
Volume 0 (1981), Number 0 pp. 1–14 COMPUTER GRAPHICS forum

Real-time Indirect Illumination and Soft Shadows in Dynamic
Scenes Using Spherical Lights

Paul Guerrero† Stefan Jeschke‡ Michael Wimmer‡

Vienna University of Technology, Austria

Abstract
We present a method for rendering approximate soft shadows and diffuse indirect illumination in dynamic scenes.
The proposed method approximates the original scene geometry with a set of tightly fitting spheres. In previous
work, such spheres have been used to dynamically evaluate the visibility function to render soft shadows. In this
paper, each sphere also acts as a low-frequency secondary light source, thereby providing diffuse one-bounce
indirect illumination.
The method is completely dynamic and proceeds in two passes: In a first pass, the light intensity distribution
on each sphere is updated based on sample points on the corresponding object surface and converted into the
spherical harmonics basis. In a second pass, this radiance information and the visibility is accumulated to shade
final image pixels.
The sphere approximation allows us to compute visibility and diffuse reflections of an object at interactive frame
rates of over 20 fps for moderately complex scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: 3D Graphics and Realism

1. Introduction

Realistic illumination is one of the cornerstones of convinc-
ing computer graphics. Since a full global illumination so-
lution is inherently complex, recent research has focused on
simplifying the problem in various ways to allow real-time
calculation. The earliest approach (radiosity) was to assume
diffuse materials, static scene and static lighting, and pre-
compute illumination. Precomputed radiance transfer (PRT)
allows more general BRDFs and dynamic lighting, but the
scene still needs to be static. PRT also made the concept of
environment lighting popular, where the incoming radiance
is given by an environment map instead of individual light
sources.

The restriction of static scenes can be lifted by reducing
the order of interreflections that are taken into account. For
example, Ren et al. [RWS∗06] consider only direct illumi-
nation by the environment lighting, which gives the effect of

† paul.guerrero@chello.at
‡ {jeschke|wimmer}@cg.tuwien.ac.at

soft shadows due to the environment and the dynamic scene
objects which act as shadow casters (blockers). However,
secondary reflections are not taken into account, leading to a
general over-shadowing of the scene.

In this paper, we introduce a method to compute indirect
illumination due to diffuse reflections from dynamic objects
under environment lighting. Figure 1 shows images from an
animated scene rendered with the new method. Similar to
Ren et al. [RWS∗06], we use spheres to approximate dy-
namic objects, however in our method, the spheres also act as
secondary light sources due to diffuse reflections, so-called
spherical lights (SL). The light emitted in each direction is
represented in the spherical harmonics basis. Contributions
from multiple spheres are accumulated in log space, using
SH exponentiation [RWS∗06]. Like the method of Ren et
al. [RWS∗06], our method is best suited for diffuse reflect-
ing geometry that can easily be approximated with spheres.

The main contribution of this paper is a method that inter-
actively computes shadowed single-bounce diffuse indirect
illumination (i.e. light is shadowed in the first bounce be-
fore being reflected) for dynamic objects in real time with a

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

Figure 1: Images from the jelly bean assembly plant animation, rendered at 14 fps. Our method handles local light sources and
a class of object deformations which we call "soft deformations" on the fly.

minimum of precomputed information. Object translations,
uniform scaling, rotations and “soft” deformations (see Sec-
tion 7.1) can be handled without affecting performance.

2. Previous Work

Static scenes: Several methods have been proposed to han-
dle global illumination effects like soft shadows and indi-
rect illumination in real time, most of them are based on
precomputed radiance transfer (PRT) or ambient occlusion.
Using the spherical harmonics basis to store a precomputed
radiance transfer operator for each receiver point, Sloan et
al. [SKS02] calculate real-time soft shadows and interreflec-
tions in static scenes under dynamically varying lighting
conditions. There are many papers about extending PRT in
static scenes to handle local textures, high-frequency light-
ing and BRDFs etc., we will however focus only on methods
for dynamic scenes.

Ambient Occlusion [Lan02] describes the average visibil-
ity on the hemisphere of a receiver point. Ambient occlu-
sion methods for soft shadows [KL05, MMAH06] and indi-
rect lighting [Bun04] in dynamic scenes have been proposed.
Since ambient occlusion methods average visibility over all
directions, the resulting shadows are mostly dependent on
the proximity to objects, not on actual occlusions of light
sources. Our method averages visibility and radiance over
the projected area of each sphere in contrast to the entire
hemisphere and is therefore more accurate.

Direct illumination in dynamic scenes: Two methods
that use PRT to calculate direct illumination and shadows
from environment lighting in dynamic scenes are hemispher-
ical rasterization [KLA04] and shadow fields [ZHL∗05,
TJCN06]. A third method by Ren et al. [RWS∗06] approxi-
mates each scene object with sphere sets and efficiently ac-
cumulates the shadowing effect of multiple blocker spheres
at run time using SH exponentiation. With this method, Ren
et al. can handle real-time soft shadows in scenes of medium
complexity. In this paper, we extend this method to handle
diffuse indirect illumination.

Indirect illumination in dynamic scenes: Mei et al.
[MSW04] use Spherical Radiance Transport Maps to han-
dle glossy light interreflections and soft shadows in dynamic
scenes. General indirect illumination, however, can not be
handled by their method. Local, deformable PRT (LDPRT)

[SLS05] can handle radiance transfer effects on deformable
models, but is limited to local features, such as bumps or
wrinkles, and single objects. Sun and Mukherjee [SM06]
describe a method to handle all-frequency lighting at in-
teractive frame rates in scenes with at most one moving
object. Only one of viewpoint, lighting and scene geome-
try is allowed to change at a time. Recently, Laine et al.
[LSK∗07] proposed an algorithm for single-bounce indirect
illumination using virtual point lights (VPLs) to approxi-
mate surface reflections. Dynamic objects can be handled,
but they can only receive, not generate, indirect illumina-
tion. Dachsbacher and Stamminger [DS05, DS06] calculate
indirect lighting in image-space using Reflective Shadow
Maps and light splatting. Their method demonstrates im-
pressive global illumination effects like caustics and refrac-
tive surfaces at relatively high frame rates, but is limited
to directional point lights. Additionally, shadows from di-
rect lighting are handled using traditional shadow maps and
there is no occlusion of indirect lighting. In a second pa-
per [DSDD07], Dachsbacher et al. propose a discrete finite
element method for computing multi-bounce indirect illumi-
nation, using "Antiradiance" to avoid explicit visibility com-
putations. They demonstrate their method on fairly complex
scenes and glossy objects. On the downside, only bounded
object motion is allowed, since the finite elements affected
by the moving object have to be known in advance. Ob-
ject motion also degrades performance, since the number
of pairs of finite elements potentially affecting each other
increases with the extent of the motion. Additionally, shad-
owing from direct lighting has to be handled separately, e.g.
with shadow maps. In a concurrent and independent work,
Sloan et al. [SGNS07] propose a method to compute soft
global illumination using spherical proxies. This method is
similar to our method in that it is built on the method of
Ren et al. [RWS∗06] and extends it to include indirect illu-
mination. However, Sloan et al. ignore inter-proxy occlusion
effects (i.e. the indirect light is not occluded) and occlusion
of light incident on the proxies. Also, they demonstrate their
method only on uniformly-coloured objects.

