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Abstract

In this paper we discuss generalizations of instan-
taneous, local vortex criteria. We incorporate in-
formation on spatial context and temporal devel-
opment into the detection process. The presented
method is generic in so far that it can extend any
given Eulerian criterion to take the Lagrangian ap-
proach into account. Furthermore, we present a vi-
sual aid to understand and steer the feature extrac-
tion process. We show that the delocalized detectors
are able to distinguish between connected vortices
and help understanding regions of multiple inter-
acting vortex structures. The delocalized detectors
extract smoother structures and reduce noise in the
vortex detection result.

1 Introduction

Recent research in the field of Lagrangian coherent
structures [8, 9, 17, 18] suggests that we need to
refine our approach to understanding fluid behav-
ior. Even though the local information has shown
to be highly valuable when trying to understand
the nature of turbulent fluid movements, we need
to look further and find ways to include informa-
tion on temporal development and particle move-
ment into the analysis. In this paper we show that
vortex feature extraction can retain the knowledge
that we have on local properties of the flow and still
include the Lagrangian perspective into the analy-
sis.

The Lagrangian approach is based on taking the
trajectories of particles into account for analysis.
We can think of the detectors presented in this pa-
per as criteria where local detector responses are ac-
cumulated along trajectories to achieve both spatial

and temporal coherency. The Lagrangian approach
introduces new questions into the analysis. Since
the result of the Lagrangian vortex feature detector
is dependent on the length of the particle trajecto-
ries! analyzed, we get an additional parameter with
significant impact on the results of the analysis. We
need a way to control the length of the trajectory
that contributes to the vortex detector response. Re-
cent publications have suggested this as an impor-
tant open research question [18, 8, 7]. We present
an approach which allows to control this parameter
non-uniformly using an interactive analysis view.

A problem mentioned by several publications
dealing with Lagrangian coherent structures and
particle trajectories in general [6, 16, 19] is the fact
that particle trajectories can quickly leave the sim-
ulation domain (e.g., through an outlet). In this
case we do not have enough information available to
give a good accumulated detector response. The ap-
proach of delocalized Eulerian detectors gives three
answers to the problem of short trajectories: firstly,
local criteria have been demonstrated to give reli-
able results on their own, thus we are less depen-
dent on having long trajectories available to gener-
ate good results. Secondly, we allow to include the
upstream information by using backwards integra-
tion into the analysis to compensate for short par-
ticle trajectories in forward time. And thirdly, by
taking the proportion of the unknown region into
account, the lack of information due to extremely
short trajectories is included into the detection re-
sult.
The contributions of this paper are as follows:

e The extension (delocalization) of Eulerian vor-

Lsince trajectories are streamlines for steady data and pathlines
for unsteady data we will speak of trajectories when the difference
is not relevant
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tex criteria to extract coherent structures which
improve on the features detected using A, Q
or the swirl criterion.

e A method to interactively control the crucial
integration length parameter.

e An extension of trajectories to include up-
stream information to deal with the problem
of short particle trajectories.

e Comparison and evaluation of the results ac-
cording to numerical issues, smoothness and
separation of vortices.

In the next section we discuss related work. The
third section presents the basic concepts of delocal-
ized feature detectors and a 2D view of particle tra-
jectories to analyze the local detector responses. In
the fourth section we present evaluation results.

2 Related Work

For an overview of feature based flow visualization
we refer to Post et al. [13].

The finite time Lyapunov exponent (FTLE) can
be used to measure separation of trajectories in
time-dependent flows. Sadlo and Peikert [17] ex-
tract ridges from 3D FTLE. Garth et al. [7] present
a method for the direct visualization of 2D FTLE
information. Recent work shows how height ridges
of the FTLE field [16] and and direct visualizations
[7] can be computed efficiently.

