ks(LT MV )n

where:

• L is the unit vector to the light source

• V is the unit view vector

• kd is the diffuse coefficient

• ks is the specular coefficient

• M is 3 x 3 matrix which must be symmetric; otherwise the Helmholtz reci-
procity would not hold

• n is the specular exponent
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After singular value decomposition of the matrix M we get M = QT DQ.
Where Q is the transformation of the local coordinate system and D is a diag-
onal matrix.
Now we can rewrite model as:

fr(L,V ) =
kd

π
+ ks(CxLxVx +CyLyVy +CzLzVz)n

With the parameters Cx,Cy and Cz we can form several BRDF models. For a
isotropic reflection the parameter Cx and Cy have to be equal.
To get the original cosine lobe the parameters have to following appearance−Cx =
−Cy =−Cz = n

√
Cs. To gain an anisotropic reflection the parameters Cx,Cy and Cz

must assigned with different values. These parameters are described in detail in
[LFTG97].

Figure 2.3: Rendered picture of a scene with two spheres and a Q-panel, illumi-
nated by two colored light sources and one larger white light source. The sphere
on the left has a Lambertian approximation of the measured paint reflectance; the
sphere on the right is rendered with the non-linear approximation. The Q-panel
has the non-linear approximation of the measured steel reflectance.(image taken
from [LFTG97])
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2.2.4 Ward Reflectance Model
In the year 1992 Ward [War92] build an image based gonioreflectometer to mea-
sure and acquire data from isotropic and anisotropic surfaces. Ward measured
rolled brass, rolled aluminum, lightly brushed aluminum, varnished plywood,
enamel finished metal and a painted cardboard box also isotropic surfaces mea-
sured like glossy grey paper. The measurements of the Ward imaging gonioreflec-
tometer prototype has two limitations. First the prototype is not able to measure
near grazing angles. The second limitation is that the prototype is not able to mea-
sure polished surfaces with sharp specular peaks.
To use the raw measurement data for the rendering is impractical due the nature
of the data. The data is incomplete to represent to whole hemisphere and to noisy.
Therefore Ward tried to develop a model which fits the data for the isotropic and
anisotropic measurments with as few parameters as possible.
The aim of the Ward model is first to fulfill physical properties (energy conserva-
tion, Helmholtz reciprocity) and second to be mathematical simple like the widely
used Phong model. The Gaussian distribution, which is often used in formulations
of reflectance ([War92], [CT82], [Coo86]), is used to describe the statistical differ-
ence of the surface height. The Gaussian model is used instead of the commonly
used geometric attenuation factors and the Fresnel coefficient, the geometric fac-
tors usually tend to counteract to the Fresnel coefficient Ward [War92].
The isotropic Gaussian Model:

fds,iso(θi,φi,θr,φr) =
fd

π
+ fs ∗

1√
cos(θi)cos(θr)

∗ exp[−tan2δ/α2]
4πα2

where:

• fd is the diffuse reflectance

• fs is the specular reflectance

• δ is the angle between the surface normal vector and the half vector

• α is the standard deviation of the surface slope, α should not greater than
0.2 to no violate the normalization

• 1
4πα2 is the normalization factor
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Figure 2.4: Material independent variables and angles which are used in the Ward
reflectance model where x and y are the tangents of the surface point, n is the
normal vector, h is the half vector between dr and di; ”the indicant light arrives
along di and is simulated or measured in direction dr” Ward [War92]. (image
taken from [Geb03] and slightly modified)

The Gaussian reflectance model is extended to support surfaces with two perpen-
dicular slope distributions, αx and αy. The anisotropic Gaussian Model is defined
as follows:

fds(θi,φi,θr,φr)=
fd

π
+ fs∗

1√
cos(θi)cos(θr)

∗
exp[−tan2δ(cos2φ/αx

2 + sin2φ/αy
2)]

4παx2αy2

where:

• fd is the diffuse reflectance

• fs is the specular reflectance

• δ is the angle between the surface normal vector and the half vector

• αx is the standard deviation of the surface slope in x direction

• αy is the standard deviation of the surface slope in y direction

• φ is the azimuth angle of the half vector projected into the surface plane
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A computationally approximation of the above equation is:

fds(θi,φi,θr,φr)=
fd

π
+ fs∗

1√
cos(θi)cos(θr)

∗ 1
4παxαy

∗exp(−2
(h·−→x

αx
)2 +(h·−→y

αy
)2

1+h ·n
)

where:

• h ·−→x = sinθrcosθr+sinθicosθi

||
−→
h ||

• h ·−→y = sinθrsinθr+sinθisinθi

||
−→
h ||

• h ·−→n = cosθr+cosθi

||
−→
h ||

• ||
−→
h ||=

√
2+2sinθrsinθi(cosθrcosθi + sinθrsinθi)+2cosθrcosθi

The missing variables are described in Figure 2.4. So the total reflectance is the
sum of the fd term (diffuse term) and the fs term (rough specular term). ”αx and
αy represent the standard deviation of the surface slope in each of the perpendic-
ular directions” Ward [War92]. All four variables have a physical meaning and
could optionally measured.