Iwasaki et al. [IDYN07] presented a PRT-based method
that can handle multi-bounce interreflections and shadows
in dynamic scenes, building on the shadow fields method
mentioned above. Interreflections are handled by approxi-
mating the irradiance on objects with a linear combination

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

of PCA basis functions. Pan et al. [PWL∗07] present a simi-
lar method in which they precompute radiance transport op-
erators from incident radiance at some point near the object
to exit radiance at some other point in the space surrounding
the object and store them in a Radiance Transfer Field. We
will discuss these last two methods and compare them to our
method in Section 8.

Our method is limited to single-bounce diffuse indirect
illumination (although an extension to multiple bounces
seems straightforward). Unlike previous methods, the SL ap-
proximation enables more dynamic effects, like soft defor-
mations, a class of deformations we will define in Section
7.1. All objects can be translated, scaled uniformly and ro-
tated without affecting performance. Additionally, the pre-
computed dataset for each object is relatively small, keeping
memory requirements low.

3. Overview

The main idea of our new method is to calculate light inter-
action on simplified version of the scene where every object
is approximated using a set of spheres. Soft shadows due to
direct environment lighting are calculated by accumulating
the blocking spheres using SH exponentiation as [RWS∗06].
For indirect illumination, however, the spheres need to act as
light sources. To make this possible, for each sphere we cal-
culate incoming radiance at a number of given sample points
(Figure 2, top right) and calculate an intensity distribution
for the whole sphere from this (Figure 2, middle). During
shading, we accumulate the contributions from all visible
spherical lights (SLs) (Figure 2, bottom).

More specifically, our method needs three steps to render
soft shadows and diffuse indirect illumination (see Figure 2),
one precomputation step and two runtime passes:

• In a precomputation step, we tightly bound each scene ob-
ject with a given number of spherical lights (SLs). We de-
termine the position and radius of each SL in the local
coordinate system of the bounded object. For each SL, we
also define a set of sample points on the surface segment
of the scene object that is bounded by the SL. These sur-
face sample points are used in the first pass to compute
diffuse reflections on the object’s surface and update the
light intensity distributions of the SLs.

• In the first pass, we approximate the diffuse reflections of
each scene object with the set of SLs bounding the ob-
ject. For this purpose, we compute the diffuse reflections
at each surface sample point on an object’s surface using
environment lighting only. The light intensity distribution
of the SLs are updated in each frame to best match these
diffuse reflection values. Typically, the number of surface
sample points in a scene is relatively small when com-
pared to the number of receiver points used for final ob-
ject shading. This allows us to efficiently update the SLs
in each frame.

SL geometry surface sample points

pr
ec

om
pu

ta
tio

n
ru

n
tim

e

first pass: update intensity distribution of SLs

second pass: accumulate diffuse reflections
at receiver points using SLs

Figure 2: Overview of the steps in our method.

The SLs are also used as blockers to determine the visi-
bility of the environment and other objects, as described
in [RWS∗06].

• In the second pass, we accumulate the light from all SLs at
each final receiver point. First, the unoccluded light from
an SL incident at a receiver point is found. Then, the vis-
ibility of the SL at the receiver point is calculated using
all closer SLs as blockers. The effect of multiple blocker
SLs is accumulated using SH exponentiation [RWS∗06].
The light of an SL incident at a receiver point is darkened
according to the visibility of the SL, similar to ambient
occlusion, but limited to the projected area of each SL in-
stead of the entire receiver point hemisphere.

The following sections explain these steps in more detail.

4. Precomputation of Spherical Lights

For each scene object, we precompute the geometry of its
SLs (i.e. position and radius) as well as a set of surface sam-
ple points for each SL. In the following two sections, we will
describe the construction of SL geometry and surface sample
points for a scene object.

4.1. Spherical Light Geometry

The position and radius of SLs relative to a scene object are
found using a variational method for bounding sphere set

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

Figure 3: Surface sampling. Black dots are surface sample
points and crosses mark sample directions without surface
sample point. The left figure shows surface sampling for an
SL with center inside the sampled object, the right case for
an SL with center outside the object.

approximations [WZS∗06]. The goal is to find a bounding
sphere set {Si} for an object O that has minimal outside vol-
ume (see Figure 2, top left). Outside volume is the volume
inside the spheres but outside the object and defined as fol-
lows:

T ({Si},O) =
ns

∑
i=0

V (Si/O) (1)

where ns is the number of spheres in {Si} and V (Si/O) the
volume inside the sphere Si but outside O. The bounding
property ensures that there are no ’holes’ in the sphere set
approximation and minimizing the outside volume gives us
a tight fit on the object’s geometry.

A variant of Lloyd clustering [Llo82] is used to minimize
the outside volume of a sphere set with a given number of
spheres. For details on the method see [WZS∗06].

4.2. Surface Sample Points

Each SL is assigned a set of surface sample points at fixed
positions on an object’s surface (see Figure 2, top right). At
run time, diffuse reflections will be computed at each sample
point of an SL. The light intensity distribution of the SL is
updated in each frame to best match these diffuse reflection
values.

Surface sample points for a set of SLs {Si} and object O
are constructed as follows: First, a segment of the surface
of object O is assigned to each SL. An SL Si gets the seg-
ment PSi consisting of the set of surface points with smallest
distance to Si. We use a distance measure d that takes into
account the radius of Si:

d(p,Si) =
||p− xSi ||

rSi

(2)

where p is a surface point on O, xSi the center of Si and rSi

the radius. This ensures that each part of the surface is only
approximated by a single SL.

Now, we shoot rays from the center of each SL Si in a pre-
defined set of approximately evenly spaced directions {ω j}.

The set of directions {ω j} is derived from the vertices of a
geodesic sphere. Surface sample points are placed at the in-
tersections points of these rays with the back side of the ob-
ject’s surface. Intersections with the front side are ignored,
since these surfaces are not visible when looking at the SL.

When shooting rays from an SL Si, the surface of object
O may be hit more than once in any given direction ω. In
general, there are three possible cases (see Figure 3):

• There are one or more ray intersection points with the
surface segment PSi . In this case, the farthest intersection
point contained in PSi is used.

• There are only intersection points outside PSi . Since the
set of SLs {Si} bounds the object O, there must be an-
other SL So of {Si} in direction ω that approximates the
diffuse reflections in that direction. Discarding the surface
sample point and letting Si emit no light in that direction is
correct, because Si will always be occluded by So in direc-
tion ω. By letting the SLs emit no light in this direction,
we precompute the occlusion effects of intersecting SLs.
These precomputed occlusions will be useful at run time
when calculating the visibility of an SL (Section 6.2).