Cucitore et al. [4] review Eulerian detectors (Q,
A2, swirl, and others) and suggest a non-local mea-
sure of swirl based on trajectories to extract vor-
tices. Jiang et al. [10] search for trajectories rotat-
ing about a common axis to verify the existence of
a vortex, while Sadarjoen and Post [15] compute
curvature centers of trajectories. In earlier work
Lugt [12] requires a vortex to be a portion of the
fluid moving around a common axis. As an in-
dicator for such a structure he proposes closed or
spiralling pathlines. Haller [9] describes vortices
through the stability of manifold structures which
are related to fluid trajectories. The M; criterion
[9] can be considered as an accumulation of a lo-
cal measure based on the strain acceleration ten-
sor along a trajectory. A single instability at one
cell introduces noise into all trajectories through
that cell. In recent work Haller [9] (see also Sah-
ner et al. [18]) therefore adds up all time steps
along the trajectory at which the particle is classi-
fied to belong to a vortex. This can lead to over-

representation of the downstream situation, and we
will discuss how controlling both the locality of the
criterion and the weighting along the trajectory can
improve the accuracy of the feature extraction pro-
cess. The discussed approaches are similar in that
they compute trajectories and then evaluate a mea-
sure of coherence from the shape or the relation of
endpoints of trajectories and are therefore depen-
dent on the additional parameter of integration time.
The presented method is also related to line inte-
gral convolution (LIC) and similar methods, where
a flow visualization is produced by convoluting a
noise texture along streamlines. Cabral and Leedom
[3] present LIC for a dense visualization of two-
dimensional flow fields. LIC-related methods are
used to compute direct visualizations and are there-
fore less concerned with understanding and control-
ling the specific details of the results for a single
pixel of the final image. An extended formulation
for unsteady flow fields was published by Shen and
Kao [20].

Salzbrunn et al.[19] introduce the concept of
boolean pathline predicates, to select pathlines of
interest. They do not compute additional attributes
and their approach is not related to vortex detection.
Shi et al. [21] present the concept of a pathline at-
tribute data set that is computed from the original
flow data set. The computed information consists
of scalar properties such as the average particle ve-
locity, Euclidean distance to start, curvature or ve-
locity. Recently Shi et al. [22] have suggest path
line integral convolution of kinetic energy and mo-
mentum to get insights into the dynamical processes
of the flow. They show that they can extract vor-
tex structures which are almost as good as A, but
cannot claim to improve on A, vortex extraction.
This may result from not convolving the Eulerian
detectors themselves and from using very long tra-
jectories for accumulation, since the problem of in-
tegration length specification is not tackled in re-
cent work. In this paper we present a method that
improves the vortex detection results.

3 Deocalized Vortex Detectors

In the following subsection we discuss the non-local
extensions of the Eulerian detectors. In the second
subsection we present the line view which helps to
steer the extraction. See Figure 1 for an illustration
of the delocalized vortex region detectors approach.
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Figure 1: We illustrate the suggested approach. (a) By analyzing Eulerian quantities along trajectories
we can improve the extraction of vortices which we consider as coherent structures and limit the effect
of numerical issues. (b) Using a simple two-dimensional representation of the detector responses along
trajectories we can understand and steer the locality of the accumulation. (c) The resulting method promotes
coherency in space and time by accumulating information along a trajectory of a fluid particle for each point.
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Figure 2: Accumulation of local detector values along a particle trajectory. The local values are weighted
according to their distance from the seeding point of the trajectory.

3.1 New Criterion p(t) at time t. The Runge-Kutta method (RK4) can
be used for numeric integration of these pathlines
[14]. Given a vector field u we call py, x, the path-
line starting at point xp and time t.

Now we can define the Eulerian detector response

for a pathline py, x, as

For accumulation along a trajectory we need an Eu-
lerian vortex detector E(x,J(x,t),u(x,t)) — [0,1]
where x € D ¢ R3 is a point inside the simulation
domain D, u(x,t) is the velocity at point x at time
t and J(x,t) is the Jacobian. See Figure 1 (a) for
an illustration. The criteria we have found to bene-
fit most from delocalization are A, Q, the swirling
strength criterion and vorticity magnitude.

