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Abstract— One of the most prominent topics in climate research is the investigation, detection, and allocation of climate change.
In this paper, we aim at identifying regions in the atmosphere (e.g., certain height layers) which can act as sensitive and robust
indicators for climate change. We demonstrate how interactive visual data exploration of large amounts of multi-variate and time-
dependent climate data enables the steered generation of promising hypotheses for subsequent statistical evaluation. The use of
new visualization and interaction technology—in the context of a coordinated multiple views framework—allows not only to identify
these promising hypotheses, but also to efficiently narrow down parameters that are required in the process of computational data
analysis. Two datasets, namely an ECHAM5 climate model run and the ERA-40 reanalysis incorporating observational data, are
investigated. Higher-order information such as linear trends or signal-to-noise ratio is derived and interactively explored in order to
detect and explore those regions which react most sensitively to climate change. As one conclusion from this study, we identify an
excellent potential for usefully generalizing our approach to other, similar application cases, as well.

Index Terms— Interactive visual hypothesis generation, interactive visual exploration and analysis, visualization for climate research.

1 INTRODUCTION

We can see that climate change has become a broadly discussed
topic—politics, business, and also the general public engage with cli-
mate issues in parallel to the work of scientists. Of course, it is predic-
tion which is the most important related aspect—but similar to weather
research it is difficult to come up with deterministic results. In this
study, we investigate whether we can identify particular subsets in cli-
mate data—both in time and space—that potentially represent sensi-
tive and robust indicators of atmospheric climate change which pos-
sibly have strong predictive power with respect to the long-term de-
velopment of our Earth’s climate. We work with two representative
datasets to draw our conclusions.

Improved measurement records (e.g., satellite observations) as well
as extensive simulations commonly result in large, time-dependent,
and multivariate datasets which are difficult to manage. Visualization
has proved to be very useful for gaining insight into such large and
complex data. Three main classes of use cases or application goals
can be identified [21], namely (1) visual exploration; (2) interactive
visual analysis or confirmative visualization; and (3) presentation (or
dissemination).

In our case, we utilize interactive visualization primarily for the
early, more explorative steps (compare also to Tukey [25]). Com-
parable to the “discover the unexpected”TM, as coined by Cook and
Thomas [24], we aim at rapidly identifying promising hypotheses that
afterwards are checked in an analytical, confirmative process (in our
cases mostly handled by statistics). Generally, we think that it is easier
for visualization to unfold its maximal utility in the context of undi-
rected exploration (as compared to the analysis of clearly specified
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application questions)—and that, even though we have seen a number
of cases where visualization facilitated interactive analysis very effec-
tively [4, 12, 19].

While computational approaches (e.g., statistics) conveniently pro-
vide good means to accurately—and also quantitatively(!)—check
specifically formulated hypotheses, it is generally quite challenging
to actually derive these specific application questions. Intuition of
experts—based on experiences and knowledge gained from many
years—leads to promising hypotheses as well as scientific trial-and-
error approaches. The emerged availability of powerful visualization
technology now turns into substantial support for this important step
in scientific work. Instead of cumbersomely searching within many
dimensions and extensive content, we effectively shed light onto com-
plex relations within multivariate data by interactive visual explo-
ration. By looking at the data (and the implicit relations within the
data) and by integrating domain knowledge, the user is able to effi-
ciently narrow down on interesting aspects of the data, which is usu-
ally achieved in an iterative process of repeated visualization and in-
teraction steps. Subsequent analysis is thereby fed with well-informed
hypotheses, thus resulting in a streamlined overall process with fewer
large-cycle iterations.

In addition to the important step of identifying hypotheses in the
first place, it also turns out to be important to identify the right
parameter settings and/or boundary conditions for the statistical anal-
ysis, especially if there are multiple parameters that influence the pro-
cess. It is one characteristic of modern scientific methodology that it is
now possible to vary many more parameters than ever before. While
this is useful for a more varied and more detailed analysis, it also gen-
erates the significant challenge of managing all this variability. Since
parameters also often influence each other, meaning that we usually
cannot utilize separability to efficiently identify optimal parameters
(one by one), we again welcome support as offered by interactive vi-
sualization to act in a more informed, direct way.

