
Instant Radiosity for Real-Time Global Illumination

Ingo Radax
Vienna University of Technology

(a) Direct Illumination, Hard Shad-
ows, Reflections

(b) + Soft Shadows (c) + Caustics (d) + Indirect Illumination

Figure 1: One scene rendered four times, each time with different lighting effects. We see, by adding more effects to the scene, like soft
shadows caused by the area light source, a caustic caused by the glass ball and indirect illumination caused by diffuse reflection at the walls,
we gain more realistic and better looking images. Though the here presented effects are not the only that can appear. Polarisation, dispersion
and fluorescence are examples for other effects that we might have to consider.

Abstract

Global illumination is necessary to achieve realistic images. Al-
though there are plenty methods that focus on solving this problem,
most of them are not fast enough for interactive environments. In-
stant radiosity is a method that approximates the indirect lighting,
as part of global illumination, by creating additional light sources.
Thereby it is very fast and does not need lot of preprocessing, so
it is perfectly fit to be used within real-time requirements. Further
techniques based on instant radiosity have extended the method to
provide better image quality or faster rendering. So instant radiosity
and its derivations can bring us global illumination in real-time.
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1 Introduction

Creating realistic looking images is an important goal in a lot of
computer graphic domains. To achieve this we have to consider a
lot of optic effects (see figure 1). Since the human vision is not
absolutely accurate, people often would not notice if some lighting
effects are missing or not physically correct. So it is helpful to sup-
port just the important effects. Caustics just appear when we have

some special kinds of objects in our scene (as glasses or larger areas
of water) and in a lot of scenes the soft shadows are almost sharp so
it would be no loss by replacing them through sharp shadows. In-
direct illumination is less important for outdoor scenes, where the
most light would disappear in the sky, but very important for indoor
scenes (as you can see in figure 2).

Although realism is important, there is another issue for computer
graphics. It is the time we need to calculate the illumination and
render our images. If we want to create an image of a car for adver-
tising, we can spend hours to render the image. If we want to make
a computer animated movie we just have some minutes so create a
single frame of the movie, so we can create all frames within some
time. But if we want a game even minutes are to slow, here we need
rendering times less than 1/25th of a second, otherwise the player
would mention it.

This two, the realism of an image and its time to render, are the
major two issues we have to concern with. But unfortunately en-
hancing the one, would worsen the other. So when we want both
we have to make some restrictions, as a fixed number of polygons
in the scene or just static objects.

There are a lot of methods to do the rendering. For example meth-
ods based on ray tracing (as [Whitted 1980], [Arvo 1986] or [Veach
and Guibas 1997]) that can create very realistic images, but unfor-
tunately need a lot of time. Another method would be Radiosity
[Cohen et al. 1993], that can perform the rendering in real-time and
also creates realistic images, but unfortunately the fast rendering
is gained by a expensive preprocessing step, an enormous amount
of storage and a limitation to static scenes, and the realism just in-
cludes indirect illumination.

Another method to do the rendering is the so-called Instant Radios-
ity [Keller 1997] algorithm. As Radiosity this method is limited
to indirect illumination, but is has the advantage that it does not
need the expensive preprocessing, the enormous amount of storage
or the limitation to static scenes any longer. In the following sec-
tions we will concentrate in this algorithm. We will present its basic
functionality (section 2), show some methods derived from Instant
Radiosity (section 3) and present some methods that can be com-
bined with the algorithm to enhance it (section 4). Another issue is



(a) Direct Illumination

(b) Direct and Indirect Illumination

Figure 2: One scene illuminated by a light source outside the win-
dow. The first image was rendered just with direct illumination
without an ambient term. The second image was rendered with
direct and indirect illumination. We see that without indirect il-
lumination some parts of the scene might not be illuminated and
appear complete black, so indirect illumination is an important part
of rendering.

the question, if the algorithm and its derivations can be used within
real-time requirements. A short conclusion (section 5) will finish
this paper and recapitulate the algorithm and its derivations use for
real-time applications.

1.1 Global Illumination

Global Illumination refers to rendering methods, that include other
objects in a scene when calculating the light arriving at a point in a
scene. Opposed to this we have the so-called local illumination, that
just uses the lighted point and the light sources to calculate the light.
Though this classification between global and local illumination is
more academic than practice. In practice just some special kinds
of effects, as indirect illumination or caustics, are called global il-
lumination. Other effects that are simpler, like hard shadows, are
not seen as global illumination, although the previous classification
would call them so.

In theory, calculating the amount of light arriving at a point sounds
simple. We just take the point, look into all directions and sum up
the light coming from there. But to get the light coming from a sin-
gle direction, we have to find the point that lies in this direction and
calculate the light that arrives at him. This will continue endless,
and there are also infinite directions, so that a true calculation of
the light would not be possible.

A mathematic description of this is given by the rendering equation
[Kajiya 1986]

I(x,x′) = g(x,x′)

ε(x,x′) +
∫
S

ρ(x,x′,x′′) I(x′,x′′) dx′′

 (1)

I(x,x′) describes the amount of light arriving at point x from x′.

g(x,x′) is related to the scene geometry and describes how much
of the emitted and reflected light from x′ is sent to x. So it will
always result into a value between 0 and 1.

ε(x,x′) is the light emitted from x′ to x. Generally this will just be
used for light sources.∫

S
(calculated over S the scene) sums all light reflected at x′ towards

x.

ρ(x,x′,x′′) describes how much light is sent from x′′ towards x by
reflection at x′.

We gain a simpler version of the rendering equation by using the
operator norm

L = Lε + Tρ L (2)

where Tρ stands for the integral in equation 1

The solution to this equation is accessible via the Neumann series.
And cause all realistic scenes have ||Tρ || < 1 (no surface reflects
more light than it gains) we can approximate the Neumann series
by a finite sum

L =
∞

∑
i=0

T i
ρ Lε ≈

M

∑
i=0

T i
ρ Lε (3)

2 Instant Radiosity

Figure 3: A conference room rendered with Instant Radiosity.