A pathline can be expressed as

E(pto,xmt) = E(pto,xo(t)v‘](pto-,xo (t)vt)a u(pto,xo(t)vt))

if Pto,xo (t) eD.

For a pathline we define the two maximal integra-
tion length parameters ty and t,, as the maximal time
this pathline remains inside the simulation domain

t+At
pt+40 =p()+ [ u(p(s).s)ds
t D during forward (resp. backward) integration.

where p(t) is the position of the particle at time
t, p(t+ At) is the new position after time At and
u(p(t),t) is the velocity of the particle at position

In contrast to unsteady flow LIC, where a color
pixel value is advected through the flow field, in the
the context of computing a vortex detector value it



makes sense to include the backward direction: the
vorticity of a position is not only dependent on its
future contribution to a vortex, but also on its past
developments (we can think of a particle inside the
border of a strong vortex region to be justly assigned
a high vorticity value).

The delocalized version of the Eulerian detector
at position xq and time ty finally is

in(te, by
St W(s) - E (Pt 9, )d

fttf w(s)ds
1)

with t, < tp <ty and w(x) a weighting function.
Good parameters for forward and backward integra-
tion time, t¢ and t, allow the delocalized detector
improve on the local information. In case the tra-
jectory leaves the domain before the selected inte-
gration times are met (t; > ty or t, > t,) we can ac-
cumulate the requested information only partially.
Weighting the result with the integral of w(x) over
the complete selection [ty,t;] decreases the delo-
calized detector result and incorporates the uncer-
tainty resulting from short trajectories. The formal-
ism does not change for steady and unsteady flows,
since for steady flows the definition of a pathline
coincides with the definition for a streamline.

The weighting function should give sufficient
control over the accumulation and produce pre-
dictable results for the user. The first option is lin-
ear weighting where the weight for a position on
the trajectory is given by the difference in phys-
ical time from particle release time tg. That is
w(t):=1—(t—tg)/(t; —tp) fort >tp and w(t) :=
(to—1)/(to —tp) for t < to with (ty < tp <tf). The
second option is a an accumulation using a Gaus-
sian filter w(x) = 1/(0v/27) - e 05(t-0)°/0  gee
Figure 2 for an illustration. The line view presented
in the next section allows the user to determine and
specify the relevant parameters, i.e. o, t; and tp.
Using Gaussian weighting, the influence of a sam-
pling point quickly becomes very small after the in-
flection point is reached, thus o can be used to con-
trol the locality of the criterion. For brevity we will
write EZ for a delocalized detector using Gaussian
accumulation when t; =t, =t. Units are seconds
fort, and o has unit of "average cell size times me-
ters’.

So far we have not discussed how the integration
parameters ty, and t; can be chosen appropriately.
This will be the topic of the following subsection.

E(pto,X07tb7tf) =

3.2 LineView

The purpose of this view is to visualize the com-
puted trajectories in a 2D view as straight lines.
This gives more space to convey visual informa-
tion and enables easier selection and brushing oper-
ations. The delocalized criteria are robust and only
in complex flow regions a single threshold does not
perform well. In this case it is necessary to use mul-
tiple thresholds, which are difficult to define using
the occluded 3D trajectory rendering. By evaluating
the distribution of local detector values in combina-
tion with selective 3D visualization of the relevant
streamlines it becomes possible to select a few suit-
able integration length parameters to separate inter-
acting vortices.