Figure 2.5: Varnished wood comparison. Left: Photograph of a chair; Middle:
Use the isotropic Gaussian model for the simulation; Right: The elliptical Gaus-
sian model. (image taken from [War92])

2.3 Physical Plausible Reflectance Models
Physical plausible, physical based or theoretical reflectance models are models
where each parameter has a physical meaning or at least they could be measured.
In this section we present a few reflectance models but there are a lot more publi-
cations e.g. Nayar et al. [SKN91] Blinn [Bli77] Oren, Nayar [ON95].
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2.3.1 Cook-Torrance Reflectance Model
The model from Cook and Torrance [CT82], which was published in 1982, is
based on the model from Torrance and Sparrow [KET67] and the Blinn [Bli77]
reflectance model. The Cook-Torrance model is able to represent different metals
like gold but it is also capable to represent plastic with various roughens.
The Torrance-Sparrow model was the first published physically based BRDF
model. The calculations of reflectance from roughed surfaces are on the basis
of geometrical optics, also the calculations are only valid if the wavelength λ of
light is smaller than the least squared mean σm of the surface roughness. Also the
roughness of the surface is assumed to be isotropic. Furthermore Torrance and
Sparrow showed that the assumption that the reflectance of roughed surfaces only
occur in form of diffuse reflection only hold if the indicant angle is near to the
surface normal vector. But the also showed that the maximum energy occur on a
angle which is greater than the specular peak this phenomena is called off specular
peak [KET67].
The Cook-Torrance reflectance model is composed from three different compo-
nents the microfacet distribution, the Fresnel coefficients and the geometric atten-
uation.
The facets are assumed as mirror-like (perfectly reflective) and isotropic dis-
tributed. It is also assumed that the facets are V-shaped, this means that each
neighbor has the same slope angle but in the inverse direction. In the Cook-
Torrance model it is possible to use different distributions for the microfacet orien-
tations, the Torrance-Sparrow model is restricted to a Gauss distribution, but they
make use of the Beckmann distribution function. The geometric term accounts
effects of masking and shadowing between microfacets (shown in Figure 2.6), the
term determine the amount of the specular reflection.

Figure 2.6: Left: shows the masking and self shadowing effects due the microfacet
surface structure;Right: show the v-shaped facets. (image taken from [Wyn00])

The geometric term does not depend on any physical property of the surface.
The Fresnel term determine the reflection of each microfacet.
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The Cook-Torrance model is defined as:

fr(θi,φi,θr,φr) =
kd

π
+

ks

π
∗ FDG

cos(θi)cos(θr)

where:

• kd is the diffuse reflectance coefficient

• ks is the specular reflectance coefficient

• F is the Fresnel coefficient

• D is the geometric attenuation

• G is the microfacet distribution

With the Cook-Torrance model it was first possible to render rough conductors
that have the unique property that their highlights are colored. With simple BRDF
models like the Phong model every material looks like plastic because of the white
highlight.

Figure 2.7: Several materials simulated with the Cook-Torrance reflectance model
(image taken from [CT82])

2.3.2 He-Torrance-Sparrow-Green Reflectance Model
He et. al. [HTSG91] developed as a model which takes the wave nature of light
into account to model phenomena like interference and diffraction.
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The model consists of three main reflectance components: specular, directional
diffuse and uniform diffuse. The model itself is an analytic model which has
smooth transitions from the specular to the diffuse reflectance behavior. The spec-
ular component accounts mirror like facets, like the Cook-Torrance model, also
roughness, shadowing/masking and the Fresnel term is taken into account.
The specular component is the result of the first surface reflection. The direc-
tional diffuse is responsible for diffraction and interference effects. The uniform
diffuse component estimates that the microfacets are V-shaped, based on geo-
metrical optics. Multiple surface and subsurface reflections result as the uniform
diffuse term. The HTSG has several parameters. These are: surface roughness,
index of refraction, autocorrelation length and uniform diffuse term. The defini-
tion of the reflectance model is the sum of the three components. Due the complex
nature of the terms we redirect to the original paper, which is a good starting point
for the reader.



Chapter 3

BRDF Acquisition

The BRDF can be directly measured from real surfaces. There are several BRDF
data sets available which already measurement. This chapter gives an overview
about a device for measuring the BRDF from a surface. Furthermore we review
several BRDF measurement databases which are available, free of any charge, for
academic purpose.

3.1 Gonioreflectometer
A gonioreflectometer is a device for BRDF acquisition, but there exist several
different gonioreflectometer types e.g. Murray etal. [MC75], Foo [Foo97] or
Ward [War92].
Murray etal. [MC75] designed a basic gonioreflectometer, which is shown in
Figure 3.1. The measuring system consists of a light source, material source and
a reflectance detector.

• The light source is an MR16 incandescent lamp.

• The photodetector is of the silicon photodiode type.

• The material sample diameter is only 6.5mm

These three components are positioned with stepper motors, so the system pro-
vides the needed four degree of freedom which is required by the - anisotropic -
BRDF definition. The stepper motors are controlled by a computer, with ASCII
commands, through the RS232 serial port. The system measure the voltage differ-
ential to the illuminance on the face of the photocell Murray etal. [MC75] for the
data acquisition.

22
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Figure 3.1: Basic gonioreflectometer designed by Murray etal. [MC75] (image
taken from [MC75])

In contrast to that Ward [War92] build an imaging gonioreflectometer, namely
a silver hemisphere reflectometer. The system consists of a half-silvered hemi-
sphere, a CCD camera with a fish-eye lens, a light source (a three watt quartz-
halogen lamp) and a sample holder. The light is reflected from the material to
the silver hemisphere which reflect the light onto the CCD array. A computer
controlled motor moves the light source during data acquisition and the sample is
moved manually.