• There are no intersections. For closed objects, which we
assume here, this means that the center of Si is outside
the object. In this case, we shoot a ray in the opposite di-
rection ω′, this time allowing only the front sides of sur-
faces to be hit. If this ray does not hit a surface either, we
discard the sample point for this direction, as in the pre-
vious case. This kind of sampling causes approximation
error, since relatively small parts of the object’s surface
may be projected to relatively large parts on the surface of
the SL, giving these small regions too much influence on
the emitted light. However, this case is very rare for usual
geometry as the centers of the SLs are usually inside the
object.

We store surface position and normal for each surface sam-
ple point. For the surface albedo (i.e. the surface color), how-
ever, this kind of sampling is too sparse, as it may miss im-
portant textural detail. Instead, we sample the surface albedo
by rendering the surface segment PSi of each SL Si to a cube-
map, and convert this to spherical harmonics. The follow-
ing procedure is used to render a cubemap and ensures that
it only contains samples that respect the sampling rules de-
scribed above.

For an SL Si and object O, we position the camera at the
center of Si. We only use the set of triangles of O that are
closest to Si, using the distance measure d defined above.
For efficiency reasons, we do not split a triangle if parts of
it are closer to another SL, but instead assign it to both SLs.
Objects are usually tessellated finely enough so that this ap-
proximation is not noticeable in the final result. The camera
is rotated to look in the direction of each cubemap face. We
render the triangle set assigned to Si normally if the sphere
center is inside the object and without clipping planes such
that triangles behind the camera are rendered, too, but have

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

a lower depth, if the sphere center is outside the object (see
rule 3 above). Triangles are rendered back facing with in-
verted depth function.

The resulting cubemaps are projected to the spherical har-
monics (SH) basis, resulting in a surface albedo SH coeffi-
cient vector (SH vector) cSi for each SL Si.

5. First Pass: Approximation of Diffuse Reflections with
Spherical Lights

5.1. Calculation of Diffuse Reflections at Sample Points

In order to calculate the incoming radiance for the sample
points on secondary light sources (SLs), we use the same
method that Ren et al. [RWS∗06] use to calculate soft shad-
ows for direct illumination. SLs act as blockers and environ-
ment lighting as light source. We will review this method
here briefly.

We assume diffuse BRDFs, so the exit radiance at a sam-
ple point p (i.e. the diffuse reflections) can be calculated us-
ing the triple product of visibility, BRDF and lighting:

Lp =
∫

Ω
Vp,env(ωi)ρn(ωi)Lenv(ωi)dωi (3)

where ωi is the incoming radiance direction and Ω is the
sample point hemisphere. Lenv is the environment lighting
and ρn the BRDF for normal n. In our case, ρn does not in-
clude the surface albedo, since the albedo cSi of an SL has
been precomputed separately (see Section 4.2). The albedo
is factored in at a later point (see Section 5.2). We assume
that ρn is constant over the surface of each object. The main
problem is finding the environment visibility Vp,env since it
may change in every frame, depending on the scene config-
uration. All three functions are represented in the spherical
harmonics basis, where triple product integrals can be eval-
uated efficiently [NRH04].

Zhou et al. [ZHL∗05] compute the environment visibility
SH vector Vp,env as the product of n blockers:

Vp,env = Bp,O1 ∗Bp,O2 ∗ . . .∗Bp,On (4)

where ∗ denotes the SH product [NRH04] and Bp,Oi is the
SH projection of the blocker function Bp,Oi of object Oi at
sample point p:

Bp,Oi(ω) =
{

0 if Oi blocks in direction ω
1 otherwise.

(5)

Ren et al. [RWS∗06] accelerate this method by accumulat-
ing the log of the visibility of spherical blockers, avoiding
expensive SH products:

Vp,env = exp
(
Gp,S1 +Gp,S2 + . . .+Gp,Sn

)
(6)

Gp,Si = log(Bp,Si) (7)

where exp denotes the SH exponential [RWS∗06], log the
SH logarithm [RWS∗06] and Bp,Si denotes the blocker SH
vector of the spherical blocker Si at sample point p. The

Figure 4: The light intensity distribution of an SL is updated
by projecting the diffuse reflection values (red) to the surface
of the SL. Nearest neighbour interpolation is used between
these values, resulting in a function consisting of the Voronoi
cells of the sample directions.

SH exponential can be calculated efficiently at run time. The
log SH vector Gp,Si of spherical blockers is circularly sym-
metric. It can be parametrized by angular radius θ of the
spherical blocker at a sample point p and direction ω of the
spherical blocker on the hemisphere of p. Ren et al. precom-
pute the log Gθ for spherical blockers of any angular radius
θ and ω = (0,0). Since the precomputed blockers are cir-
cularly symmetric, they can be represented in a subset of
the spherical harmonics basis, the zonal harmonics (ZH) ba-
sis [SLS05]. At run time, the precomputed Gθ are looked up
by angular radius θ and then rotated to the correct direction
ω on the hemisphere of the sample point using the simple
rotation rules for ZH coefficient vectors [SLS05].

If we assume fixed environment lighting and BRDF, we
can precompute the product of BRDF and lighting. Equa-
tion 3 then reduces to a simple dot product between the en-
vironment visibility SH vector Vp,env and the precomputed
product of BRDF and lighting Lenv,ρn :

Lp = Vp,env ·Lenv,ρn (8)

5.2. Updating the Light Intensity Distributions

After we have calculated the diffuse reflections at each sam-
ple point, we update the light intensity distribution of each
SL to approximate the diffuse reflections computed at its
set of sample points. Again, the spherical harmonics basis
is used to represent the light intensity distribution of each
SL, so we have to project the diffuse reflections to the SH
basis.

We use Monte Carlo integration with constant probability
distribution [Lep78] to project the diffuse reflection values
Lpj of the m surface sample points p j of SL Si to the SH
basis y:

LSi =
4π
N

N

∑
k=1

L(ω̂k)y(ω̂k) (9)

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

where {ω̂k} is a set of N evenly distributed sample direc-
tions, generated using jittered stratification [Lep78]. Note
that we now have N sample directions {ω̂k} and m surface
sample points with directions {ω j} for sphere Si (N � m).
The function L(ω̂k) uses nearest neighbour interpolation be-
tween the diffuse reflection values of each surface sample
point, i.e. it is a function consisting of the Voronoi cells of
the surface sample point directions {ω j} (see Figure 4).

Since the sample directions {ω j} are fixed, we can speed
up the SH projection by precomputing the SH basis function
sums for each Voronoi cell. At run time, each sum is multi-
plied with the corresponding diffuse reflection value Lpj :

LSi =
4π
N

m

∑
j=0

Lpj Y j, Y j =
Nj

∑
k=1

y(ω̂ j
k) (10)

where Y j is the precomputed SH basis function sum for sam-
ple direction ω j of surface sample point p j. Nj is the number

of sample directions ω̂ j
k in the Voronoi cell of receiver point

p j and ∑m
j=0 Nj = N. By precomputing the SH basis function

sums, the computational complexity of the SH projection is
reduced from O(N) to O(m).