The engineers are interested in the relationships
between the fluid cells of the mesh, therefore we
seed one trajectory per grid cell. Each trajectory is
visualized simply by placing its segments succes-
sively on a straight horizontal line. The resulting
horizontal lines are spaced vertically so that they fill
the available viewing space. Our main interest for
the line view is to observe how the vortex classifier
response is distributed along the trajectories. The
view works in coordination with the other views in
the visualization framework to allow filtering rele-
vant trajectories. See Figure 3 for an illustration.
While selecting integration length parameters in the
line view, the currently relevant trajectories are ren-
dered as lines in the 3D view, conveying the spatial
information for these trajectories. Additionally, a
degree of interest (DOI) can be specified by brush-
ing in other views, thus assigning a DOI value to the
sample points in the data set. Lines with zero DOI
at their starting positions are filtered out.

Good sorting of the lines is crucial so that trajec-
tories belonging to the same structure are ordered
closely together. For that purpose the view offers a
range of sorting and filtering criteria:

e Key length: is the maximal time interval in-
cluding tp inside which the particle remains
inside a region of positive local detector re-
sponse without interruption (see Figure 2).

e Line length: lines are sorted or filtered accord-
ing to their length

e Delocalized response: after selection the lines
can be reordered according to their delocalized
detector response

Line fusion: line fusion is necessary when more
lines are currently in focus than there are pix-



| | Cells | Ts | Type | Grid || ROI | Lines | Acc. | Int ]

T-Junc. 30K 100 incomp. struc. all 137 MB | 0.1sec | 1 min
Cool. J. || 1538 K | 1 (steady) | incomp. | unstruc. || 95K | 650 MB | 2sec | 5min
2-Stroke || 1156 K 91 comp. | unstruc. || 81K | 570MB | 2sec | 4min
Rankine 262 K 1 synth. struc. all 1.6 GB 3sec | 3min

Table 1: Comparison of the datasets evaluated in the application study. We have evaluated a simulation
of a pulsating T-Junction, a Cooling Jacket, a 2-stroke engine and the synthetic rankine vortex model.
The region of interest (ROI) showing complex vortical behavior was always much smaller than the whole
dataset. (Abbreviations: Ts - time steps, ROI - cells in region of interest, Acc.- accumulation of delocalized
detector, Int. - integration of trajectories)

key length (b)

Figure 3: Linking the Line View. (a) Attribute selection on the multivariate simulation data set allows to
filter the data points of interest. Only the lines seeded at the selected points are rendered in the line view.
(b) The remaining lines are displayed in 2D and the user can specify integration parameters by drawing
line segments onto the view. (c) The view is linked to the 3D rendering. While selecting the forward and
backwards integration length parameters in the 2D view the trajectories below the tip of the cursor are
rendered in the 3D view.

els available on the screen. We employ post- Using linking and brushing the line view allows
classification, by first combining the detector re-  to select appropriate integration length parameters
sponses for line segments, and then assigning color  for different regimes of the flow, which is necessary
to the resulting line by means of a transfer function.  to separate interacting structures. Furthermore, the
To combine a group of lines into one line, we keep  selective rendering of 3D trajectories using linking
advancing a vertical scan-line, until all segmentsare  between the line view and the 3D view can serve as
drawn onto a storage texture. a useful analysis tool by itself.

Integration length specification: the selection

ranges for the lines can be defined interactively by 4 Evaluation

drawing two curves on the view. This way, for each

group of lines (after fusion) the user can specify the  In this section we discuss vortex feature detection
parameters t; and t,. When Gaussian weighting is  results. Table 1 gives an overview of the evaluated
selected, the interaction allows to select the loca-  cases. To be able to evaluate at which point higher
tion of the inflection point. It is sufficient to select  thresholds start to remove important parts of the fea-
the ranges for very large groups of lines and only  ture we include vortex core lines computed with the
when this approach fails it is necessary to zoom in  approach of Sujudi and Haimes [23] for the steady
and perform a more elaborate selection. With good  cooling jacket data set and its extension for time de-
sorting parameters the delocalization is robust, and  pendent flows [5]. These vortex core line detectors
all figures in this paper were made without zoom-  can produce spurious or shifted solutions as well,
ing. but for the strongest and largest features they are a



good measure for comparison with the extracted re-
gions.