Figure 3.2: Side view of the imaging gonioreflectometer designed by Ward
[War92]. (image taken from [War92])
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The use of the gonioreflectometer in his ordinary form is slow and time con-
suming. Ward’s imaging gonioreflectometer can obtain BRDF results faster, the
hemisphere of reflection is captured in one image, and at lower cost as the tradi-
tional approach. The Cornell University [Foo97] extended the imaging approach
and built their own device. Matusik [Mat03] also built an imaging gonioreflec-
tometer which is described in the next section.

3.2 BRDF Measurement Databases
In this thesis two BRDF databases are used for the image synthesis, the first one
is the database which the Cornell University offers and the second one is offered
by the Mitsubishi Electric Research Laboratories (Merl). In the next two sections
we take a deeper look how this two databases acquired their BRDF data from the
materials. For the sake of completeness the CURet database is also mentioned
here, but this one is not used for image synthesis.

3.2.1 CUReT Database
The CUReT database consists of 60 measured materials, the samples are not dense
measured approximately 200 reflectance measurements over varying incident and
reflected angles (Dana etal. [DvGNK99]). They also offer a BRDF parameter
database which fits the parameters for the Oren-Nayar [ON95] and the Koenderink
reflectance model ([DvGNK99]).
The samples are not dense enough to use it directly as BRDF lookup table and to
generate a reference image (in fact it could be used with interpolation, but then
we do not get a meaningful reference image).

3.2.2 Cornell Database
The Cornell University offers also a small BRDF database [LFTG97] which con-
sists of eleven material samples which are all isotropic. The samples are available
as spectral, XYZ or as RGB data. Each material sample has over 1000 measure-
ments of varying incident and reflected angles and can be used as BRDF lookup
table for direct rendering.
They originally measured 1024 wavelength samples, per sample point, which are
down sampled to 65 or 31 wavelengths with a regular sample distance from 5 or
10 nm. They sampled between 400 and 700nm due to the fact that the samplings
below 400 and over 700nm are noisy. The raw data, which is available on the
Cornell website, has several errors and are not interpolated except the house paint
data which is interpolated and cleaned. Unfortunately the measuring process of
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the materials are not documented except the house paint [LFTG97] and the acqui-
sition of the skin measuring [MWLT00].

3.2.3 MERL Database
The Mitsubishi Electric Research Laboratories [MPBM03] have the largest
isotropic BRDF database and consists of over 100 materials. They build a cus-
tom imaging gonioreflectometer for the BRDF acquisition. The device was build
with the idea in mind to make dense BRDF measurements which could directly
used as a table-based model.
Matusik [Mat03] put the measurement system in an isolated room, the walls in the
room were painted with a matte black paint. The gonioreflectometer itself consist
of three main components: ”QImaging Retiga 1300 (a 10-bit, and a 1300 x 1030
resolution Firewire camera), a Kaidan MDT-19 (a precise computer-comtrolled
turntable), and a Hamamatsu SQ Xenon lamp (a lamp with stable light emission
output and a continuous and relatively constant radiation spectrum over the visi-
ble light range”[Mat03]. The light source can move in 0.5 increments. However,
to cover the whole hemisphere, the imaging gonioreflectometer needs 330 High
Dynamic Range (HDR) images; to capture these images the system needs 4 hours.
To get the relative position between light source, camera and material source, a
geometric calibration has to be done which is described in detail in [Mat03]. Due
to the fact that the camera can only make 10-bit images, they make use of the
multi-exposure technique to capture the dynamic range of the scene. So each
HDR image is composed from eighteen 10-bit pictures with increasing exposure
time.
To compute the BRDF for a pixel one need - beside the radiance of the pixel which
is already given by the HDR images - the irradiance for the pixel. To calculate the
irradiance, the image pixel is intersected with the sphere to determine the point p
on the material source. Then the normal vector of p is calculated. But one also
needs the distance to the light source from p and the camera vector. With these
variables Matusik was able to calculate the irradiance. Since the BRDF is the ratio
between radiance and irradiance, Matusik was able to calculate the BRDF value
for a point p on the material source.
The data representation could not done with a regular sampled grid over the hemi-
sphere, even with high tesselated one, because the specular peaks become oval
lobes. Rusinkiewicz [Rus04] proposed a new coordinate frame (illustrated in Fig-
ure 3.3) which require less storage space for isotropic BRDF’s and represent the
specular peak efficiently (the new coordinate frame is described in detail in ap-
pendix B). With the new coordinate frame [Mat03] was able to use smaller bins
near the specular angle, so in fact, the grid is irregular. Matusik subdivide the θh
and θd in 90 bins and φd in 360 bins, but through the reciprocity property of the
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BRDF he cut it to 180 bins down. The resulting data set has 1,458,000 bins per
color channel.
The samples are very dense measured and can directly used as tabulated BRDF
table or it can be used to create new BRDF’s through linear combination of the
existent measurements. MERL has also a small BRDF database for anisotropic
materials which is - since we concentrated on isotropic BRDF’s in the scope of
this thesis - not relevant for us. Ngan et. al. [NDM05] have also analyzed the
complete isotropic BRDF database and fitted several analytical models to their
measurements.

Figure 3.3: Left: ordinary coordinate frame, Right: Rusinkiewicz coordinate
frame. (image taken from [Rus04])

In this thesis the Cornell and the isotropic Merl database are used for the image
synthesis in ART (Advanced Rendering Toolkit). In the next chapter we take an
overview about Monte-Carlo sampling, which we need to sample the BRDF data.