In this paper, we demonstrate how interactive visual exploration is
used to identify certain regions in space and time which are sensitive to
climate change. Even though we successfully used the here employed
visualization technology in conjunction with all three types of applica-
tion questions (confirmation, exploration, presentation), we focus on
hypothesis generation in this paper. For analysis, the identified regions
are then statistically evaluated. Visual exploration is also used to nar-
row down the parameter ranges that affect the computational analysis.
The entire datasets can be explored at once without the need to prese-
lect certain subsets, as this is done, e.g., in classical trend testing [10].
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Fig. 1. Illustration of the vertical thermal structure of the atmosphere,
reflecting a balance between radiative, convective and dynamical heat-
ing and cooling processes of the surface-atmosphere system. Different
layers of the standard atmosphere are shown (illustration adapted from
Melbourne et al. [13]). Changes in the upper troposphere-lower strato-
sphere region have strong impact on the Earth’s climate system [27].

The remainder of this paper is organized as follows: section 2 gives
a brief introduction to the here investigated questions of climate re-
search. In section 3 the employed visualization technology is de-
scribed. Several concrete details of this application are presented and
discussed in Sec. 4. Finally, the paper is concluded in section 5.

2 CLIMATOLOGICAL BACKGROUND

Climate research is concerned with the analysis of the climate sys-
tem—composed of the atmosphere (compare to Fig. 1), the hydro-
sphere, cryosphere, lithosphere, and the biosphere—, its variability
and its long-term behavior [27]. The currently most prominent topic
in climate research is the investigation of climate change, its detection
and attribution, whether naturally or anthropogenically induced.

For this purpose, we are interested in determining characteristic
spatial and temporal climate signals which can be attributed to some
cause such as, for example, anthropogenic forcing. These signals are
compared with the climate noise to assess the significance of the find-
ings. The signal should deviate substantially from the noise to be of
use for detecting climate change.

It is not yet completely clear, which physical variable describing the
state of the atmosphere is best suited as a sensible parameter for detect-
ing climate change. Previous work mostly concentrates on the surface
temperature, not at the least because of the availability of long-term
records. With the advent of radiosonde and satellite-based measure-
ments as well as global climate modeling in the last decades, data for
upper air atmospheric variables are also available [23]. Key climate
parameters such as temperature, pressure, humidity, or geopotential
height can be accessed and are among the candidates to provide a sen-
sitive indicator for atmospheric climate change [9, 5].

In the context of climate research, large multivariate data fields
are commonly investigated. Usually these fields describe the physi-
cal state of the atmosphere and can stem from various sources, such as
global climate models, reanalysis data (meteorological observations
assimilated into a numerical weather prediction model), or measure-
ment records from a single instrument (e.g., satellite data). For cli-
mate models, these gridded data can easily constitute a resolution of
1.875◦ ×1.875◦ in latitude and longitude, on 16 pressure levels (lead-
ing to a grid with about 300K cells), e.g., repeated on 100 time steps1.

When it comes to analyzing the data, it is challenging for scientists
and practitioners to get a grip on these large time-dependent three-
dimensional fields. The common way to gain information is to use
classical statistical methods such as linear trend regression, multivari-
ate data analysis, or pattern analysis, to name only three [29]. These
methods usually require prior knowledge about the data to narrow
down the scope of the analysis (e.g., parameters, boundary conditions).

1Note, however, that the datasets used in this study consist of 180K cells
given at 108 and 42 time steps, respectively, corresponding to a horizontal res-
olution of 2.5◦x2.5◦ and 18 pressure levels up to 10hPa (as indicated in Fig. 1).