Instant Radiosity (IR) [Keller 1997] calculates the indirect illumina-
tion in a scene (see figure 3) by approximating it through a particle
simulation (see figure 4). We create a number of particles, starting
at the light source and shoot this particles into the scene. At each



of this hit points we create a virtual point light (VPL). For each
VPL we render the scene once, using the VPL as a light source,
and accumulate the result in an accumulation buffer. That way we
approximate the indirect illumination.

As Radiosity it is limited to diffuse reflections. But IR has the great
benefit that we can directly work on the scene geometry, and so
do not have to do a lot of preprocessing and do not need a lot of
storage. Another great benefit is, that we just need a ray casting
method, to gain the VPLs, the rendering itself can be done with
common graphics hardware.

2.1 Algorithm

First we have to fix the number of particles N we want to create
at the light source of the scene. The more particles we create, the
better the resulting image will be. But of course, the more particles
we have the longer the rendering will take.

Then we want to shoot this particles into the scene. But therefore
we need a method to determine the directions we will shoot this
particles. We will use the Halton sequence, which has some ad-
vantages compared against other methods like N-rooks or random
sampling. One of the advantages is that we can create the Halton
points easily, while with the other methods we would have to store
them.

Now we can shoot the particles into the scene. When a particles
hits a surface it might be absorbed, then it would vanish at the hit
point, or it might be reflected, then it would continue its trip into
the scene. We simply can use the mean reflectivity ρ̄ of the scene
to determine which particles will vanish and which will continue
their trip. From the N particles started at the light source ρ̄N will
be reflected and continue their trip, the others will vanish. From
the ρ̄N continuing after the first reflection, ρ̄nN will be reflected a
second time, the others will not. This scheme continues until no
more particles remain. We call the total number of hit points during
this this process as M, and this number is limited through following
formula

M <
∞

∑
j=0

ρ̄
jN =

1
1− ρ̄

N (4)

The starting points at the light source and the following hit points
during the particle shooting process will be used as virtual point
lights. Thereby we have to consider two things. First we need the
light colour of the VPLs. For the VPLs created at the light source it
is clear which colour to use, and for the VPLs created at hit points
it is almost as simple to gain. We just take the colour of the starting
point and subsequently attenuate it with the surface colour at the
hit point. Then when it comes to rendering, we have to consider
the second thing. We want all images rendered with a VPL to be
equally important. But due to the attenuation they would not be if
we used the light colour directly, so we have to compensate it for
rendering. This compensation can easily be done by multiplying
the light colour with the factor 1

bρ̄ jNc , where j stands for the j-th
reflection of the particle the VPLs belongs to.

Now we have everything we need to to the rendering. We render
the scene with shadows once for each VPL and using it as the light
source. The resulting images during these separate rendering steps
are accumulated with the weight 1

N . So we gain a good approxima-
tion of the indirect illumination in our scene.

2.2 Performance

Now we want to take a look at the performance of Instant Radiosity.
Thereby we can focus on two different issues. First is the quality
of the indirect illumination, cause what would the method be useful
for if it could not approximate it sufficient. And second we want to
assess the methods use for real-time purposes.

First we come to the quality of indirect illumination. As we saw
earlier (see figure 3) we can use Instant Radiosity to approximate
the indirect illumination in a very realistic looking way. When we
take a look at figure 5, we see that the quality of indirect illumina-
tion directly results from the number of particles starting at the light
source. The more particles we start with, the better the result will
be, so we can indirectly control the amount of quality.

And now lets take a look at the rendering speed. The scene in figure
5 consists of 402 quadrangles and all three images where rendered
within 24 seconds. Since the rendering time was for all three im-
ages the same, despite all three used different numbers of VPLs,
we can say that the bottleneck of this method is the rendering itself
and not the creation of VPLs. And when we now take a direct look
at the rendering time, 24 seconds, we can annotate that Instant Ra-
diosity was first published in 1997 [Keller 1997]. Since then hard-
and software have become much better. So we can proceed on the
assumption that nowadays Instant Radiosity would be capable of
calculating the indirect illumination, of at least simple scenes, in
real-time.

3 Derivations of Instant Radiosity

Instant Radiosity was first published more than ten years ago, so it
is not surprising that there are newer publications that build upon
Instant Radiosity. In this section we present several methods that
extend or use Instant Radiosity.

3.1 Bidirectional Instant Radiosity

Using Instant Radiosity we start the creation of virtual light sources
at the light source. But for some scenes, the light source might be
bad placed, so that VPLs created with this light source might not
illuminate the part of the scene which can be seen by the camera.
Here it would be better not to start at the light source, but at the
camera to create the VPLs. Bidirectional Instant Radiosity [Segovia
et al. 2006] is a method based on this idea.

Bidirectional Instant Radiosity is based on Instant Radiosity, but
besides the VPLs created at the light source, it also includes VPLs
created at the camera. The following two sections of this paper will
describe the basics techniques and show if it can be used within
real-time requirements.

3.1.1 Bidirectional Sampling of the VPL

Basically Bidirectional Instant Radiosity consists of two extensions
to classic Instant Radiosity. The first one is a technique to create
VPLs starting at the camera instead of starting at the light source.
The second one, is a method to combine first technique with Instant
Radiosity, so that we can use both, VPLs started at the light source
and those started the camera.

As we remember, the problem with classic Instant Radiosity was,
that the created VPLs might not illuminate the part of the scene,



(a) Scene (b) Shooting rays into the scene (c) Using hit points as VPLs (d) Rendering the scene with VPLs as
light sources

Figure 4: Here you see the basic functionality of Instant Radiosity. When we have our scene we approximate the indirect illumination in the
scene by VPLs. We start at the light source and shoot some rays into the scene, these rays might be reflected and end after some time. At
each hit point of the ray we create a virtual point light. Then, when it comes to rendering, we render the scene once for each VPL and using
the VPL as the actual light source. The resulting images are accumulated and form the final result.