Chapter 4

Monte Carlo Rendering

Scientists introduced the term Monte Carlo in the year 1940 while working on nu-
clear weapon projects in the Los Alamos National Laboratory. It refers to mathe-
matical techniques that use statistical sampling to solve a problem1. Monte Carlo
methods have a wide spread application field from the Physical chemistry, Relia-
bility engineering to Computer Graphics.
Monte Carlo raytracing (Jensen [Jen01]) is important for realistic image synthesis
from complex scenes. As mentioned in chapter one we have to solve the render-
ing equation [Kaj86], which describe the light transport in the scene. One way to
solve this equation is to use Monte Carlo methods.
In former times finite element methods were the first choice to solve the equation
numerically. Finite element methods have several drawbacks, which Monte Carlo
methods do not have. With finite element methods the scene geometry must be
tessellated, which result in high memory consumption, also not every BRDF can
handled with these methods. Also the runtime of Monte Carlo based algorithm are
in O(logN), where the fastest finite element method is in O(NlogN). The biggest
drawback of Monte Carlo raytracing is the variance seen as noise in the rendered
images. There are several methods to decrease the noise which we catch later in
this chapter.
This chapter has following structure: first we take an short overview about the
basic elements of the probability theory then we discuss Monte Carlo integration
and introduce several sampling methods.

1There are also Las Vegas methods which use also randomness in their algorithms. The dif-
ference between them is that Las Vegas methods use randomness but the give always the correct
result in contrast Monte Carlo methods return frequently the wrong result but return the correct
result in average.

27
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4.1 Basic Elements Of The Probability Theory
In this section discusses the basic elements of the probability theory. Note that
we only discuss a tiny subset of the probability theory. Also note that this is only
a review of the basic elements and not a in depth explanation, for an in depth
explanation read Kalos and Whitlock [KW86].

4.1.1 Random Variable
A random variable X is defined as an scalar or vector quantity whose values are
taken from some domain Ω. The domain Ω can be discrete or continues. A
discrete domain is for example all values that can appear when a dice is tossed
then X is a random variable defined as X ∈ {1,2,3,4,5,6}. Continues random
variable X is defined as X ∈ {−∞,∞}. A distribution of values describes the
behavior of the random variable X . Furthermore, the distribution of values can be
described by the probability density function (from now on we use the acronym
PDF) which we describe in the next section.

4.1.2 Probability Density Function
Usually when a random variable X has a certain PDF p this association is denoted
as X ∼ p. The density function p defines the relative likelihood of a random
variable X which takes a certain value.
The PDF must fulfil two properties:

• p(X)≥ 0 the probability is always positive (including zero)

•
∫

Ω
p(X)dx must integrate to over the domain Ω

4.1.3 Cumulative Distribution Function
The cumulative distribution function (CDF) describes the probability distribution
of random variable X. The CDF of X is defined as: F(X) =

∫ x
Ω

p(X)dx
The CDF must fulfil two properties:

• lim
x→−∞

F(X) = 0

• lim
x→+∞

F(X) = 1
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4.1.4 Expected Value
The average or mean of a function f of random variable X with the PDF p is
defined as:

E( f (X)) =
∫

f (X)p(X)dX

The excepted value has two properties: the excepted value of two random vari-
ables X ,Y is the same as the sum of the excepted value from X and the excepted
value from Y; the previous property can be extend to the usage of functions, be-
cause functions of random variables are them self random variables.
We can also estimate the integral by a sum, the method called theorems of large
numbers, but the variables have to be independent identically distributed and must
share the same PDF p. Then the estimate is defined as:

E(X)≈ 1
N

N

∑
i=1

Xi

where N is the number of variables, with the increase of N the variance decreases.

4.1.5 Variance And Standard Deviation
The variance V of random variable is defined as:

V (X) = E[(X−E[X ])2]

where E is the excepted value of the random variable X . The term above can be
simplified as follows:

V (X) = E(X2)− [E(X)]2

The standard deviation is defined as:

σ(X) =
√

V (X)

where σ(X) gives the excepted absolute deviation from the excepted value E(X).
The standard deviation is also known as standard error of a random variable X .

4.2 Monte Carlo Integration
The rendering equation is a complicated -Fredholm equation of second grade- in-
tegral which is impossible to solve analytically.
Monte Carlo integration break the integration problem down into excepted value
problem. As we already mentioned in section 4.1.4, it is possible to estimate a in-
tegral with the theorems of large numbers. The Monte Carlo algorithm generates
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independent random sample points x1,x2, ...,xi with a probability density function
p and solve the integral with theorems of large numbers. So we only need to be
able to evaluate the integrand for specific sample points.
The accuracy of the Monte Carlo integration depends on the number of the sample
points and how the get chosen. To halve the estimation error of the Monte Carlo
method the sample point count has to be quadrupled. A big advantage of Monte
Carlo methods is that the convergence rate does not depend on the dimensionality
of the integrand. As we mentioned earlier, the estimation error in Monte Carlo
rendering manifests itself as noise in the rendered images. When we sample the
integral with ordinary random points we have big holes between the sample points,
but to use sample points which are generated on a regular grid is counterproductive
because then we get a dependency between the integrand dimension and the effi-
ciency of the estimation [Las99]. To decrease the noise (error) in the images we
can generate quasi-random sample points instead of random points. Quasi Monte
Carlo use quasi-random numbers (Halton low-discrepancy sequence) which are
more evenly distributed as ordinary random generators.