In this study we focus on the temperature and the geopotential
height as interesting key atmospheric variables in climate research.
While the temperature is easily comprehensible out of every-day ex-
perience, the geopotential height deserves a short elaboration: In me-
teorology and climatology the common measure of height is not the
geometric but the geopotential height z, which can be seen as the geo-
metric elevation above sea level corrected by Earth’s gravitation:

z := 1/gN

∫ h

0
g(φ ,h′)dh′

where gN is the standard gravity at sea level, φ is the latitude, and h
is the geometric elevation. The correction is quite small (less than 1%
for h = 50km), but using z instead of h is the more natural measure in
the application: Using in-situ or remote-sensing measurements of the
atmosphere, for example, commonly provides the temperature, pres-
sure and humidity, but not the geometric height. Using the barometric
formula (relating the pressure with the height), the geopotential height
can be derived directly out of these parameters [27]. Measuring geopo-
tential heights of constant pressure surfaces has therefore become a
common approach in climate science, also because the thermal expan-
sion raises the height of the constant pressure surfaces, providing a key
parameter to detect climate change.

We consider the temperature field of one ECHAM52 climate model
simulation run [18] of the A2 scenario simulations for the Intergovern-
mental Panel on Climate Change (IPCC) 4th Assessment Report for
the time period 1961 to 2064, as well as the geopotential height field
of the ERA-403 reanalysis dataset [22] for the time period 1961 to
2002, respectively. Since the ECHAM5 A2 scenario simulation starts
in the year 2001, it is complemented using the ECHAM5 IPCC 20th

century run before 2001. Using seasonal (northern) summer means
(June-July-August) in this example provides us with data without the
influence of the seasonal cycle, yielding clear climate signals.

Given this background, we investigate the following application
questions in this study. We use visual exploration to:

• rapidly generate promising hypothesis, i.e., identify certain re-
gions in space and time which potentially are sensitive to climate
change. Thereby we can efficiently narrow down the parameters
and/or boundary conditions for subsequent statistical analysis;

• assess the influence of smoothing parameters and trend time-
frames on the findings;

• analyze the relations between certain interesting subsets of data
in multiple dimensions.

The here employed modern visualization approach provides us with
the unique ability to achieve these tasks faster, and also without the
usually needed a priori knowledge about the datasets (i.e., to get sup-
port in data exploration).

3 INTERACTIVE VISUAL DATA EXPLORATION

The interactive exploration of the climate data in this application has
been carried out in a framework employing a coordinated multiple
views setup [2]. The area of coordinated and multiple views has been
steadily developing over the past fifteen years. A good overview is
given by Roberts [17]. A comprehensive overview on visual data min-
ing and visualization techniques with respect to climate data is given
by Nocke [15].

Interactive visual analysis enables users to get into a visual dialog
with the climate data. The procedure that is usually employed is the
following: first an interactive visualization according to user input is
generated. This helps the user to gain knowledge about the data, espe-
cially in the case of very large and complex datasets. This knowledge
often leads to new questions and/or hypotheses, which can be explored
and analyzed in more detail in an iterative process. Through interac-
tion the previous visualization results are modified step by step to gain
more knowledge and insight into the data. For this process it is crucial,
that the tools supporting this knowledge gaining process must be fully
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interactive and flexible, allowing to query the data in many different
ways, even for large datasets.

In this application study we have used and extended the SimVis
framework [2]. In contrast to many of the previously published co-
ordinated multiple views prototypes, SimVis is targeted at interactive
PC-based handling of large datasets. The previous development of
this technology was targeted at the analysis of 3D time-dependent flow
simulation data especially in the automotive field [4], but has recently
been extended to also cope with various other data types, e.g., mea-
sured 3D weather radar data.

In SimVis, multiple linked views are used to concurrently show, ex-
plore, and analyze different aspects of multi-field data. The different
views that are used next to each other include 3D views of volumetric
data (grids, also over time), but also several types of attribute views,
e.g., 2D scatterplots and histograms. Interactive feature specification
is usually performed in these attribute views. The user chooses to vi-
sually represent selected data attributes in such a view, thereby gaining
insight into the selected relations within the data. Then, the interest-
ing subsets of the data are interactively brushed directly on the screen
(compare also to the XmdvTool [28]). The result of such a brush-
ing operation is reintegrated within the data in the form of a synthetic
data attribute DOI j ∈ [0,1] (degree-of-interest (DOI), compare to Fur-
nas [6]). This DOI attribution is used in the 3D views of the analysis
setup to visually discriminate the interactively specified features from
the rest of the data in a focus+context visualization style which is con-
sistent in all (linked) views [7].