(a) N=10, M=20 (b) N=32, M=72 (c) N=64, M=147

Figure 5: A single scene rendered three times with Instant Radiosity. Each time a different number of particles N was used. As we see in the
first image, a relatively small number of leads to discretisation errors in form of hard shadows. We do not have enough enough VPLs so that
the hard shadows would merge and they stay visible. As we see in the second and third image, with using more starting particles, the hard
shadow artefacts disappear.

seen by the camera. So we want to create VPLs starting at the
camera (called Reverse Instant Radiosity), but that is not enough.
Another requirement is of course that these Reverse-VPLs can illu-
minate the appropriate part of the scene, otherwise they would have
no influence at the result. We know that light propagates in a linear
way, so it is easy to see that we can use those parts of the scene as
Reverse-VPL who can see a fraction of the part of the scene, seen
by the camera.

Finding Reverse-VPL is quiet simple. We create random paths of
length two, starting at the camera (see figure 6(b)). At the end of
such a path will be the position of a Reverse-VPL.

Just finding Reverse-VPL is not enough. Cause we started at the
camera instead of the light source, some information is missing,
so we have to estimate it. The first necessary information, it the
Reverse-VPLs density of probability, which tells us how probable
it was to reach the Reverse-VPLs position with a length two path.
The second necessary information, is the outgoing light of the VPL.
For simplicity we expect the Reverse-VPLs light to be constant for
all possible angles. Then we have to connect the Reverse-VPL with
a light source (as in figure 6(b)) and calculate the amount of light
arriving from the light source at the Reverse-VPL. To to this we
start multiple paths at the Reverse-VPL and then also create some
standard VPLs. Then we connect the paths from the Reverse-VPL
with the standard VPLs with shadow rays, and calculate the amount
of light arriving at the Reverse-VPL.

As you can see in figure 7, we can use the Reverse Instant Radiosity
approach to create better results than by using the classic Instant

(a) Instant Radiosity (b) Reverse Instant Radiosity

Figure 6: Figure (a) shows classic Instant Radiosity, VPLs are cre-
ated from the light source. In figure (b) we see Reverse Instant
Radiosity. VPLs are created at those points (magenta area) that can
illuminate something seen by the camera (green area). Then the
created Reverse-VPLs are connected to the light source so calcu-
late the amount of light arriving at the VPL.

Radiosity. Although Reverse Instant Radiosity has it benefits, it is
not always the best method, and sometimes it would be better to
use the classic approach (see figure 8). So we need a method to
combine classic Instant Radiosity with Reverse Instant Radiosity,
to yield better results for most of all scenes.

To combine classic and Reverse Instant Radiosity it is actually just
necessary to create standard VPLs and Reverse-VPLs and to decide



(a) VPLs of classic Instant Radios-
ity

(b) VPLs of Reverse Instant Ra-
diosity

(c) Rendered with classic Instant
Radiosity.

(d) Rendered with Reverse Instant
Radiosity.

Figure 7: Two offices connected through a small corridor. The cam-
era is in one offices, the light source in the other. In figures (a) and
(b) we see the positions of VPLs, once created with standard In-
stant Radiosity and once created with Reverse Instant Radiosity. In
figures (c) and (d) we see the corresponding images to the previ-
ous figures. The first image stays complete black because all VPLs
where created in the wrong room, so there is nothing that illumi-
nates the scene. Otherwise in the second image, there the office
is good illuminated because Reverse Instant Radiosity was able to
find VPLs that illuminate the scene.

which of them would have the most influence to the result. So we
use a sampling resampling approach. First we create N/2 standard
VPLs and N/2 Reverse-VPLs. Then we build a cumulative distri-
bution function (based on the amount of energy arriving from die
VPLs at the camera) and then use this distribution function for re-
sampling. Therefore we select the N’ VPLs with the most influence
to the camera, and use them for rendering.

3.1.2 Performance

Now that we know the basic techniques to use Bidirectional Instant
Radiosity, we also want to know if it can be used under real-time
requirements. In figure 9 we see three different scenes, all with
a different number of triangles and all rendered with the special
implementation of Bidirectional Instant Radiosity, presented in the
original paper [Segovia et al. 2006].

When we look at the three scenes in figure 9 we can compare both,
their convergence time or their frames per second (see table 3.1.2).
The convergence time tells us how long the rendering took until
the RMS error was smaller than 1%. The frames per second were
gained with 30 VPL per second. We see that the convergence time
is for all scenes longer that two seconds. Of course this would be to
slow for interactivity, but cause of the strict RMS error rate and the
fact that the original implementation was not fully optimized, it is
not that much expressive. More expressive are the frames per sec-

(a) Better use VPLs startet at the
camera

(b) Better use VPLs startet at the
light source

Figure 8: In the first scene it would be better to create the VPLs by
starting at the camera. Otherwise most of the VPLs would be cre-
ated at positions where they do not illuminate anything. Otherwise
the second scene, here would almost all VPLs started at the light
source illuminate something, and it might be hard to find VPLs by
starting at the camera.

ond values. The office is with its 15 fps almost at real-time and also
the other two scenes might reach it with some more optimization of
the implementation.

Scene Convergence time Frames per second
Office 2.4 s 15 fps

Conference Room 3.8 s 4.5 fps
Cruiser 5.9 s 2.2 fps

Table 1: Rendering Performance of the scenes in figure 9

As conclusion we can say that Bidirectional Instant Radiosity ex-
tends the standard algorithm so we can gain good results also in
parts of the scene that are far away from a light source. And with a
good implementation of this method it would be also possible reach
real-time speed.