Figure 4.1: Left: 100 points distributed by a regular grid; Middle: 100 points
distributed by a ordinary random number generator; Right: 100 points distributed
by a quasi-random sequence (Halton low-discrepancy sequence). (image taken
from [Las99])

In the next section we show a few sampling approaches which helps to mini-
mize the noise from the images.

4.2.1 Importance Sampling
Importance sampling is variance reduction technique [And99]. Importance sam-
pling is to chose a distribution p(X) that is close to the integrand f (X) which we
want to estimate. The best estimator would ideally has zero variance. There are
some properties which an importance sampling function p(X) has to fulfil:

• p(X) > 0 if f (x) 6= 0 for the sample point x.
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• it should be fast to sample from p(X).

• p(X) should be proportional to f (X), like p(X)∗α≥ f (X).

• it should be possible to compute the density p(X) for any value of X .

Figure 4.2: The continues function is the integrand f(x), which we want to esti-
mate, and the dotted function the estimator p(x). In the case above our estimator
p(x) has a low variance. (image taken form [Ghe07])

4.2.2 Inversion Sampling
The inversion method is only useable when the density function p(X) is one di-
mensional and discrete (defined over a finite range). If the previous mentioned
criterions met, then we have to compute the CDF P(X) from the PDF p(X) after
that we calculate the inverse of the CDF P(X)−1 then it is possible to generate
random numbers that have the density p from a set of uniform distributed num-
bers ξi where ξi ∈ [0,1].
There is a good example in [PH03] which clarify the usage of the inversion
method. They use a discrete process with 4 possible outcomes, the PDF possi-
ble outcomes sum to 1. To create the CDF P(X) we stack the bars on the top of
each other, starting left. The rightmost bar must be one because all possibilities
must sum to one. Now we can generate a uniform random number and project it
to the CDF. The probability to hit a certain bar is the height of the bar.
There is an extended version of the inversion method in [PH04] which makes it
possible to break down a high dimensional density function, so that we can use
this sampling method.



CHAPTER 4. MONTE CARLO RENDERING 32

Figure 4.3: x1..xi are samples with a distribution p(x), by applying the inverse
CDF of p(x) to u - a uniform distributed random variable - we generate the sam-
ples with xi = F−1(ui). (image taken from [DBB03])

4.2.3 Rejection Sampling
The rejection method is used when the underlying density function has complex
form (if it is a high dimensional function) which make it impossible to use the
inversion method.
Rejection sampling is a specialization of importance sampling. When we want
to sample a xi according to a density function p(X), the method works like this:
we have to find a function g(X) where a p(X) is subset from g(X) for all xi over
the domain; now we take a random sample from p(X) and calculate the ratio
between p(X)/Mg(X) where M knows how to sample g(X). Then we generate a
uniform random variable h∈ [0,1]; if h < p(X)/Mg(X) then we accept the sample
otherwise we reject it.
Rejection sampling depends on how tight g(X) is chosen. Also, this methods
become really slow if we have to sample high frequency BRDF data.
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Figure 4.4: Rejection sampling: blue samples are accepted (∈ p(X)), red samples
are rejected (3 p(X)). (image taken form [Ghe07])



Chapter 5

Implementation

In this chapter we present the implementation of this diploma thesis but also give
a short introduction about the rendering toolkit which was used for the implemen-
tation.

5.1 Rendering in ART
Since 1996 the Institute of Computer Graphics and Algorithms of the Vienna Uni-
versity of Technology is developing a photorealistic rendering toolkit called ART
(Advanced Rendering Toolkit). ART is a collection of several libraries which are
separated according of their functionality. The libraries are written in a mix of
ANSI C99 and Objective C, ANSI C99 is used for performance-critical modules
and Objective-C for the high level modules. Modeling in ART is done through
CSG, NURBS and subdivision surfaces, there is also a Turing-complete shading
language available.
ART is a physical-based renderer, so there is a distinction between color, light and
reflectance values to handle features like fluorescence or polarization are avail-
able, and several internal color types (at this time it is a compile option), ART
is capable of using spectra instead of ordinary color values. The supported color
types are Spectra with 8, 16 or 45 samples and also RGB and CIE XYZ color
space, the latter two are mostly for reference purpose. The colorimetric accuracy
is direct proportional to the number of samples, but with an increase of the sam-
ple number also the computation increase. There are also several publications out
there which already used ART for their research e.g. Weidlich et al. [WW07],
Wilkie et al. [WWLP06].
During the implementation we used ART as an ordinary RGB color space ren-
derer with the MERL data and the Cornell RGB data but we also used ART as a
Spectra renderer with Cornell Spectra data.

34
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5.2 Data Representation
In this section we outline how we represent the measured BRDF data in memory
and how we interpolate and sample the data. Hence we deal with different BRDF
databases (MERL, Cornell) we have two different representation approaches.

5.2.1 Merl
The Merl data is saved in huge double arrays, but the ordering has sense. The
sampling rate of the data is 90x90x180 (θh,θd,φd), also the data is compressed
with [Rus04]. So for each indicant and outgoing ray pair we have to transform
to the Rusinkiewicz coordinate frame, the detailed calculation is described in ap-
pendix B.
The main issue with the data was that there was no explicit information about the
color space in which the data lie, because the RGB data is mentioned in [Mat03]
as:

fr(ωi,ωo) = fsum(θh,θd,φd)

where fr is the BRDF and fsum is the sum of the three color channels for an indi-
cant and outgoing ray. In Chapter 3 we already explained the acquisition process
of data and know that the values that stored in the data set are no ordinary color
values. The values are on one hand HDR values and on the other hand the sum of
them are the BRDF value for the indicant and outgoing ray.
Also there was no need for any interpolation of the data sets due the dense mea-
surements (90x90x180 = 1458000).