In the SimVis system, smooth brushing [3] (enabling fractional
DOI values) as well as the logical combination of brushes for the spec-
ification of complex features [2] are supported. A smooth brush results
in a trapezoidal DOI function around the main region of interest in the
attribute views. Brush attributes and their composition are explicitly
represented in the system and can be interactively adjusted through
the integration of a fully flexible derived data concept, a data calcu-
lator module with a respective graphical user interface—in this study
we will benefit from this feature to derive meaningful parameters with
respect to climate change. These new attributes can be derived from
existing ones and thereafter are available for full investigation in all
linked views. Due to the explicit representation of brush attributes as
well as all view settings, analysis sessions can be saved and reapplied
to other datasets through the use of a feature definition language [2].
This enables an easier and faster comparison of different climate sim-
ulation runs, for example.

New Extensions to the SimVis Framework

In this study we extended the SimVis technology to also work with
large climate simulation results, where especially the time-dependent
behavior of different attributes is of interest.

To deal with overdrawing and visual cluttering when depicting large
amounts of data we developed a four-level focus+context visualiza-
tion [14], with the context information for orientation and also three
different levels of focus in every attribute view. The different focus
levels result from logical combinations of features, which are specified
by the user in a hierarchical scheme based on individual selections.
When several colors representing different focus levels are blended to-
gether (based on their respective smooth DOI values), it is crucial to
have as little color mixing as possible (i.e., avoid the introduction of
additional tints). This enables a more straightforward interpretation
of the colors and the understanding of corresponding semantics and
interrelations of the data. Moreover, the user is enabled to enhance
the contrast of the DOI attribution in a view to place emphasis on re-
gions with only a few important data items that otherwise are occluded
by large amounts of context data. Therefore, the DOI values used in
our color compositing scheme can be enhanced, i.e., DOIj = DOIγ

j ,
where γ can be altered by the user within [0,1]. Alternatively, the
maximum DOI value per screen pixel can be displayed opaquely on
top, allowing to focus only on the features regardless of the relative
importance with respect to the overall data.

For the improved visual analysis of the time-dependent climate
data, we extended the existing framework with a function graphs view,

Original Data
Data 

Derivation
Explorative

Visualization Statistics
Confirmative
Visualization

Fig. 2. Interactive visual exploration of climate data: Meaningful climate
parameters are derived from the original data which are explored in-
teractively in order to form hypotheses. Statistical analysis confirms or
rejects the hypotheses. The results from analysis are generally visual-
ized for illustration. In this pipeline each step can also reflect back on
previous steps for efficient information drill down.

where we depict a scalar function over time for each voxel/cell of a
volumetric and time-dependent dataset [14]. In our scenario, this can
lead to a dense visualization consisting of hundreds of thousands or
even millions of function graphs, which are given at a relatively low
number of time steps (e.g., 100). Using customizable transfer func-
tions, the number of function graphs passing through each pixel is
mapped to the pixel’s luminance, which allows a straightforward inter-
pretation of data trends, prominent (visual) structures within the data,
and outliers [8, 16]. We use data aggregation (frequency binmaps [16]
which have been extended to incorporate also DOI information) and
image space methods to retain the responsiveness even when interact-
ing with such large datasets.

Enhanced brushing techniques were integrated in order to cope with
the temporal nature of the data. Time series are classified accord-
ing to their similarity to a user-defined pattern, which can be directly
sketched as a polyline by specifying an arbitrary number of control
points. Several measurements were incorporated to quantify simi-
larity, including the sum of absolute differences between the gradi-
ents (first derivative estimated as forward or central differences) of the
function graphs and the target function. The aggregation of differences
per time series is then compared to one threshold (for binary classifi-
cation) or alternatively two thresholds (again with a smooth transition
area between focus and context) to obtain fuzzy DOI values.