3.2 Metropolis Instant Radiosity

Metropolis Instant Radiosity [Segovia et al. 2007] is another varia-
tion of the classic Instant Radiosity method. When it was invented,
it was the target to create a technique that is numeric robust but
also quiet fast. The new method was based on two existing meth-
ods. The first was of course Instant Radiosity, the second one is a
Metropolis sampler [Veach and Guibas 1997].

The following two sections of this paper will give you an overview
of how the method works and answer the question if it can be used
under real-time requirements.

3.2.1 Algorithm

In this section we will explain how Metropolis Instant Radiosity
works. Cause the algorithm is basically a combination of Instant
Radiosity and a Metropolis sampler, we will give just a brief out-
line. If a more detailed description of the algorithm is wanted, we
recommend to read the original paper [Segovia et al. 2007].

The algorithm works this way (description directly taken from the
original paper [Segovia et al. 2007]):

1. Set all pixel intensities to 0.



(a) Simple office with about 35.000 triangles. (b) Conference room with about 200.000 tri-
angles

(c) Cruiser with about one million triangles.

Figure 9: Three different scenes rendered with Bidirectional Instant Radiosity

2. Compute the power Pc received by the camera.

3. With a Metropolis-Hastings sampler compute a set of n VPLs
with a density proportional to the power they bring to the cam-
era. We do not know the the outgoing radiance functions of
the VPLs but we know the scene transmits the same amount
of the VPL power to the camera.

4. for i=1 to n do

5. • Suppose that VPL i is on a diffuse surface and that it
has a constant outgoing radiance function equal to 1.
Compute the intensity of each pixel in the screen and
the total power P′ transmitted to the camera through the
scene from VPL i.

• As we know that VPL i transmits a power equal to Pc
n to

the camera and that there is a linear relation between the
outgoing radiance function of the VPL and the transmit-
ted power, rescale the intensities of the pixels by a P

nP′
factor.

• Accumulate VPL i contribution

6. end for

The interesting part of this algorithm is point 3, where we use a
Metropolis sampler to create the VPLs. Actually we have two
possible Metropolis sampler we can use here. The first one is a
Metropolis-Hastings (HM) sampler described in [Veach and Guibas
1997]. But there is another sampler, called the ”Multiple-try
Metropolis-Hastings algorithm” (MTHM) [W. 2000] that works
better (see figure 10). So we recommend to use the MTHM.

(a) Scene overview (b) HM (c) MTHM

Figure 10: A comparison of a HM and a MTHM sampler. Both
times with 256 VPLs and the same computation time. We see that
the MTHM scene is lighter than the HM scene, and also the colour
bleeding effect is more apparent.

3.2.2 Performance

Now we will take a look at the performance of Metropolis Instant
Radiosity and compare it with classic Instant Radiosity and Bidi-
rectional Radiosity. When want to see if the Metropolis variant can
keep up with the other two. When we take a look at figure 11 we
see two scenes, both rendered three times for each scenes with one
of the three methods.

The first scene in figure 11 is a simple dragon on a box. We see that
the classic Instant Radiosity provides us a poor result, but both other
provide a good result. And although we can see some differences
within the Metropolis and Bidirectional rendered images, we can
not really say one would be much better than the other. But for a
better comparison we can take a look at the second scene, where
we see three dragons. Or better said, in two of the three images we
actually do not see the three dragons. Standard Instant Radiosity but
also die Bidirectional variant fail to illuminate the scene completely.
Here it is easy to see that the Metropolis variant of Instant Radiosity
provides a better result.

Now we know that Metropolis Instant Radiosity can keep up with
Instant Radiosity and Bidirectional Instant Radiosity. That knowl-
edge is good but tells us nothing about its usefulness within real-
time requirements. So we take a look at table 3.2.2 where we com-
pare Metropolis Instant Radiosity with Bidirectional Instant Ra-
diosity. In the table we compare the generation time of VPLs for
both methods and for multiple scenes. We see that the Metropo-
lis variant is just slower than the Bidirectional variant in one of all
scenes.

Scene Metropolis Bidirectional
Scene 6 0.32 s 0.82 s
Scene 10 0.31 s 0.82 s

Office 0.31 s 0.62 s
Conf 0.49 s 0.92 s

Theater 1.0 s 1.0 s
Cruiser 0.92 s 1.3 s

Three Dragon Room 2.4 s 1.0 s

Table 2: VPL generation times for different scenes comparing
Metropolis and Bidirectional Instant Radiosity

As a short conclusion we can say that Metropolis Instant Radiosity
can handle even more complex scenes than Bidirectional Instant
Radiosity could, and in most of cases it would be also faster. So
as die Bidirectional variant can be a good way to include indirect
illumination within real-time requirements.



(a) Scene Overview (b) Standard (c) Bidirectional (d) Metropolis

(e) Scene Overview (f) Standard (g) Bidirectional (h) Metropolis

Figure 11: A comparison of standard Instant Radiosity, Bidirectional Instant Radiosity and Metropolis Instant Radiosity. We see that Instant
Radiosity fails to find good VPLs when the light sources are bad places. Bidirectional Instant Radiosity helps to avoid this problem for some
scenes, and is almost as good there as Metropolis Instant Radiosity. But as we see in figure (g) and (h), also Bidirectional Instant Radiosity
has its limits and fails for a more complex scene to find enough good VPLs.

3.3 Incremental Instant Radiosity

Another variant of Instant Radiosity is is the so-called Incremental
Instant Radiosity [Laine et al. 2007]. The central idea behind this
method is to reuse VPLs and maintain their good distribution (see
figure 12). So we avoid a lot of computations but still have a method
for real-time indirect illumination.

Although reusing VPLs sounds great, we have to make some con-
straints to achieve this. The first is that the contribution to the in-
direct illumination is limited to the static part of the scene. Each
of the VPLs needs a shadow map so we can tell what they can il-
luminate, and if we just use the scenes static part, the shadow map
of a VPL just has to be computed once. Although the contribution
is limited to the static part, the created VPLs can illuminate the dy-
namic part of the scene, and by using a single shadow map for the
primary light source we can also have direct lighting and shadowing
for the complete scene.