Finally, the light intensity distribution SH vector LSi is
multiplied with the surface albedo SH vector cSi (see Section
4.2) to get the final light intensity distribution Lc

Si
of the SL

Si, including surface color:

Lc
Si

= LSi ∗ cSi (11)

6. Second Pass: Accumulating Diffuse Reflections at
Receiver Points

In the second pass, we compute the final exit radiance at
each receiver (i.e., final image) point. The direct component
is computed using the method by Ren et al. (see Section 4.2).
To calculate the indirect component, we accumulate diffuse
reflections from all visible SLs, using the updated light in-
tensity distributions Lc

Si
. The total exit radiance at a receiver

point p is the sum of direct exit radiance Lp and indirect exit
radiance LI

p.

LT
p = LI

p +Lp (12)

We use the light emitted by the SLs to approximate incident
diffuse reflections:

LI
p =

nS

∑
i=0

∫
Ω

Lp,Si(ωi)Vp,Si(ωi)ρn(ωi)dωi (13)

where nS is the number of SLs, Lp,Si is the unoccluded
light from SL Si incident at receiver point p and Vp,Si is
the visibility of Si at p. ρn is the BRDF for normal n. Note
that since we assume diffuse BRDFs in our implementa-
tion, ρn(ωi) = n·ωi. Other types of view-independent low-
frequency BRDFs are also possible in the second pass. View-
dependent BRDFs are left for future work (see Section 9).

Equation 13 would require evaluating relatively expensive

triple product integrals for each SL. We use a more approxi-
mate approach instead: First, we decompose Equation 13 as
follows:

LI
p = ∑nS

i=0 Lp,SiṼp,Si (14)

Lp,Si =
∫

Ω Lp,Si (ωi)Vp,Si (ωi)ρn(ωi)dωi∫
Ω Vp,Si (ωi) ρn(ωi)dωi

Ṽp,Si =
∫

Ω Vp,Si(ωi)ρn(ωi) dωi

We call Lp,Si the average radiance and Ṽp,Si the average vis-
ibility of an SL at p. Ṽp,Si can be determined with a simple
dot product of the BRDF SH vector ρn with the visibility SH
vector Vp,Si . For the purpose of finding the average radiance
of an SL, we approximate the BRDF term ρn to be constant
over the area of the SL on the receiver point hemisphere.
Since this area is typically small and both the BRDF and the
intensity distribution of the SL are low-frequency, the ap-
proximation error is minimal. This removes the dependence
of Lp,Si on the BRDF:

Lp,Si ≈ L̃p,Si =

∫
Ω Lp,Si(ωi)V ′

p,Si
(ωi)∫

Ω V ′
p,Si

(15)

We use the unoccluded visibility V ′
p,Si

of Si at p instead of
Vp,Si , effectively averaging the incident radiance over the
whole facing sphere area, instead of only the visible area.
We then ‘darken’ this area by multiplying with the average
visibility value Ṽp,Si . This can be thought of as per-SL am-
bient occlusion. The effects of this approximation error de-
pend mainly on the resolution of the SL approximation (i.e.
higher resolution introduces less approximation error) and
the amount of occlusion in a scene (i.e. there is no approx-
imation error if there are no occlusions between SLs). This
approximation does not produce objectionable artifacts and
since the light intensity distribution of SLs is low-frequency,
the approximation error is noticeable only in extreme cases.

L̃p,Si is the average radiance of the SL Si in direction to
p. In the next section, we show how to find the average radi-
ance L̃p,Si using a simple geometric term. In Section 6.2 we
describe how to calculate the average visibility value Ṽp,Si .

6.1. Average Radiance of a Spherical Light

The average radiance L̃p,Si of an SL Si in direction of a re-
ceiver point p is found by multiplying the light intensity dis-
tribution of Si with the cosine of the surface inclination as
seen from p (the angle γ in Figure 5, right):

L̃p,Si =
∫

S LSi(ωS)max(0,cosγ(ωS))dωS∫
S max(0,cosγ(ωS))dωS

(16)

where S is the sphere of the SL. The term cosγ is circularly
symmetric and can be parametrized by the angular distance
α from the direction SL center to p:

cosγ(α) = max

[
0,sin

(
atan

(
1− sinθ cosα

sinθ sinα

)
−α

)]
(17)

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

p
θ

α

γ

Si

p Vp,Si

Si

Figure 5: The left diagram shows the visibility function Vp,Si

for the SL Si on the hemisphere of the receiver point p. Zero
values are black, values of 1 are white. The right diagram
shows the geometry of the average radiance of Si to p.

where θ is the angular radius of the SL Si at the receiver point
p. In a precomputation step, this function is normalized and
tabulated as a ZH vector wθ by angular radius θ. At run time,
wθ is looked up by angular radius and rotated to the direction
of the receiver point using the simple rotation rules for ZH
vectors [SLS05]. The average radiance from Si in direction
to p can then be computed with a simple dot product of the
rotated ZH vector w′

θ and the light intensity distribution SH
vector Lc

Si
of the SL Si:

L̃p,Si = w′
θ ·Lc

Si
(18)

6.2. Visibility of a Spherical Light

The visibility value Ṽp,Si of an SL Si at a receiver point p is
calculated using all SLs closer to p as blockers. The blocker
function of an SL Si at p is defined as follows:

Bp,Si(ω) =
{

0 if Si blocks in direction ω
1 otherwise.

(19)

The visibility function Vp,Si of Si at p is given by:

Vp,Si(ω) = (1−Bp,Si(ω)) Bp,Si−1(ω) . . . Bp,S1(ω) (20)

where all SLs S j with j < i are closer to p than Si (see Figure
5, left). The product of these blocker functions is evaluated
in the SH basis using SH exponentiation:

Vp,Si = exp
(

log(B̂p,Si)+Gp,Si−1 + . . . +Gp,S1

)
(21)

Gp,S j = log(Bp,S j) (22)

where B̂p,Si is the SH projection of 1−Bp,Si(ω). The Bp,S j

are the same circularly symmetric blocker functions used
for calculating the environment visibility (see Section 4.2).
Their SH logarithms are precomputed as ZH vectors and tab-
ulated by angular radius θ. At run time, they are looked up
by angular radius and rotated to the direction of S j.

The SH vector B̂p,Si however, is not well suited for the
SH logarithm, since 1−Bp,Si(ω) is zero in most parts of its

domain. B̂p,Si would have to be clamped, increasing the ap-

proximation error. Additionally, the SH logarithm of B̂p,Si

has a large vector magnitude, which is difficult to handle
with SH exponentiation. Instead, we use this equivalent for-
mulation to determine the visibility SH vector Vp,Si :

Vp,Si = exp
(
Gp,Si−1 +Gp,Si−2 + . . . +Gp,S1

)
− exp

(
Gp,Si +Gp,Si−1 + . . . +Gp,S1

)
(23)

Using this formulation, we avoid using B̂p,Si , although at the
cost of an additional SH exponential.