5.2.2 Cornell
The Cornell data representation is a bit more complicated, because there are four
different file formats available, but all four formats follow the ASTM E1392-
96 ASCII format (which is nothing than an ordinary text file with a descriptive
header). The available formats are: RGB with negative red value (no gamut is
applied); tristimulus values in CIE XYZ space; spectra with 31 wavelengths per
indicant and outgoing ray-pair and 10nm sample distance; spectra with 65 wave-
lengths per indicant and outgoing ray-pair and 5nm sample distance. To index the
color value spherical coordinates are used. One problem which occurred during
the implementation was that the φo angle in every data set consists complete of
negative values, except 0 and π. The data sets assume that they reciprocity hold,
therefore only the data of the half sphere is available. Furthermore the Cornell
data needs interpolation because the data is only measured every 10 degrees and
it is only measured until 80 degrees.
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The first approach for a memory presentation of the Cornell data was a KD-Tree,
the nearest neighbor search is done in O(logN) [HMS06]. For the KD-Tree con-
struction the variables θi,θo and φo are used to create the decisions nodes. The
KD-Tree was a good data structure to index the BRDF data, but is a bad data
structure for a trilinear interpolation because with the KD-Tree it is only possible
to make linear interpolation.
The second approach for the data structure are something like a B*-Tree. The tree
generation is constructed as following:

• Find all unique θi angles in the ASTM file (in a normal Cornell data set its
about 10-11 data record) this angles build the first layer of root nodes.

• For each θi search all possible θo angles in the ASTM file and add this list
of all possible θo as a seconde layer to the current node.

• Now we hold θi and θo and search for all possible φo and add them to the
current θo node.

• Finally we sort the arrays ascending.

Figure 5.1 illustrate the Cornell data structure. The arrays are sorted with Quick-
sort and so we achieve the nearest neighbor search in each array in O(logN).

Figure 5.1: Cornell data representation

We introduced this structure for a fast trilinear interpolation approach. To
present the approach we assume that we have the incoming and outgoing ray and
already have transformed them to spherical coordinates. φdi f f is the difference
angle between φi and φo, the difference angle is sufficient for the isotropic case.
An important side note for the correct calculation of the φdi f f angle is that we first
have to branch which φ (φi or φo) angle is greater then we subtract the smaller
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one from the greater one; after this calculation we have also check if the φdi f f is
greater then 2π; if so, we subtract φdi f f from 2π because due the reciprocity we
only need a φdi f f in the range [0,π].
For the trilinear interpolation we have, to compute several values which are
needed:

• Begin with θi and search the nearest neighbor in the first layer (shown in
Figure 5.1) then we check if the nearest neighbor is greater or smaller then
the current θi. If it’s greater, we create a new variable θiU p and as result of
the prior sorting of the arrays we know that one index below in the array a
θ-value is contained which is smaller than our θi. This is the θiLow variable.

• The above procedure is now done with θo, but for θiU p and θiLow for the
index of the layer one. As a result we get four new variables: θoU pU p,
θoU pLow, θoLowU p, θoLowLow.

• Finally we compute the values for φdi f f but with the index values from
layer one and two now we get eight values: φdi f fU pU pU p, φdi f fU pU pLow,
φdi f fU pLowU p, φdi f fU pLowLow, φdi f f LowU pU p, φdi f f LowU pLow, φdi f f LowLowU p,
φdi f f LowLowLow.

Figure 5.2 illustrate the acquisition of the variables for the interpolation. The
interpolation variables are now used to index the color values (RGB or spectra
data as described before) and use linear interpolation:

dsti = aColi ∗ (1−λ)+bColi ∗λ

where aColi,bColi are the color channel values and dsti is the computet color for
the color channel i. λ is defined as:

λ =
(a− x)2

(a−b)2

where x is the current point which lies between a and b. Thats one of the draw-
backs of the interpolation - due to the fact that there is no data above 80 degrees
(some data sets have no data above 75 degrees), x does not lie in between and then
we cannot interpolate and fall back to nearest neighbor for the color lookup.
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Figure 5.2: Trilinear interpolation

5.3 Rejection Sampling
In chapter 4 we already described what rejection sampling is in a general manner,
in this section we present the way it is implemented for this thesis.
First the BRDF volume is separated into slices. Each slice has a fix θi and a θo
and φdi f f is varying, θi is used to index the volume. Then we calculate the area
of the cell and the maximum for each slice and save the resulting array to the hard
disk to speed up the start up time for the next rendering process.
The maximum is defined as the sum of each channel. Note that the sum of the
channels in the MERL data set is the BRDF value at this point. At the end we
have to resample the complete BRDF with a regular grid. The grid cells have
to be really small-so that we do not miss any BRDF value. The resampling of
the Cornell data take about 15 minutes where the MERL data take more than 30
minutes.
Wtether to accept a ray or not is figured out through the decision equation:

ratio =
fsum(θh,θd,φd)

Mslice

if the ratio is greater or equal than h (where h is a random variable between 0 and
1) then the ray is accepted otherwise it is rejected. To get the correct Mslice we
use θi to index the correct volume, and here is the drawback of the approach. If
the grid cells are not small enough it could happen that we miss a maximum value
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and the rejection sample would not converge right.
The PDF is computed as:

pd f =
fsum(θh,θd,φd)

pd fslicePatch
∗ 1

pd fcurCel

where pd fslicePatch is precomputed during the resampling as:

pd fslicePatch =
2∗π∗ cos(θo− samplingWidth)− cos(θo)

sampleCount

and pd fcurCel is the cell area on the sphere surface. The pdf calculation worked
with the Cornell data but gives some false results with the MERL data. After many
trials to find a correct pdf we found that we got no errors if we use fsum(θh,θd,φd)
as pdf.
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Results

In this chapter we present our results in form of rendered images. Also polar plots
were made for several angles. The polar plots were generated with a self made
tool. The polar plots for each materials are illustrated in the appendix C.