Another constraint is that we limit the generation of VPLs to ’first
hit’-VPL, what means when we cast a ray from the light source
to find a VPL, we will take the first hit of the ray as the position
of the VPL. This might seem to be inaccurate, as that it could be
used to calculate the indirect illumination, but as been demonstrated
by Tabellion and Lamorlette [Tabellion and Lamorlette 2004] such
kind of indirect illumination is good in many cases.

The last constraint is, that we will just consider 180 spotlights with
cosine falloff and omnidirectional point lights. Although it should
be not to difficult to extend the algorithm for other types of light
sources.

3.3.1 Algorithm Outline

We give now a short outline of how to calculate the indirect illumi-
nation with Incremental Instant Radiosity (the outline is taken from

the original paper [Laine et al. 2007]):

1. Determine the validity of each VPL.

2. Remove all invalid VPLs and possibly a number of valid ones
to improvement the distribution.

3. Create new VPLs according to allotted budget. Render
paraboloid shadow maps for them.

4. Compute intensities for VPLs.

5. Render the positions, normals and colours as seen from the
camera into a G-buffer (see section 4 ’Deferred Shading’).

6. Split the G-buffer into a number of tiles.

7. Loop over tiles and accumulate illumination from a subset of
VPLs in each of them.

8. Combine the tiles back into a single image.

9. Smooth the accumulated illumination using a spatially-
varying filter kernel.

As you can see, the algorithm persists of two blocks. The first block
contains the points 1 to 4 and occupied with the management of the
VPLs. The second block, the points 5 to 9, does the rendering for
the indirect illumination. Although this rendering is important, we
will focus on the first block and refer to the original paper [Laine
et al. 2007] for further information.

3.3.2 Distribution of VPLs

The distribution of the VPLs can be seen in two ways. The first
one is a directional distribution as seen by the primary light source.
The second one is a intensity distribution. In the best case the di-
rectional distribution should follow the intensity distribution, then
each VPL would represent a similar fraction of the primary light



(a) Create VPLs (b) Illumination with VPLs. Red
lines show occlusion.

(c) Reuse of valid VPLs, deletion
of invalid VPLs (occluded ones)

Figure 12: The basic functionality of Incremental Instant Radiosity. We start as common and create VPLs from the primary light source.
Then, we can use this VPLs to illuminate the scene. But then, when it is time for the next frame, we dont have to create all VPLs anew.
Instead we check the validity of all VPLs and just remove the invalid ones and reuse the valid ones. The movement of the camera does not
affect this procedure.

sources power. The job of managing the VPLs is to delete old and
add new VPLs, so that the distributions stay close together.

Cause we limited the primary light source to spotlights and omni-
directional point lights, we can map the directional distribution into
a 2D domain. For spotlights we can use the unit disc (see figure
13(a)), and for omnidirectional lights we can use the unit sphere
(see figure 13(c)).

The great benefit by doing this is that we can work in the 2D do-
main when managing the VPLs. Most of the managing work can
by done by a Delaunay triangulation and the associated Voronoi di-
agram (seen in figure 13). A second advantage by using the 2D
domain is, that when we uniform distribute the VPLs in the 2D
domain, they intensity distribution automatically follows the direc-
tional distribution.

3.3.3 Validity Testing

The first point of the algorithm tells us that we shall determine
the validity of each VPL. In other words, we shall find out which
VPLs will be reused and which not. Since we limited our primary
light sources to spotlights and omnidirectional point lights the test
is quiet simple, a VPL is invalid if:

• it is occluded from the new position of the primary light
source, or

• it fall outside the illuminated region of the primary light
source

Of course, the second case, might just happen when the primary
light source is a spotlight.

3.3.4 Deleting VPLs

Now that we have categorized all VPLs in valid or invalid, we can
delete the invalid ones. But to maintain the quality of the VPL dis-
tribution it is sometimes necessary to also delete some of the valid
ones. We have a simple heuristic so select one VPL to be removed.
We use the Delaunay triangulation to select one VPL so that the
smallest distance between VPLs in die Voronoi diagram increases
when we delete the VPL. This deletion (with a followed Delaunay
triangulation to keep it current) is then repeated until there have
been enough VPLs removed.

3.3.5 Creating New VPLs

After deleting VPLs we will not have the maximum number of
VPLs any more, so we have to create new ones. But it might happen
that the deletion removed so much VPLs that creating a new VPL
for each deleted might lead us to performance problems. Therefore
we have a maximum limit of VPLs to be created in one step. This
ensures a good performance but might lead into a temporal degen-
eration of shadow quality.

Creating new VPLs is quiet as simple as the deleting, and can also
be done with the Delaunay triangulation. To keep the uniform dis-
tribution of VPLs we want a new VPL to be at that place in the
Voronoi diagram where it has the most space, or in other words,
where the largest empty circle lies in the diagram. This place can
be simply found with the Delaunay triangulation. After we have
the position of our new VPL in the Voronoi diagram, we map the
position back into the 3D domain, recalculate the Delaunay trian-
gulation and create the shadow map for the VPL.

3.3.6 Computing Intensities

The distribution of VPL should ideally be evenly spaced across the
domain. But cause of the movement of the primary light source and
the limited number of VPLs, it would lead us to incorrect results if
we would give all VPLs the same intensity. So we have to recalcu-
late the intensities based on primary light sources intensity and the
solid angle it represents. And here again we can use the 2D domain
to get this data. We take the area of the Voronoi region of a VPL as
the VPLs intensity and scale it so that the sum of all intensities will
be the primary light sources intensity.