4.1 Cooling Jacket

~ Region of Interest

Figure 4: The cooling jacket data set. (top)
Overview of the geometry and region of interest.
(bottom) We compare the detector results for Q and
delocalized Q using o = 0.8 and 0.1 sec. integration
time: large parts of the feature A are removed by the
instantaneous Q criterion, while feature C becomes
more localized and connected to the larger region,
which is better in the light of the results obtained
using A;.

The first data set contains a steady simulation
grid of fluid moving through a cooling jacket (see
Figures 4 and 5). In this section we extend the
analysis of turbulence inside the cooling jacket per-
formed in a previous publication [2]. The cooling
jacket in focus (see Figure 4 (top)) is designed for
a four cylinder engine. The shape of the cooling
jacket is designed to provide optimal temperature
for the engine. Between the cylinder head and the
cylinder block lies the cooling jacket gasket. It con-
sists of a series of small holes that serve as conduits
between the block and head. These ducts can be
quite small relative to the overall geometry but are
very important because they are used to control the
motion of fluid flow through the cooling jacket. We

focus on a section of the jacket close to the inlet,
where the flow is fast and the gasket causes strong
turbulence.

In Figure 4 (bottom) we compare the Q criterion
and the delocalized Q criterion. We set the thresh-
old to 1000 in order to remove the large amount of
tiny structures, such that three larger structures be-
come distinguishable. We can see that inside the
largest structure (A) half of the length of the core
line is removed and large holes appear. While the
two other structures (C+D) contain the same core
line features, the delocalized regions appear much
smoother and are disconnected.

In Figure 5 we compare the A, vortex detector
at thresholds 1000 and 5000 with the delocalized
version of Ay. The top row shows a side view of the
situation, where we can see turbulent regions appear
behind the gaskets. At a threshold level of 1000 all
the relevant vortex core lines are present, but the re-
sulting iso-surface is difficult to understand and we
have a single connected region. At this level the fea-
ture A is still present, but if we want to separate the
different structures, we have to set a higher thresh-
old where the core line is no longer fully inside the
selected domain. If we look at the corresponding
delocalized A, regions, we can see that the feature
A remains intact. We can also see that the core line
at position C hints towards the assumption that this
is a rather important feature which is correctly con-
nected to the large region (A). Also the regions (B)
and (C) are disconnected. By comparing the results
of the delocalized versions of the Q and the A, cri-
terion we can make another finding: the delocal-
ized results are extremely similar for both criteria,
even though the iso-surfaces of the instantaneous
versions bear little semblance.

4.2 Two-stroke Engine

The second dataset is a high-performance two-
stroke engine dataset, which contains the simulation
results for injection and combustion of fuel during
one crank revolution.

In Figure 6 we can see the results of the vortex
detection in the Eulerian and the Lagrangian frame.
Here we have only one extremely strong main fea-
ture and therefore a single coreline is detected. For
the main feature (A) the results for the Eulerian
and the delocalized detector are similar. But for a
smaller structure (B) we have a similar result as for
the cooling jacket: to keep B intact we have to se-
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Figure 5: The delocalized A, outperforms A, regarding feature separation and noise suppression. (a) The
delocalized version of A, extracts three non-connected regions which contain the strongest and longest
vortex core lines. Small features and noise are removed. (b) At a threshold of A, < 1000 we get a single
connected region and all the vortex core line features remain intact. We also get a lot of small or weak
features which we are not interested in. (c) At a level of A, < 5000 different (still connected) features
appear, still a lot of noise is extracted and vortex A breaks in two parts. (d) Smoothing A, using a Gaussian

kernel removes noise, but also feature E.

lect a low threshold (swirl > 0) and the feature (B)
is difficult to recognize. (b) At a threshold where
the features become distinguishable, the feature (B)
is split in two components.