At each receiver point, the visibility SH vector Vp,Si is
then dotted with the precomputed BRDF SH vector ρn for
normal n to get the visibility value Ṽp,Si of Si:

Ṽp,Si = Vp,Si ·ρn (24)

Intersections of Spherical Lights are difficult to handle
when computing the visibility of an SL Si. The blocker func-
tion of an SL intersecting Si may not be circularly symmetric
and can therefore not be precomputed in the ZH basis, like
the functions for non-intersecting blockers. To prevent inter-
section of SLs of different objects, we do not allow objects
to intersect. Intersections between SLs of the same object re-
main constant. To precompute their blocking effect on Si, we
remove the surface sample points of Si corresponding to di-
rections of intersecting SLs during precomputation (the sec-
ond rule in Section 4.2). Therefore, an SL does not emit light
in these directions. When calculating the visibility of an SL
Si at run time, we ignore intersecting SLs, since their occlu-
sions have already been accounted for in the light intensity
distribution of Si.

Avoiding Problems with Receiver Points Inside SLs
Since SLs bound each object, each receiver point is inside
of at least one SL. To avoid incorrect shadows and dif-
fuse reflections from these SLs, we adjust SLs individually
at each receiver point, using the rules described by Ren et
al. [RWS∗06]. SLs that contain a receiver point p are either
reduced in size, so they no longer contain p, or they are com-
pletely culled. SLs on the horizon of receiver point hemi-
spheres that intersect the tangent plane of the receiver point
are also scaled down and translated until they are completely
above the tangent plane. This is done to avoid discontinuities
as receiver points move from inside an SL to outside. For de-
tails see [RWS∗06]. These rules ensure that a receiver point
is not contained in any SL that is used to compute indirect
illumination and shadows at the receiver point.

7. Application and Implementation

7.1. Object Transformations

Translation and uniform scaling are trivial. Surface sample
points have to be translated/scaled along with the object and
for uniform scaling, the center and radius of SLs have to be
scaled accordingly. Rotations of SLs are handled by rotating

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

1
2

3
4

6
5

1
3

2
4

5
6

pp

Figure 6: Per-sphere and per-object blocker accumulation strate-
gies. Numbers indicate the order of blocker accumulation. Left:
when using per-sphere blocking, blocker SLs are accumulated in
the order of distance from the receiver point p. Note that SL num-
ber 5 cannot be used to occlude the blue SL, since it is intersecting.
Right: when using per-object blocking, the SLs are accumulated in
the order of object distance.

the weight SH vector wθ (see Section 6.1) with the inverse
rotation of the SL, resulting in a correct average radiance
at each receiver point. By rotating the weight vector instead
of the SL, we avoid expensive rotations of surface sample
points and surface albedo SH vector (see Section 4.2).

To handle object deformations for articulated motion with
deformable joints, we would need to re-sample the object’s
surface in each frame (i.e. find surface sample points and
surface albedo SH vector for each SL). Finding methods to
re-sample an object’s surface at run time is left for future
work. However, if the object’s surface deformation relative
to each individual SL can be kept minimal (i.e. when bend-
ing a tall object), the error caused be keeping the original
surface samples is not noticeable. We call this class of defor-
mations soft deformations. By rotating and translating each
SL with the average rotation and translation of all its associ-
ated vertices, we can handle soft deformations. Articulated
motion that does not deform the object’s surface (e.g. rigid
joints) can also be handled by our method.

7.2. Per-Sphere and Per-Object Blocking

Finding the visibility of each SL as described in Equation

23 requires n(n+1)
2 SH vector additions per receiver point,

resulting in a quadratic runtime complexity. To reduce the
number of additions, we could start computing the visibility
at the closest SL and then incrementally add blocker SLs to
get the visibility at farther SLs. However, this is generally
not possible, since we have to ignore intersecting SLs.

When using per-object blocking, we group SLs by objects
and compute the visibility of all SLs in one object before
moving to the next object. Since SLs of different objects
are not allowed to intersect, we can re-use the accumulated
blocking effect of one object for all following objects. In this
manner, we can incrementally build up the blocking effect
of all objects closer than the current object. For a particu-
lar SL, we then only have to add the blocking effect of all

non-intersecting SLs in the same object to the accumulated
blocking effect of all closer objects, which has already been
computed. This reduces the runtime complexity to a linear
complexity in the number of objects. Figure 6 illustrates the
difference between per-sphere (left) and per-object blocking
(right).

In our implementation and our test scenes we use both
per-sphere and per-object blocking. See Section 8 for results
and a more thorough discussion of both blocking methods.

7.3. Hierarchies of Spherical Lights and Local Lights

In order to speed up computations, hierarchies of SLs
and receiver point clusters are constructed and used as in
[RWS∗06]. Starting from leaf SLs, parent SLs are con-
structed to bound a given number of child SLs. Receiver
points far away from an object use a coarser hierarchy level
to calculate shadows and diffuse reflections. A SL hierarchy
cut is calculated once per frame for all receiver points in a
cluster. Analogous to the ratio defined in [RWS∗06], we de-
fine a reflection ratio to eliminate artifacts caused by using
different SL hierarchy cuts in adjacent clusters.

A reflection ratio tSp is calculated once per frame at the
center xC of each receiver point cluster. It represents the best
scaling of the diffuse reflection value (L̃xC ,SpṼxC ,Sp) of a par-
ent SL Sp (see Equation 14) to match the sum of the diffuse
reflection values of all child SLs S j. It is calculated via:

tSp =
∑n

j=0 L̃xC ,S jṼxC ,S j

L̃xC ,SpṼxC ,Sp

(25)

At run time, all receiver points in a cluster multiply the dif-
fuse reflection values of each parent SL Si with the reflection
ratio tSi calculated at the cluster center, thus Equation 14 be-
comes:

LI
p ≈

ns

∑
i=0

L̃p,SiṼp,Si t
D
Si

(26)

Local lights can be treated like SLs with user-defined in-
tensity distributions. In the first pass, we do the same calcu-
lation for local light sources, as we do in the second pass for
normal SLs.

7.4. GPU Implementation

Since we handle only low-frequency light transport effects,
dense sampling is usually not required. In our implementa-
tion, we sample at each vertex and increase the geometry tes-
sellation if necessary. We work with n = 4 SH bands, which
is usually a good tradeoff between quality and performance.

In a precomputation step, we generate all lookup ta-
bles that are independent of the scene configuration and
store them in floating-point textures. Two 256× 256 pixel
floating-point textures are easily enough to hold all tables.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

In the first pass, we update the light intensity distribution
of the SLs. First, we prepare floating-point textures on the
CPU, containing information on the SLs, including position,
radius and ratio vectors, and the surface albedo SH vector
(see Section 4.2). In a first GPU computation step, we use
these textures to calculate diffuse reflections at the surface
sample points. The resulting sampled values are rendered di-
rectly to texture using an OpenGL frame buffer object. In a
second GPU computation step, we project the sampled val-
ues to the SH basis and multiply with the surface albedo SH
vector. The resulting updated light intensity SH vectors are
rendered to textures using a frame buffer object.