3.3.7 Performance

Now we will take a look at Incremental Instant Radiositys applica-
bility for real-time requirements. As we remember, the central idea
was to reuse VPLs and so avoid a lot of computations. That is why
we will test the method against another, or better said we will test
just the part for reusing the VPLs against a method that creates the
VPLs anew each frame. Both methods will use the same render-
ing method. The comparison method corresponds to Bidirectional
Instant Radiosity [Segovia et al. 2006].

When we look at figure 14 we see the three scenes we tested. The
test have been done with different resolutions and also with differ-
ent primary light sources. For all this different cases we see about



(a) Unit disc (b) Unit disc mapped onto a hemi-
sphere

(c) Unit sphere

Figure 13: 2D domains for VPL distributions with Delaunay triangulation. These domains allow us to perform VPL operations (insertion,
deletion, etc.) in this domains. That is much easier than doing this in the 3d scene geometry. Figure (a) shows uniform distributed samples in
a unit disc, this can be used for spotlights with a 180 cosine falloff. As we see in figure (b), the areas in the unit disc, correspond to the cosine
weighted integrals. Figure (c) shows uniform distributed samples on a unit sphere, this can be used for omnidirectional point lights.

(a) Cornell (b) Maze (c) Sibenik

Figure 14: Scenes used for comparing Incremental Instant Radiosity with a comparison method

the same effects, hence we just present a snapshot of all tests (see
table 3.3.7). As we can see, the comparison method is beaten by
Incremental Instant Radiosity for all tested scenes, and it also pro-
vides good results where the comparison method drops below real-
time performance.

Scene Incremental Instant Radiosity Comparison method
Cornell 65.1 fps 35.1 fps
Maze 49.2 fps 12.5 fps

Sibenik 48.6 fps 7.1 fps

Table 3: Comparison of Incremental Instant Radiosity with the
comparison method

With Incremental Instant Radiosity we have another variant of In-
stant Radiosity. More than the methods before it can be used within
real-time requirements. Although it has to be said that this method
still has it disadvantages, like it just uses ’first hit’-VPLs and that
the indirect illumination just bounces off from static geometry.

3.4 Interactive Global Illumination

For a long time, ray tracing techniques needed at least minutes to
render single images. But newer techniques have speeded up the
performance of ray tracing, so that interactive ray tracing can be
achieved on common hardware (see [Wald et al. 2002b]. [Wald
et al. 2001a] and [Wald et al. 2001b]). This method of fast ray trac-
ing scales well in a distributed system, using commodity computers
and networks. The distribution is implemented as a client/server

model. Through this distribution, fast ray tracing is capable of ren-
dering scenes with interactive framerates. And with an extension
for dynamic scenes [Wald et al. 2002a], we gain a interactive appli-
cation.

Though this fast ray tracing ought to be combinable with existing
global illumination algorithms resting upon ray tracing. But the
problem is, that most of this algorithms are not compatible with the
constraints imposed by such a distributed ray tracing system.

Interactive global illumination (IGI) [Wald et al. 2002c] is a
method, designed to be rest upon the fast ray tracing system and
to be compatible with the constraints imposed by fast ray tracing.
It uses Instant Radiosity to approximate the indirect illumination, a
simpler version of photon maps to calculate caustics and ray tracing
for other effects like reflections or refractions.

In the next section we will present the constraints imposed by fast
ray tracing, so that we understand what IGI should be capable of.
Then follows a section, describing the method behind IGI and then
we will take a look at the performance of IGI in the last section.

3.4.1 Constraints

Fast ray tracing allows us to achieve interactive frame rates at dy-
namic settings. So we could expect it would be useful to combine
fast ray tracing with existing global illumination methods, so that
we would have a interactive global illumination system. Unfortu-
nately the most of the existing global illumination methods do not
work with all the constraints imposed by fast ray tracing. We will
now take a closer look at this constraints.



First we have a performance constraint. With fast ray tracing we
should be at least capable of calculating 500.000 rays per second.
Even when we use a distributed system with multiple computers
and processors, we will not have more than some millions of rays
per second. A small image with a resolution of 640x480 has about
300.000 pixels. So for each of this pixels we would just have some
dozen of rays per second. And this are just rays, and not complete
paths of rays we might need. And this is also just for one second,
for interactive framerates we would have less rays. So, a global illu-
mination method would have to use this rays effectively as possible
to get good results.

Next we have a constraint concerning with parallel and distributed
computing. We need a several computers, combined to a distributed
system via a common network infrastructure, to have enough rays.
But to keep interactive framerates, we have a lot of requirements to
our global illumination method. It will have to keep its bandwidth
requirements low, it will have to hide latencies, all its calculations
will have to be parallelisable, we need a lot of this calculations for a
good job scheduling and it will have to minimize the synchroniza-
tion across the network.

At last we have an interactivity constraint. A lot of common global
illumination method need lot of lengthy preprocessing. But we
want a interactive system, so we can not need to long for prepro-
cessing. Thus our global illumination method will have to do mini-
mal preprocessing, so we keep interactive framerates.

3.4.2 Algorithm

Interactive global illumination was developed to run upon a fast ray
tracing system and to comply to the constraints imposed by this
system. The first implementation of interactive global illumination
[Wald et al. 2002c], had some scalability problems that led to a
maximum framerate of about 5. So it was reimplemented [Benthin
et al. 2003] so the former problems where abolished and also per-
formance was increased. Additionally some new features have been
implemented to.

Primary interactive global illumination builds upon fast ray tracing
and instant radiosity. In a short preprocessing step, we create the
VPLs, and then create a primary ray for each pixel to find the cor-
responding point in the scene for this pixel. Then we shoot shadow
rays from this point to the VPLs, check for occlusion, illuminate
the point and store it into the framebuffer.

Due to the limited number of VPLs we gain discretisation artefacts,
in form of hard shadows. We use interleaved sampling (see section
4) to destroy the correlation between neighbouring pixels and so
remove the hard shadow artefacts. But by interleaved sampling we
would have structured noise in the scene, so we use a discontinuity
buffer (see section 4) to eliminate this structured noise.