6.1 MERL Renderings
The images were rendered with the ART pathtracer with lightsource sampling and
512 samples per pixel, an image resolution of 640x480 and with a recursion depth
of five, all renderings made in RGB color space. We used a simple scene to test the
renderings. As sampling technique rejection sampling is used, where the materials
which are ideal diffuse or directional diffuse reflectors have a faster convergence
than materials which are ideal specular or rough specular reflectors. Materials
which are more diffuse were rendered approximately between 3 - 4 hours where
the specular materials took between 12 - 15 hours. The most problematic material
was Brass because the material has a tiny specular lobe, the rejection sampling
with this material consumed the most time, because most of the sample points are
rejected during the sample process.
For the polar plots three different angle combinations are used: θi = 45 and θo =
45; θi = 75 and θo = 75; θi = 85 and θo = 85.

6.1.1 Gold Metallic
Gold metallic paint has a metallic shine, with fine aluminum powder and pigments
to get the metallic shine. This material has tiny bright spots caused by mirror like
flakes. These spots are visible on grazing angles. The reflectance property is
rough specular (glossy), as the polar plots show. Ngan et al. [NDM05] show that
there is no analytical reflectance model that can reproduce the material with an
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error under ∼ 0.02, which they demonstrated in there experimental results which
is in fact rather good, but not very surprising since the Cook-Torrance model was
developed to simulate this material type.

Figure 6.1: Gold Metallic

6.1.2 Aluminum Oxide
Aluminum oxide is also a paint with pigments,which has a better hiding (opac-
ity) performance. The opacity is improved by optimal sizing the oxide particles.
Aluminum oxide has sharp specular reflections. The reflectance property is di-
rectional diffuse, as the polar plots show. The experimental results of Ngan et al.
[NDM05] show that the tested analytical reflectance models have almost the same
reproduction performance with an error rate of ∼ 0.08. The analytical models
perform not as good as in the case of gold metallic paint since the normal Fresnel
equations do not hold in the case of aluminum oxide.
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Figure 6.2: Aluminum Oxide

6.1.3 Blue Fabric
Blue fabric is a textile material, so they have a complex microfacet structure. It is
nearly perfect diffuse except for grazing angles it produces rough specular reflec-
tion. This material has the fastest convergence of all rendered MERL materials
in this thesis. As the polar plots show the material is ideal diffuse at the specular
angle. The Lafortune et al. [LFTG97] reflectance model is able to reproduce the
material with a small error of 0.000831 [NDM05].
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Figure 6.3: Blue Fabric

6.1.4 Blue Rubber
Blue rubber is a rough surface which has specular highlights at grazing angles,
where the highlights at the specular angle are soft which is difficult to see, the
polar plots show sharp lobes at grazing angles but with a big diffuse component.
The He et al. [HTSG91] model has the smallest reproduction error of 0.00134
[NDM05].

Figure 6.4: Blue Rubber
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6.1.5 Pink Plastic
Pink plastic has specular highlights at grazing angles. Highlights at the specular
angle are not visible on the rendering but it is visible on the polar plot as sharp
lobe, the reason is that diffuse component is almost ideal so we accept more sam-
ples on the diffuse component of this material. The He et al. [HTSG91] model
has the smallest reproduction error of 0.00406 [NDM05], but the reference image
is more coarse grained than the simulation.

Figure 6.5: Pink Plastic

6.1.6 Purple Paint
Purple paint has also a rough surface with sharp specular highlights at grazing
angles and it has also highlights at the specular angle(which are not as sharp as the
highlights which occur at grazing angles). In the polar plots sharp specular lobes
are visible. The He et al. [HTSG91] reflectance model outperform all analytically
in [NDM05] with a error rate of 0.00613.
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Figure 6.6: Purple Paint

6.1.7 Brass
Brass is an alloy of copper and zinc, copper has a cubic crystal system and the
zinc atoms attach to the copper atoms without changing the crystal structure. The
material has almost a ideal specular surface, as seen in the polar plots. It takes
about 15 hours to simulate the material due the small lobe, the rejection sampling
reject many sampling points. Also there are some errors in the date at grazing
angles due the limits of the gonioreflectometer from Matusik [Mat03]. The ana-
lytical reflectance models in Ngan et al. [NDM05] have almost the same error rate
of ∼ 0.4.
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Figure 6.7: Brass

6.2 Cornell Renderings
The Cornell data is rendered with 1024 samples and a recursion depth of five, all
renderings made with the ART Spectra 8 renderer.
For the polar plots four different angle combinations are used: θi = 0 and θo = 0;
θi = 15 and θo = 15; θi = 45 and θo = 45; θi = 75 and θo = 75. Only two samples
are included in the thesis because the other material samples provided form the
Cornell University are uncomplete, not interpolated and contain errors.