4.3 T-Junction

The t-junction data set is a small unsteady simula-
tion of pulsating flow through a t-junction. In the
center of the domain, behind an obstacle, a small
vortex appears. Du to the good temporal resolution
and relative simplicity of the situation we can dis-
cuss how the delocalization process allows to con-
centrate on different types of features. We can ob-
serve the development of four features in the data
set. These are (A) two longitudinal vortices behind
the inlet, (B) a transversal vortex created by the pul-
sating inflow boundary condition, (C) a vortex ap-
pearing behind the obstacle and (D) a region of tur-
bulence at the outlet. In (a) we can see that it is
possible to select a threshold to separate the struc-
tures (A) and (B). In (b) we use streamlines to depict
the shape of the feature (C) a the current moment.
We can see that the feature has the same height as
the obstacle. From this we can conclude that in (a)
the threshold necessary to separate the features (A)
and (B), removes too much of feature (C). In (c)

we can see that the delocalized version of A, allows
to separate the vortex behind the obstacle and still
visualize the full transversal vortex (B). By select-
ing specific integration length parameters for each
of the now disconnected regions we have also dese-
lected the turbulent region at the outlet.

4.4 Filter Properties

| noise || 1% [ 5% [ 10% |
Ap 0.007 | 5.734 | 12.988
MF(A2) 0.007 | 0.019 7.813
Gauss(Ap) || 0.872 | 1.1 4.185
A 0 o | 3002

Table 2: Numerical evaluation of noise in the Rank-
ine vortex model. The table shows the error rates of
the classification results of the local detector (A;),
after application of a median filter (MF (,)), after
application of a Gaussian filter (o = 0.8), and the
results for the delocalized A, detector (o = 0.8).

To test numerical stability we use a simple syn-
thetic solution so that we can know where the vor-
tex has to be detected. A simple model for a vortex
is given by the combination of a rigid-body rota-



Figure 6: Two-stroke engine data set. We compare the result of the swirling strength criterion and the
delocalized swirling strength criterion. (a) At a low threshold (swirl > 0) the two features are not distin-
guishable. (b) Searching for a better threshold we find that in order to get a good separation between the
two features we have to select a value at which feature B breaks in two components (swirl > 10000). A
visualization including streamlines seeded at the gap shows that the two components belong together. (c)
The delocalized delta detector with o = 0.8 and t; =t, = 0.01 allows to visualize both features intact.

tion within a core, and a decay of angular velocity
outside [1]. The Rankine vortex model can be de-
scribed by

ug=14 &
0= .

where R is the radius of the vortex, u controls ax-
ial velocity and @ controls the maximal tangential
velocity. The model has a long history in mete-
orological studies of tropical cyclones and can be
considered a good approximation of measured data.
This is also an example much in favor of the local
detectors since they all have 100% correct classi-
fication in the absence of noise. Nevertheless the
delocalized vortex detectors outperform their Eule-
rian counterparts consistently. From an image pro-
cessing viewpoint one can consider the presented
detector as a special case of an isotropic filter. To
show that the reasoning behind the convolution ac-
tually improves the detection results, we compare
our results to the error rates after the application of
a median and a Gaussian filtering kernel.

In Table 2 we can see the results of the numerical
study. Noise was added to each cell using a linear
combination of random noise vectors for each cell
n; jk at sample position (i, j,k) in the regular grid
and the original flow value v; j x such that a noise
level of p% is computed as v; j k + (p/100) - n j .
We use o = 0.8 for accumulation of the delocal-
ized detector values. Changing the velocity vector

,F<R

u=0 u,=u
r>R r R

=20~

locally will affect the estimated gradient of all the
surrounding cells. Isotropic filtering therefore can-
not deal with noise as well as the delocalized vortex
detectors. The error of the delocalized vortex de-
tectors at a noise level of 10% of the original signal
stems from the fact that we have a very sharp vor-
tex boundary in the model such that a small devia-
tion from the correct trajectory can already degrade
the performance. A second reason is that the tra-
jectories at the corners of the rectangular domain
have very short integration times and quickly leave
the simulation domain. It is quite unnatural to have
such sharp vortex boundaries and also the large per-
centage of short streamlines is to the disadvantage
of the delocalized detector. Even though the de-
localized detector outperforms the other methods.
The high error of the Gaussian filter stems from the
fact that for low error rates it blurs the errors and
can actually increase error.