The second pass calculates the final exit radiance at each
vertex on the GPU, using the output from the first pass and
the SL information textures. In this step, we iterate over each
vertex and first sort spheres (per-sphere blocking) or ob-
jects (per-object blocking) by distance from the vertex. Then
we accumulate incident radiance and blocking effect as de-
scribed in Equations 12, 14 and 8. We have implemented
the second pass both as vertex- and pixel shader. The vertex
shader implementation directly calculates each vertex color.
The pixel shader implementation is less direct, but has bet-
ter performance (see Section 8.5). We first render the ver-
tex colors to the frame buffer, then we read the result to a
vertex buffer using the OpenGL function ReadPixels, as
described in [RWS∗06]. The vertex colors in the buffer are
used in a standard render pass without lighting to render the
final image.

8. Results and Discussion

Frame rates were measured on a PC with a Core2Quad
Q6600 CPU, 2048 MB ram and a GeForce 8800 GTX.
Rendering was done at a resolution of 1024× 1024 using
OpenGL. In our test scenes, large flat surfaces like walls and
the ground plane are shaded properly, but do not contribute
to indirect illumination, since this type of geometry is not
well suited for sphere approximation.

8.1. Sources of Approximation Error

Apart from the sources of approximation error described by
Ren et al. [RWS∗06], the following are the main sources of
approximation error in our method:

First, the accuracy of indirect lighting depends on the res-
olution of the SL approximation (i.e. how many SLs are
used). The number of SH bands used for the intensity dis-
tribution of each SL is also important, because it determines
how much surface detail a single SL can approximate.

Second, size adjustments of SLs at the horizon of the re-
ceiver point hemisphere (see Section 6.2) are also a source
of approximation error. Since the size of SLs at the horizon
of receiver point hemispheres is reduced, soft shadows and
diffuse reflections incident at shallow angles (i.e. large an-
gles with the surface normal) may be too weak. However,

precomp. occlusion
for blue SL

precomp. occlusion
for yellow SL

Figure 7: Approximation error due to precomputed occlu-
sions of intersecting SLs. The left diagram shows a setup
without approximation error. Both spheres have correct vis-
ibility. In the right diagram, too little of the blue SL is oc-
cluded, resulting in diffuse reflections that are too bright.

this error is very small when compared to the other sources
of approximation error and not noticeable in typical scenes.

Third, the precomputed occlusions for intersecting SLs
(see Section 6.2) cause approximation error. Normally, these
occlusions would be view-dependent, but by precomputing
them, we make them less dependent on the viewpoint (see
Figure 7). The result is a brightening of diffuse reflections
for some configurations of intersecting SLs.

In our tests, approximation of diffuse reflections in the SL
sets and the precomputation of occlusions for intersecting
spheres were the largest sources of approximation error. The
former can be alleviated by increasing the number of SLs
per object at the cost of speed. This is a decision of quality
versus performance. The latter could be solved by calculat-
ing the visibility of intersecting SLs at run time. This could
be done by precomputing the visibility for possible configu-
rations of intersecting SLs, but this is left for future work.

8.2. Validation

We present four sample scenes of increasing complexity (see
Figure 8) to illustrate the overall effect of our approximation
on the accuracy of the resulting images. For each scene, we
show our solution, a reference image, the absolute difference
to the reference image and the SLs used in the scene. In Fig-
ure 9, we show two model deformations with corresponding
reference images. Reference images were rendered with 3D
Studio Max [3ds] and VRay [VRa], using irradiance maps
and path tracing. The absolute difference to reference im-
ages was multiplied by a factor of two to enhance visibility.

The first scene in Figure 8 consists of a simple sphere,
which is the optimal case for our method. Approximation
error can only arise from the approximated light intensity
distribution of the SL and the SH basis approximation of
incident light. In the second scene we have added mul-
tiple spheres. In this scene, additional approximation er-
ror arises from SH blocker accumulation. The third image
shows a squirrel model approximated with multiple SLs. In
this scene, we can also observe approximation error from

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

Figure 8: Four scenes used to illustrate approximation error. Columns from left to right: (a) Our solution. (b) Reference
computed using path-tracing and irradiance maps. (c) absolute difference between our solution and the reference solution,
multiplied by a factor of two to enhance visibility (large absolute difference at edges mainly due to different anti-aliasing and
texture filtering). (d) SL approximation of the scene.

precomputed occlusions and from the geometry of the SL
approximation, which has a larger volume than the origi-
nal geometry. The difference between SL approximation and
original geometry is most evident from the viewpoint of ver-
tices on the model which are facing SLs of the same model.
This leads to the darkening of crevices we can observe on the
squirrel model. The last row shows one of the benchmarking
scenes. Approximation error is mainly due to the larger vol-
ume of the approximating SL set.

Figure 9 shows a model in two different deformation
states. We chose a view of the scene that is most likely to
show approximation error due to model deformations. Ap-
proximation errors occur because a single SL can only be
transformed with the average transformation of all its asso-
ciated vertices. The strength of the approximation error is
determined by the deviation of individual vertices from this
average. When bending a cylinder, we can observe this ap-
proximation error near the outward-facing part of the cylin-

der, where surface stretching is strongest. At a 90 degree
bend (first row of Figure 9), the approximation error is still
relatively small. At a 180 degree bend (second row of Figure
9), we can observe the approximation error in the form of
slightly darker bands on the ground below the cylinder, per-
pendicular to the cylinders main axis (note that the difference
to the reference on the cylinder itself is caused by a differ-
ent bone animation technique in the reference renderer). This
banding is caused by black parts of the SLs (i.e. parts without
emission) that become visible because of the deformation,
as highlighted on the SL visualization in the second row of
Figure 9. However, the strength of the approximation error
for simple deformations, such as articulated motion or the
deformation demonstrated in this scene, is very small when
compared to other sources of approximation error.

Flat objects and objects with sharp edges are difficult to
approximate with spheres and need a higher resolution SL
approximation (i.e. more SLs) to keep the approximation er-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

Figure 9: Approximation error caused by deformations. Columns from left to right: (a) Our solution. (b) Reference computed
using path-tracing and irradiance maps. (c) absolute difference between our solution and the reference solution, multiplied by
a factor of two to enhance visibility. (The large absolute difference on the cylinder in the second row is mainly caused by a
different bone animation technique in 3D Studio Max.) (d) SL approximation of the scene.

Figure 10: Different SL resolutions on an object with sharp edges. Images from left to right: (a) Reference computed using
path-tracing and irradiance maps. (b) Our solution using one SL and (c) using 8 SLs. At the top left of (b) and (c) we show the
SL approximation of the cube, at the top right the absolute difference between our solution and the reference solution, multiplied
by a factor of two to enhance visibility.

ror low. In Figure 10 we show a box with SL approxima-
tions of different resolutions. The left image shows the ref-
erence rendered offline. Note that there are high-frequency
brightness changes at the edges of the cube, particularly the
brightness at the bottom side of the cube is much lower than
on the other sides. When using a single SL to approximate
the cube (center image), the light intensity distribution of the
SL blurs these high frequencies, resulting in indirect lighting
that is too weak near the edges of the cube. Higher SL res-
olutions (right image) result in less blurring and therefore
more accurate indirect lighting.