With ray tracing we also have the capabilities of simple specular ef-
fects, like reflections or refractions. Additionally we have a simple
version of photon maps (see figure 15) so we also can have caustics
in the scene. Unfortunately these caustics led to scalability prob-
lems, there where removed later [Benthin et al. 2003] so the new
implementation does not support caustics any longer.

Within the new implementation of the system [Benthin et al. 2003],
also some new features to improve image quality have been intro-
duced: support for textures, surface shaders, programmable light
sources, efficient anti-aliasing and tone mapping.

Figure 15: Photon mapping is just there used where the photon
density is high. So we can fix the filter radius r (blue circle) to
find photons. Instead of storing the photons in a kd-tree we use a
grid structure, and fix the cell size of the grid to be 2r. So we just
need to check 8 grid cells to find all photons. Just few of the cells
would have photons, so we can avoid storing all and use a hashing
scheme to find and access them. Photons stored in a grid structure,
and accessible via a hash table.

3.4.3 Performance

Now we will take a look at the performance of interactive global
illumination and its use for real time applications. The first im-
plementation of IGI [Wald et al. 2002c] had scalability problems
that limited the maximum number of frames per second to about 5.
Within the second implementation [Benthin et al. 2003] these prob-
lems have been solved. Thus we will focus on the performance of
the second implementation.

When you take a look at figure 16 you see some images rendered
with interactive global illumination. We see the indirect illumina-
tion looks good, but we are more interested in the rendering time.
With IGI there is a special case, compared to the other instant ra-
diosity derivations. We have a scalable system, so we do not just
want to have the rendering time for different number of computers
in the system.

In figure 17 we see the resulting frames per second for different
number of computers in the system. We see that for to little com-
puters, the performance is to slow as to be called interactive. But we
also see that the performances almost perfectly scales linear with in-
creasing number of computers and in some cases also reaches more
than 20 frames per second. To, when we would have enough com-
puters, we would also be able to render in real time.

Interactive global illumination builds upon a fast ray tracer and uses
instant radiosity to approximate the indirect illumination. Designed
as a client/server system, it almost perfectly scales linear with the
number of computers. Although is can not be used for single com-
puters now, future developments of hard- and software might make
it applicable.

4 Extensions for Instant Radiosity

This section covers the topic of possible extensions for Instant Ra-
diosity. This extensions might be combined with Instant Radiosity
or its derivations, to accelerate the rendering, to enhance rendering
quality or to add new features.



(a) Maple Trees (b) Room with globe (c) Shirley 6 (d) Power Plant

Figure 16: Several scenes rendered with interactive global illumination. (a) Complex shadows of an entire maple three with 1.5 million
triangles. Rendered with 4-6 fps on a cluster of 24 dual PCs. (b) A room with a globe, with about 20.000 triangles. The lamp illuminates a
part of the globe and so reflects a yellowish colour into the scene. (c) The Shirley-6 test scene with 600 triangles using a procedural shader.
Rendered with about 12 fps. (d) The power plant scene, containing more than 50 million triangles. Renders with about 2 fps.

Figure 17: A performance comparison of different scenes rendered
with interactive global illumination. Each scene has been rendered
multiple times, each time with more computers in the IGI system.
We can see that the performance almost perfectly scales linear with
the increasing number of clients in the system. So with enough
computers we might reach real time.

4.1 Jittered Low Discrepancy Sampling

The first extension was published within the first publication of In-
stant Radiosity [Keller 1997]. When you take a look at figure 18
you see sample points of the Hammersley are aligned to a grid. This
ensures a minimum distance between the points, but also might lead
us to aliasing. A simple way to get rid of this is to jitter the sam-
ple points (see figure 18), not much so that they remain in the unit
interval. By jittering the points we reduce aliasing artefacts and it
also results in a faster convergence rate.

4.2 Specular Effects

Another extension was published within the first publication of In-
stant Radiosity [Keller 1997]. As Radiosity IR approximates the in-
direct illumination, but just for diffuse surfaces. Although it would
be difficult to extant the method for all possible specular surfaces,
it is quiet simple to extent it to plain specular surfaces.

When a particle hits a surface we check if it is a diffuse or a specular
surface. If it is a diffuse surface we continue as so far and use the hit
point as a VPL. But if it is a specular surface, we mirror the origin

(a) Hammersley (b) jittered Hammersley

Figure 18: Grid structure of Hammersley and jittered Hammersley
for 16 sample points

of the particle (see figure 19) by the surface and use the mirrored
origin as a VPL. It is just necessary to mind that the lighting just
happens for elements inside the pyramid spanned by the mirrored
origin and the specular surface.

4.3 Realtime Walkthroughs

Another extension was published within the first publication of In-
stant Radiosity [Keller 1997]. It is simple to alter the base algorithm
of Instant Radiosity to better fit into an animated situation. Yet we
always created all VPLs new per frame, but instead we just create
one particle new and follow its path through the scene. We generate
the image by the VPLs on this path and store it with its generation
time. If we store the last N images, we can simply replace the old-
est image when a new path is completed. Then we accumulate all
images and display the result. So we gain a simple method for ani-
mated scenes and implicitly perform temporal antialiasing.

4.4 Deferred Shading

Using the common rasterisation method for rendering, each pixels
colour will be overwritten when a polygon is rendered that is closer
at the camera. This method works good, but unfortunately we also
waste time for shading of parts of the scene, that will not be seen.
What we actually would need, is the result of the last shading com-
putation of each pixel.