5 Implementation Details

In the context of our application we know that the
engineers are interested in understanding the rela-
tionships between the computational cells of the
simulation grid. Therefore we seed one path- or
streamline per cell to be able to compute a delocal-
ized detector response for each cell. During inter-
action the main computational cost lies in the line



obstacle

" . out @)
mmll ez (L
~Lgo T

. obstacle

0.8
delocalized1 A<-1

vortex behind
obstacle

Figure 7: Comparison of A, and the delocalized version of A,. (a) Behind the inlet two small longitudinal
vortices appear (A). When setting a threshold to separate the transversal vortex (B) from the longitudinal
vortices, the third vortex (C) behind the obstacle almost vanishes. (b) Streamlines show that the vortex
C extends to the full height of the obstacle. (c) Using the delocalized A, detector we can focus on the
transversal vortex and still select the full vortex C while deselecting A and D.

fusion approach and our prototype can compute the
final texture for small regions of interest with up
to 100K cells at interactive rates. A more efficient
implementation could be several magnitudes faster.
Trajectories are computed off line and stored in an
additional data set, which takes several hours for the
full two-stroke data set, but for a specific region of
interest at a selected time step only small subset of
these lines has to be computed.

Conclusion and Discussion

The main drawback of the presented method is that
the detected results are no longer objective in the
sense that each engineer will come to exactly the
same vortex detection results. The exact location of
the vortex boundary is dependent on the specifica-
tion of integration length parameters. These differ-
ences are typically small and as long as we do not
have a general definition for what a vortex is, this
fuzzyness can be considered appropriate. The sec-
ond disadvantage of the presented approach is the
time consumed by integrating trajectories through
the fluid. We used a rather inefficient implementa-
tion where the timings cannot be considered repre-
sentative, and GPU-based implementations are re-
ported to compute trajectories at nearly interactive
rates [11]. Another drawback is that interaction is
often a necessity. Using bad integration length pa-
rameters, the results are more blurred and worse
than A, regions, even though the delocalized detec-
tors have shown to be very robust in our experience.
The approach to use a single trajectory length pa-

rameter as seen in the results presented in Figures
4,5, 6 and 7 only works with carefully selected re-
gions of interest and even then the line view is nec-
essary to find good parameters for o andt =t; =tp.

An obvious idea for estimating good integration
length parameters automatically is to search for
minima of detector response along the trajectory.
This way we could hope to find the boundary of
the vortex region without interaction. This has pro-
duced mixed results for the data sets evaluated in
this paper. A criterion for good integration length
parameters based on physical principles indepen-
dent of user interaction would further improve the
delocalized detectors.

In this paper we have proposed delocalized vor-
tex region detectors. With little interaction to de-
termine reasonable parameters, the delocalized vor-
tex detectors improve the feature extraction process.
We have also discussed how the ability to control
the range of integration improves the expressiveness
of the detectors over their local counterparts. The
delocalized detectors are a combination of the Eu-
lerian and the Lagrangian approach to vortex region
extraction. The basic message here is that the Eu-
lerian and the Lagrangian are not different alterna-
tives to vortex extraction, opposite to each other, but
that they can be combined to one technique sharing
the benefits of both. The good local vortex detection
performance of the Eulerian criteria and the global
information of the Lagrangian view point combine
to generate well separated and smooth detection re-
sults.
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