8.3. Performance

Blocker accumulation is the most expensive step in our
method. When using standard per-sphere blocking (see Sec-
tion 7.2), the performance of this step depends quadratically

on the number n of SLs in the scene (O(n(n+1)
2)), since ev-

ery SL has to be occluded by every closer SL. This could be
reduced to O(mn), where m is the average number of inter-
sections per SL, if results were re-used during the calculation
of the SL visibility value. Finding efficient ways to store and
re-use such results on the GPU is left for future work.

When using per-object blocking, we can reduce the com-
plexity of the blocker accumulation step to O(n2

l N) where nl
is the average number of SLs per object (closely related to
the geometrical complexity of objects) and N the number of
objects in the scene. If we place an upper bound on the geo-
metrical complexity of objects in the scene, blocker accumu-
lation has a complexity that is linear in the number of scene
objects, with a constant factor representing object complex-
ity. (A corresponding factor can be found in the methods
of Pan et al. [PWL∗07] and Iwasaki et al. [IDYN07]. We
will make a more thorough comparison in Section 8.6.) Sort-
ing objects by distance from a receiver point has a runtime
complexity of O(N logN), although in practice, the compu-
tational cost of this step is low when compared to blocker
accumulation.

Memory requirements for our method are low, as the pre-
computed dataset for each scene object is relatively small,
typically in the range of 32 - 150 Kbyte. The dataset for pre-
computed lookup tables is also relatively small, 775 Kbyte
in our implementation.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

per-object blocking per-sphere blocking

Figure 11: Situations where per-object blocking is inappro-
priate. First row: two interlocking chain links occlude each
other. Second row: three convex objects cannot be sorted un-
ambiguously.

8.4. Per-Sphere vs Per-Object Blocking

In practice, per-object blocking, as also used by Pan et al.
[PWL∗07] and Iwasaki at al. [IDYN07], gives a considerable
performance improvement over per-sphere blocking. On the
downside, we have to establish a definite order for each pair
of objects (i.e. objects can only be completely in front or be-
hind other objects), since we cannot split the occlusion effect
of one object. This raises some problems with concave ob-
jects, as illustrated in Figure 11, top left. Here, both objects
occlude each other partially, as seen from a receiver point
directly below the objects. Since we cannot split up the oc-
clusion effect of either object, we have to treat one of the
objects as being completely in front of the other one. Per-
sphere blocking (Figure 11, top right) can naturally handle
interlocking concave objects.

Sorting of both convex and concave objects also raises
problems when using per-object blocking. Consider Figure
11, bottom left. Although it is possible to determine a defi-
nite order for each pair of objects, there is no single correct
order for all the objects as seen from a receiver point be-
low the objects. Thus, exact sorting would require O(N2)
comparisons, one for each object pair. One way to guarantee
unambiguous sorting is to disallow object bounding spheres
to intersect. However, for typical scenes, we did not observe
large error when using standard object-center distance sort-
ing. In our test scenes, we used object-center distance sorting
when using object blocking.

8.5. Example Scenes

We demonstrate our method on four example scenes. All ob-
jects in the scenes, except the ground and walls, are source
of soft shadows and diffuse indirect illumination. The squir-
rel scene is an animated sequence where a squirrel and a few

balls slide down an inclined box. It contains 21k vertices,
14 leaf SLs and 25 vertex clusters. The robot scene shows
an animated robot. It contains 25k vertices, 26 leaf SLs and
68 vertex clusters. The packages scene shows two deform-
ing packages of jelly beans. It contains 10k vertices, 16 leaf
SLs and 18 vertex clusters. The assembly scene shows vari-
ous moving and deforming objects in a jelly bean assembly
plant. It contains 21k vertices, 38 leaf SLs and one SL that
acts as a local light source. All scenes are illuminated by dis-
tant environment lighting, the assembly scene is additionally
illuminated by a local light source in part of its animation.
All geometry in the scenes is dynamic. Figure 12 shows im-
ages from each of the scenes. The measured frame rates are
summed up in the following table:

shadows & ind. ill. shadows only
per-sphere bl. per-object bl.
p.s. v.s. p.s. v.s. p.s. v.s.

squirrel 26 13 35 16 174 77
robot 12 5 20 9 97 25

packages 30 13 43 18 190 112
assembly 8 5 14 7 90 31

The first two columns show timing with indirect illumi-
nation and per-sphere blocking, the next two columns show
timing with per-object blocking and the last two columns
show timing for rendering with soft shadows only, using the
method by Ren et al. [RWS∗06]. p.s. is the pixel shader im-
plementation, v.s. the vertex shader implementation. All tim-
ings are in frames per second. Memory requirements were
1.09 MB for the squirrel scene, 1.18 MB for the robot scene,
0.92 MB for the packages scene and 1.12 MB for the assem-
bly scene.

Rendering speed is relatively slow when compared to ren-
dering direct illumination and soft shadows only, but the first
bounce of indirect lighting has a strong impact on scene
lighting (see also the accompanying video), already giving
a good approximation to low-frequency global illumination.

8.6. Comparison to Related Methods

In the following, we compare our method to the basis irradi-
ance method [IDYN07] and the radiance transfer field (RTF)
method [PWL∗07], as these algorithms also handle indirect
illumination for dynamic scenes. Both methods can only use
per-object blocking, since occlusion effect and lighting re-
sponse is precomputed per object. In our method, we can use
per-sphere blocking where per-object blocking is inappropri-
ate (see Section 8.4), although per-object blocking has better
performance. When using per-object blocking, the computa-
tional complexity of our method is O(n2

l N), where N is the
number of objects in a scene and n2

l a constant factor repre-
senting the geometrical complexity of objects. Both the ba-
sis irradiance method and the RTF method have a similar
computational complexity as ours, although with a different
constant factor. The constant factor in the RTF method is the

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

Figure 12: Four scenes used for benchmarking. The top row was rendered with soft shadows only, using the method by Ren et
al. [RWS∗06]. The bottom row was rendered with one bounce of diffuse indirect illumination using our new method (per-object
blocking was used for all images). All objects are dynamically animated.

number of sample points for incident radiance, which ide-
ally depends on the variation of the incident light over the
surface of an object. The constant factor in the basis irra-
diance method is the number of PCA basis functions used
to represent diffuse reflections on objects, which depends
on the geometrical complexity of objects. In the basis irra-
diance method, the per-object cost for updating PCA basis
functions is relatively high, limiting the amount of objects
that can be dynamically updated in a single frame. The ren-
dering speed of our method in scenes of similar complex-
ity is slightly faster than the RTF method and comparable
to the basis irradiance method if only few objects are mov-
ing in that method. Our method is likely to show better per-
formance on scenes with many objects of low geometrical
complexity (e.g. the squirrel scene), since the computation
time needed for each SL is low when compared to the com-
putation time needed for each object in the basis irradiance
method or the RTF method.
Our precomputed dataset is also much smaller, only 1-2 MB
of memory in our test scenes, whereas both other methods
need 30-70 MB for comparable scenes.