6.2.1 Garnet Red
Garnet Red is a spray paint with a low gloss component. The material is ren-
dered twice; once it is rendered without interpolation and the second time with
interpolation to show the interpolation effect. The materials have bright specular
highlights at grazing angles and at the specular angle (see the polar plots). For
certain angle the materials are almost ideal diffuse.
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Figure 6.8: Garnet Red without interpolation and 256 samples. The rendering
took thirty minutes.

Figure 6.9: Garnet Red with interpolation and 1024 samples. The rendering took
three hours.

6.2.2 Krylon Blue
Krylon Blue is also a spray paint with a low gloss component. It has the same
reflectance characteristics as Garnet Red.
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Figure 6.10: Krylon Blue with interpolation and 1024 samples.



Chapter 7

Conclusion

In this thesis we used two BRDF measurement databases for image synthesis with
a photorealistic rendering toolkit, namely the Advanced Rendering Toolkit (ART),
developed at the University of Technology Vienna. One of the challenges during
the implementation was that there is almost no information on how to calculate a
PDF for measured data. In this paper we tried to give the reader an overview about
the important things which are needed to reproduce the images we generated us-
ing ART, but we tried also to go in depth were other paper and thesis do not. We
presented a PDF formula for the Cornell database and also a data structure for
trilinear interpolation. We also showed important details of the data set, which
are not mentioned anywhere else. We rendered only a representative subset of the
MERL data, because the fact that a rendering took between 3 - 15 hours. Due the
design of ART it is also possible to use a measured BRDF surface n times with
just one memory presentation of the data.
Also only isotropic measurements were used for the image synthesis but the data
structure is already ready for anisotropic data. As we already mentioned in Chap-
ter 3, MERL extended their library with some anisotropic materials.
The work is limited to make use of the measured data for direct rendering but
with the MERL database it is possible to generate new BRDF’s through linear
combination. There are several new approaches to generate new BRDF’s like
BRDFShop ([MC06]).
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Spherical Coordinates

Spherical coordinates are a natural way to describe a point which lies on a sphere.
However, spherical coordinates are also used to index a BRDF value on the unit
sphere in BRDF measurement data.
To describe a point we need the three variables (which are illustrated in Figure
A.1):

• r is the distance from the origin of the sphere (the sphere radius)

• φ is the azimuth angle (φ ∈ [0, π

2 ])

• θ is the zenith angle (θ ∈ [0,2π])

Figure A.1: Spherical coordinates: θ the azimuthal angle in the x, y plane; φ is the
polar angle from the z-axis; r is the distance from the origin. (image taken from
[Wei])

In ART we get the indicant and outgoing ray in cartesian coordinates, so first we
have to convert these rays in spherical coordinates with r = 1 (unit sphere).
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To convert a vector with x, y, z from cartesian coordinates to spherical coordinates:

r =
√

x2 + y2 + z2 (1)

θ = tan−1 y
x

(2)

φ = cos−1 z
r

(3)

And to convert back to cartesian coordinates:

x = rcosθsinφ (4)

y = rsinθsinφ (5)

z = rcosφ (6)
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Rusinkiewicz Coordinate Frame

Rusinkiewicz [Rus04] proposed a new coordinate frame which has several ad-
vantages as the ordinary BRDF coordinate frame (tangent-binormal-normal). In-
stead of θi,φi,θo,φo the Rusinkiewicz coordinate frame proposed a parametriza-
tion along the halfway vector h (illustrated in Figure B.1) and a difference vector.

Figure B.1: Left: ordinary coordinate frame, Right: Rusinkiewicz coordinate
frame. (image taken from [Rus04])

The transformation has several properties which are relevant: it needs less
storage on isotropic BRDF data because φh is irrelevant; we save also storage due
the fact that ”the BRDF has a strong dependence with each axis, but show only
weak dependence on combonations of axes” [Rus04]; the Helmholtz reciprocity
depends only on φd ∈ φd +π.
Matusik [MPBM03] used the Rusinkiewicz presentation in their BRDF mea-
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surements so that we needed to transform from the vector representation in the
Rusinkiewiz coordinate frame. To do this we calculate the halfway vector h as:

h =
ωi +ωo

2
(1)

where ωi and ωo are the incoming and outgoing ray (these two vectors are already
in local space). Then we have to transform the halfway vector into spherical
coordinates (with r = 1) and get θh and φh. To get θd and φd we need a difference
vector which is calculated in two steps: first we rotate ωi around the local normal
vector with −φh as angle; after the first step we get a new vector which we rotate
around the local binormal with −θh as angle; now we have the difference vector
after the conversion in spherical coordinates we have the two angles θd and φd .
To index the BRDF data from [MPBM03] we use θd , θh and φd .
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BRDF Polar Plots

C.1 Gold Metallic

Figure C.1: Gold Metallic polar plots
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C.2 Aluminum Oxide

Figure C.2: Aluminum Oxide polar plots
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C.3 Blue Fabric

Figure C.3: Blue Fabric polar plots
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C.4 Blue Rubber

Figure C.4: Blue Rubber polar plots
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C.5 Pink Plastic

Figure C.5: Pink Plastic polar plots
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C.6 Purple Paint

Figure C.6: Purple Paint polar plots
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C.7 Brass

Figure C.7: Brass polar plots
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C.8 Garnet Red

Figure C.8: Garnet Red polar plots
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C.9 Krylon Blue

Figure C.9: Krylon Blue polar plots
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