4 EXPLORING THE TWO CLIMATE DATASETS

In this section, we demonstrate the interactive visual data exploration
in the field of climate research. We use the extended SimVis frame-
work to deal with the application questions as introduced in Sec. 2.
Our main goal is to rapidly identify promising hypotheses, i.e., cer-
tain regions in the atmosphere which are potentially robust indicators
for climate change. The emerged hypotheses are then further investi-
gated using statistical analysis [10], and we are able to present some
preliminary results already here.

The respective process is illustrated in Fig. 2. Since it is rather
difficult to identify the regions sensitive to climate change within the
original data, we first derive meaningful parameters. In our case lin-
ear trends are calculated on smoothed data as moving differences over
N years, and the corresponding signal-to-noise ratios (SNR) are de-
rived to determine the significance of the respective trends. The com-
putation of these parameters is detailed in Sec. 4.2, and can be per-
formed and altered directly within SimVis4. The sensitive areas in
space and time for which the anticipated signal emerges out of the cli-
mate noise background can be selected and visualized in all available
attributes and views.

In an interactive visual exploration process the promising hypothe-
ses can then be rapidly identified (e.g., certain height/pressure layers
given at certain latitudes over a certain timespan). The hypotheses
can then be confirmed or rejected using classical least-squares-fitting
of a linear trend over a fixed timespan and pre-defined geographical
region [10]. The results from statistics can be further explored and
illustrated using confirmative visualization. The parameters affecting
each step in our scenario (e.g., the timespan over which the linear trend

4The derived data, for instance, for the ECHAM5 climate model results in
a 2.38 GB dataset, which can be interactively explored and also saved to and
loaded from the hard disk.
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Fig. 3. Hypothesis generation using interactive visual exploration of derived temperature parameters in the ECHAM5 climate model. Features
selected in multiple linked view are highlighted in red (focus), features only selected in the current view (2nd level focus) depicted in blue, and
context information in black (more details in the text).

is computed, the parameters affecting the visualization, or the bound-
ary conditions for the statistical analysis) can be altered and narrowed
down efficiently in this process. This leads to more insight and deep
information drill down.

4.1 Hypothesis Generation
In order to quickly come up with new hypotheses, which are other-
wise difficult to generate, we first have to consider the features which
characterize those atmospheric regions in space and time, which are
supposed to be sensitive to climate change. These can be determined
by a high absolute SNR, where the derived climate signal (i.e., lin-
ear trend) exceeds the natural climate variability. In the following, the
temperature field of an ECHAM5 climate model run (A2 scenario),
and the ERA-40 geopotential height field will be explored.

The ability to browse the whole field without prior knowledge of
its characteristics (as usually required when using computational anal-
ysis) is advantageous here. By exploring the data as well as derived
attributes with interactive visualization, possible field deficiencies (for
example common in certain latitude regions for some reanalysis data)
can be efficiently detected and consequently taken into account. With-
out knowing in advance what the expectations in the data are, interest-
ing features or patterns can be found by browsing interactively through
the field. The findings narrow down the scope for a later, more spe-
cialized treatment using statistical tools, which then are applied to gain
quantitative results.

ECHAM5 climate model run

We examine the temperature field in an ECHAM5 climate model run,
where the derived parameters are computed based on a 25 year moving
timeframe (N = 25). In Fig. 3 (a) the SNR values of the derived linear
temperature trends (y-axis) over the time domain from 1973 to 2052
(x-axis) are shown in a scatterplot. We are interested in regions where
the derived climate signal has a high significance (i.e., high absolute
SNR values), however, there is no sharp boundary which separates
data of significance (focus) from the context. So we take advantage of
the smooth brushing [3] capability of SimVis assigning fuzzy degree-
of-interest (DOI) values. Using a smooth NOT-brush (violet rectangle
in Fig. 3 (a)) we exclude the data elements with a relatively low SNR
from our selection, i.e., a DOI of 0 (context) is assigned to SNR values
within [−0.75,0.75], a DOI value of 1 (focus) where |SNR| ≥ 1.25,

and a DOI from ]0,1[ to SNR values from the transition between focus
and context (see the illustration on the left of Fig. 3 (a)).