This thought is the central idea behind Deferred Shading [Saito and
Takahashi 1990]. Here the rendering is split into to steps, first a
rasterisation step and then the shading step. In the rasterisation step,
we create a so-called G-buffer (geometry buffer) that will contain
positions, normals and colours for all pixels. Then we rasterise the



Figure 19: When a particle hits a specular surface (the blue one) we
do not use the hit point as a VPL. Instead we mirror the origin VPL
at the surface and use this ’Mirror’-VPL as common. We just have
to mind that this VPL just illuminates a limited area.

scene and store the corresponding positions, normals and colours
into the G-buffer. Now that we have this data, we can use it to do
the shading for each pixel. This way we save time because we just
need one shading calculation per pixel.

Deferred Shading is perfectly suited to be combined with Instant
Radiosity. As we remember, within Instant Radiosity we have to
render the scene multiple times per frame, each time with a different
VPL as actual light source. But cause it is the same frame, the scene
will be static for all this renderings. So it is useful first to rasterise
the scene and store it into a G-buffer. Then we can use this buffer
for all renderings of the frame, so we save a lot of time by avoiding
the scene to be rasterised multiple times.

4.5 Interleaved Sampling and Discontinuity Buffer-
ing

Instant Radiosity is a good method to approximate the indirect il-
lumination in a scene. But since it uses a discretisation of the light
distribution, in form of VPLs, we can see discretisation artefacts.
Each VPLs brings a hard shadow into our scene (see figure 20(a)),
and although the shadows of the VPLs overlap in the final image,
they are still visible.

One method to get rid of this hard shadows would be to create more
and more VPLs, so the hard shadows would be closer together so
they would not be that visible any more. But of course, creating
more VPLs is costly so we need an other approach. Another method
would be to break the correlation between neighbouring pixels by
giving all of them different VPLs. So the hard shadows would dis-
appear, but of course giving all pixels different VPLs would not be
possible.

A solution to this would be Interleaved Sampling [Keller and Hei-
drich 2001]. Instead of giving all pixels different VPLs, we just
create a small sample pattern (e.g. a 3x3 pattern) and lay it inter-
leaved over the pixels (see figure 21), so that neighbouring pixels
would not have the same VPLs any more. And we would not to
have to create that more VPLs as so far. So we can remove the
hard shadows in a scene in a very simple way. But this method has
a price, instead of discretisation artefacts we now have structured
noise in our scene (see figure 20(b)).

This structured noise is still a problem, so we want to remove it.
As simple way would be to blur the resulting image. This method

(a) Just Instant Radiosity (IR) (b) IR + Interleaved Sampling
(ILS) 5x5

(c) IR + ILS 5x5 + Discontinuity
Buffer 3x3

(d) IR + ILS 5x5 + Discontinuity
Buffer 5x5

Figure 20: Section of a scene. (a) We see the hard shadows created
by different VPLs. (b) We can get rid of this hard shadows by using
interleaved sampling, so the correlation between neighbouring pix-
els is broken and the hard shadows disappear. Unfortunately now
we have structured noise in our scene. (c)-(d) To remove the struc-
tured noise we can use a Discontinuity Buffer to find continuous
regions and mean the irradiances. So the structured noise is de-
creased. (d) When we use the same pattern size for calculating the
mean irradiance as we use for interleaved sampling, the structured
noise completely disappears.

would work, but unfortunately we can not use it cause we want
a sharp image. A better solution would be to use a Discontinuity
Buffer [Keller and Heidrich 2001] to find continuous regions in the
image. These continuous regions might belong to the same poly-
gon, so we can expect the irradiance there as a piecewise smooth
function. So we can use the neighbours of a pixel that are continu-
ous and mean their irradiance. This mean irradiance is then used to
lighten the pixel (see figure 22). The great advantage of this method
is that we just calculate the mean of pixels that are somehow corre-
lated and we just mean the irradiance and not the colour value itself,
so the image will stay sharp.

4.6 Lightcuts

We would gain the best results with instant radiosity, by using as
much VPLs as possible. But if we would do that, rendering would
take longer, so its not practicable. One method that deals with large
numbers of light sources is called Lightcuts [Walter et al. 2005].

The central idea behind lightcuts is to group light sources into clus-
ters and to use the cluster as light sources instead of the individual
light sources. We form the clusters by creating a so-called binary
tree where all leaves are the light sources, that tree is called a light
tree. A node of the light tree is a cluster, containing all the light
sources of his children. The root node of course, would be a cluster
that contains all light sources.

The light tree is now used to partition the light sources into clusters.
It is simple to see that each cut through the tree would form a valid
partition of of the light sources. We start with a simple cut, and then
progressive refine it, until an error criterion is met.



Figure 22: To remove the structured noise, caused by Interleaved Sampling, we use a Discontinuity Buffer to find continuous regions in the
scene (here a-d and e-h form two continuous regions). Then we use the irradiances of the actual pixel and of the neighbouring pixels that are
continuous and calculate a mean irradiance. This mean irradiance is then used to calculate the lighting for the pixel. That way the structured
noise can be removed while keeping the image sharp.

Using lightcuts allows us to use more light sources than before,
without great errors (see figure 23). So this method is very useful
for instant radiosity and his derivations, since they need many light
sources to calculate the indirect illumination in a scene.

5 Conclusion

Indirect lighting as part of global illumination is very important for
realistic rendering. In this paper we presented the method of instant
radiosity, that allows us to approximate the indirect illumination in
a scene with additional light sources. Furthermore this method is
faster than common global illumination methods so it can achieve
realistic results in real-time, and it does not need a lot of prepro-
cessing or large memory for its calculations.

Instant radiosity has been extended from multiple methods, that im-
prove image quality or rendering speed. Also an method, called in-
teractive global illumination, has been presented, which builds upon
instant radiosity and a fast ray tracer. With this interactive global
illumination and a cluster of common PCs it is possible to gain in-
teractive framerates while having global illumination. Though we
still need a cluster of computers, future developments might lead to
a time where we can use such ray tracing based methods on single
PCs.

Future developments will have to be spent to make instant radios-
ity or its derivations faster. Though they can achieve interactive
framerates by now, they are not fast enough to be used within an
interactive application like computer games.
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