As explained earlier in this section, the approximation of
diffuse reflections with SLs is a main source of approxi-
mation error in our method. This approximation is loosely
comparable to the approximation of diffuse reflections with
PCA basis functions in the basis irradiance method, however
a direct comparison is difficult. In the RTF method, the full
radiance transfer from incident to exit radiance is precom-
puted, therefore no intermediate representation of diffuse re-
flections is needed. However, the authors assume low varia-

tion of the incident light over the surface of objects, allowing
them to use a relatively small number of sample points for
incident radiance per object, typically 8-24 sample points.
This assumption may not hold if primary or secondary light
sources are close to the surface of objects, leading to a degra-
dation in quality. We use 92 sample points per SL, allowing
for a higher degree of variation in the incident radiance.

The main drawback of our method is its limitation to
single-bounce diffuse indirect illumination (multi-bounce
indirect illumination is considered in future work). In con-
trast to the basis irradiance method and the RTF method, SL
approximation provides a less static approach to indirect il-
lumination. The main advantages provided by our method
are interactive deformations, the possibility of dynamic ob-
jects with intersecting convex hulls, faster performance for
scenes with many simple objects, and a significantly lower
memory footprint.

9. Conclusion and Future Work

We have presented a method for soft shadows and diffuse in-
direct illumination in dynamic scenes, based on the method
by Ren et al. [RWS∗06]. We approximate diffuse reflections
from scene objects with sets of SLs and update their light
intensity distributions in each frame using sample points on
the surface of objects. At each receiver point, we use the SLs
to efficiently accumulate incident radiance from diffuse re-
flections. Our method achieves interactive performance for
scenes of medium complexity, has a low memory footprint
and allows for interactive deformation.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

P. Guerrero & S. Jeschke & M. Wimmer / Real-time Indirect Illumination and Soft Shadows in Dynamic Scenes Using Spherical Lights

In future work, we would like to implement multi-bounce
indirect illumination, extend the method to use glossy
BRDFs in the final light bounce, handle intersections of
spherical lights at run time, eliminating the need for precom-
puted occlusions, and implement more general object defor-
mations for articulated motion. To enhance performance, we
could use screen-space SL splatting, as detailed in the paper
by Sloan et al. [SGNS07].

References

[3ds] Autodesk 3D Studio Max. http://www.autodesk.com.

[Bun04] BUNNELL M.: Dynamic ambient occlusion and indirect
lighting. In GPU Gems2 (2004), pp. 223–233.

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective
shadow maps. In I3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games (2005), pp. 203–231.

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indirect
illumination. In I3D ’06: Proceedings of the 2006 symposium on
Interactive 3D graphics and games (2006), pp. 93–100.

[DSDD07] DACHSBACHER C., STAMMINGER M., DRETTAKIS

G., DURAND F.: Implicit visibility and antiradiance for interac-
tive global illumination. ACM Trans. Graph. 26, 3 (2007), 61.

[IDYN07] IWASAKI K., DOBASHI Y., YOSHIMOTO F., NISHITA

T.: Precomputed radiance transfer for dynamic scenes taking into
account light interreflection. In Proc. of Eurographics Sympo-
sium on Rendering (2007), pp. 35–44.

[KL05] KONTKANEN J., LAINE S.: Ambient occlusion fields. In
SI3D ’05: Proc. of the 2005 Symposium on Interactive 3D graph-
ics and games (2005), pp. 41–48.

[KLA04] KAUTZ J., LEHTINEN J., AILA T.: Hemispherical ras-
terization for self-shadowing of dynamic objects. In Proc. of Eu-
rographics Symposium on Rendering 2004 (2004), pp. 179–184.

[Lan02] LANDIS H.: Renderman in production. ACM SIG-
GRAPH 2002 Course 16 (2002).

[Lep78] LEPAGE G. P.: A new algorithm for adaptive multidi-
mensional integration. J. Comput. Phys. 27 (1978), 192.

[Llo82] LLOYD S.: Least squares quantization in pcm. IEEE
Transactions on Information Theory 28 (1982), 129–137.

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J.,
LEHTINEN J., AILA T.: Incremental instant radiosity for real-
time indirect illumination. In Proc. of Eurographics Symposium
on Rendering (2007), pp. 277–286.

[MMAH06] MALMER M., MALMER F., ASSARSON U.,
HOLZSCHUCH N.: Fast precomputed ambient occlusion for
proximity shadows. Journal of Graphics Tools (2006).

[MSW04] MEI C., SHI J., WU F.: Rendering with spherical ra-
diance transport maps. Computer Graphics Forum 23, 3 (2004),
281–290.

[NRH04] NG R., RAMAMOORTHI R., HANRAHAN P.: Triple
product wavelet integrals for all-frequency relighting. ACM
Trans. Graph. 23, 3 (2004), 477–487.

[PWL∗07] PAN M., WANG R., LIU X., PENG Q., BAO H.: Pre-
computed radiance transfer field for rendering interreflections in
dynamic scenes. Proc. of Eurographics 26, 3 (2007), 485–493.

[RWS∗06] REN Z., WANG R., SNYDER J., ZHOU K., LIU X.,
SUN B., SLOAN P.-P., BAO H., PENG Q., GUO B.: Real-time
soft shadows in dynamic scenes using spherical harmonic expo-
nentiation. ACM Trans. Gr. 25, 3 (2006), 977–986.

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K.,
NOWROUZEZAHRAI D., SNYDER J.: Image-based proxy
accumulation for real-time soft global illumination. In PG
’07: Proceedings of the 15th Pacific Conference on Computer
Graphics and Applications (2007), pp. 97–105.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph. 21, 3
(2002), 527–536.

[SLS05] SLOAN P.-P., LUNA B., SNYDER J.: Local, deformable
precomputed radiance transfer. ACM Trans. Gr. 24, 3 (2005),
1216–1224.

[SM06] SUN W., MUKHERJEE A.: Generalized wavelet prod-
uct integral for rendering dynamic glossy objects. ACM Trans.
Graph. 25, 3 (2006), 955–966.

[TJCN06] TAMURA N., JONAH H., CHEN B.-Y., NISHITA T.: A
practical and fast rendering algorithm for dynamic scenes using
adaptive shadow fields. The Visual Computer 22, 9–11 (2006),
702–712.

[VRa] Chaosgroup VRay. http://www.chaosgroup.com.

[WZS∗06] WANG R., ZHOU K., SNYDER J., LIU X., BAO H.,
PENG Q., GUO B.: Variational sphere set approximation for
solid objects. The Visual Computer 22, 9 (2006), 612–621.

[ZHL∗05] ZHOU K., HU Y., LIN S., GUO B., SHUM H.-Y.: Pre-
computed shadow fields for dynamic scenes. ACM Trans. Gr. 24,
3 (2005), 1196–1201.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