As a next step we investigate the corresponding feature with respect
to the height. The 2D scatterplot in Fig. 3 (b) shows derived temper-
ature trend values (x-axis) with respect to pressure levels (y-axis). In
the visualization, the averaged DOI values (with respect to the num-
ber of data points) are accumulated and highlighted in red according
to the DOI. We can see a high significance (represented as pure red)
in the topmost layers of the simulation, which may be an indicator
region (see inset Fig. 3 (g)). However, according to the literature the
ECHAM5 data set has known deficiencies in its highest pressure lev-
els [1]. Therefore, we completely exclude the highest 10 hPa level and
partly exclude the 20 hPa layer using a smooth NOT-brush5 (shown
in Fig. 3 (b), also in the magnification above Fig. 3 (g)). A negative
temperature trend with high significance is still highlighted in the re-
maining highest pressure levels (indicated by a blue ellipse in Fig. 3 (b)
and (c)). This cooling trend located in the lower stratosphere is sup-
posed to be of high significance with respect to climate change (and
thus part of one here generated hypothesis).

We also investigate regions with only few important data points
(i.e., possibly weaker indicators). Therefore, the maximum instead
of the average of the DOI values are shown in Fig. 3 (c). Here, a posi-
tive (warming) temperature trend is highlighted in most pressure levels
of the troposphere (orange ellipse). Since this feature is barely visible
in Fig. 3 (b) it is supposed to be a less robust indicator for climate
change compared to the prominent cooling trend in the lower strato-
sphere (blue ellipse). In figure 3 (c) also the tropopause is visible6.

Figures 3 (d) and (e) show the variation of the derived temperature
trend over time (1973–2052) in the new function graphs view. The
DOI values are enhanced in Fig. 3 (e) in order to make the features
more visible. The main part of the positive trend curves rises slightly
(see the large amount of blue curves close to the zero line, indicated
by arrow 1) and is mainly located in the troposphere. Note that only
those parts of the curves in Fig. 3 (e) (arrow 3) are highlighted where

5As a result, high negative SNR values in the lower part of Fig. 3 (a) no
longer belong to the overall feature and are therefore depicted in blue.

6The tropopause is the boundary between the troposphere and the strato-
sphere. It is higher in the tropics (up to about 17 km) and lower at the poles (up
to about 8 km), which is also visible in Fig. 3 (c).
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A prominent feature is indicated by the green ellipse. features enhanced in (i). (j) sensitive regions with respect to climate change are highlighted
in the scatterplot showing latitudes (x-axis) vs. pressure levels (y-axis). Here, two separable areas can be investigated (indicated by ellipses).

the respective SNR at the corresponding time step is relatively high.
The emphasized warming trend is supposed to be a less robust climate
change indicator since it is only visible when the feature representa-
tion is enhanced. On the other hand, one can see that the negative
temperature trend is very prominent and robust over the whole visible
time period (arrow 2)—three traces of curves emerge visually7 (indi-
cated also by the small arrows). We come back to this later in Sec. 4.3.
Therefore the cooling trend stemming from the lower stratosphere is
supposed to be a more robust indicator for climate change considering
the whole investigated timespan.

An overview of the spatial location of the sensitive regions with
high absolute SNR values is given in Fig. 3 (f) showing a latitude (x-
axis) versus pressure (y-axis) scatterplot. Two highlighted areas (indi-
cated by orange ellipses) are centered horizontally around the tropical
region in the remaining high pressure levels—this feature is discussed
in more detail in Sec. 4.3. Another sensitive region is visible in the
northern high latitudes in the lower stratosphere (green ellipse). Brush-
ing this region, one can identify the corresponding feature belonging
mainly to the negative (cooling) temperature trend (indicated by a blue
ellipse) in Figs. 3 (b) and (c), respectively.

Generated hypothesis: The above described visual exploration
process lead to the following hypothesis: A promising and robust indi-
cator region with respect to climate change is seemingly located in the
lower stratosphere (upper pressure levels in the ECHAM5 temperature
field), geographically located in the northern latitudes as well as in the
tropics. The corresponding cooling trend is considered to be a robust
indicator over the whole investigated timespan. On the other hand,
the observed positive trend in the troposphere can be considered less
prominent according to visual exploration (some preliminary results
from the statistical evaluation are given at the end of this section).

7Brushing one of these traces reveals that each trace corresponds to one
specific pressure level in the stratosphere (the lower one to the 10 hPa, the
middle one to the 20 hPa, and the upper one to the 30 hPa pressure layer). This
feature is an artifact resulting from the resolution of the simulation grid, since
the ECHAM5 dataset is computed on discrete pressure levels.

ERA-40 Reanalysis Data

In our study, we also examine the geopotential height field of the ERA-
40 reanalysis dataset [22] for the time period 1961 to 2002 where the
derived parameters are based on a 15 year moving timeframe (N = 15).
As done with ECHAM5, low absolute SNR values are excluded in the
2D scatterplot in Fig. 4 (a) using a smooth NOT-brush (violet color).
When examining the evolution of the derived geopotential height trend
over time in a function graphs view, high variations in the early years
can be observed (see Fig. 4 (b)). According to the literature [26], this
is supposed to be a spurious feature. Thus, we restrict our selection to
the post-1979 era, where also satellite data were assimilated.

As shown in the function graphs views in Figs. 4 (b) and (c), the
main portion of the geopotential height trend is centered around the
zeroline. We want to focus on the outliers, which diverge from the ob-
servable main data trend. Thus, we use a similarity-based NOT-brush
(the violet brush located around the zeroline) in order to select curves
with high variations—the resulting feature is highlighted in blue and
red in Fig. 4 (b) and (c). Here, the red curves belong also to the high
absolute SNR and post-1979 feature specified in the 2D scatterplot,
while the blue curves (2nd level focus) are only selected in the function
graphs view by the similarity-based NOT-brush. The visual promi-
nence of the features is moreover enhanced in Fig. 4 (b) in order to
allow the user to focus on all regions containing features (i.e., low
γ value for the DOI enhancement). In order to show the actual signifi-
cance of the feature it is depicted without enhancement in Fig. 4 (c).

The selection corresponding to the similarity NOT-brush is exam-
ined in a 2D scatterplot showing derived geopotential height trends (x-
axis) vs. latitude (y-axis). The highlighted feature shows that the high
trend variations brushed in the function graphs view is only promi-
nent in southern latitudes, which seems to be a spurious feature (see
Fig. 4 (e)). According to Santer et al. [20] the ERA-40 dataset con-
tains deficiencies in these regions. Therefore, we exclude the latitudes
60◦S–90◦S from the selection. The result is shown in Fig. 4 (d) high-
lighting high absolute SNR selections in the post-1979 era.



The variation of the geopotential height trend over time is visually
examined in the function graphs view, highlighting the same features
in red (post-1979 era, high absolute SNR selection, excluding southern
latitudes). In Fig. 4 (f) the features are visually enhanced in order to
examine all areas containing brushed data items. One can see that the
highlighted regions are vertically centered around the zeroline. On the
other hand, the features are depicted without enhancement in Fig. 4 (g)
in order to focus on the prominence of the features. Since only the
negative trend curves are enhanced, these are supposed to be more
significant with respect to climate change than the positive trends.

Generated hypothesis: The features (high SNR, post-1979 era,
excluding southern latitudes) are highlighted in red in the scatterplot in
Fig. 4 (j), showing latitudes (x-axis) vs. pressure levels (y-axis). Here
two structures are very prominent (indicated by two ellipses) and are
supposed to be the promising indicators for climate change (and thus
part of the here generated hypothesis). The one sensitive region is lo-
cated in the upper pressure levels and is prominent in northern latitudes
(see green ellipse). This feature corresponds to the negative geopo-
tential height trend indicated by a green ellipse in Figs. 4 (h) and (i).
The other sensitive region can be examined in the tropical region in
medium pressure levels centered around the 700 hPa level (see orange
ellipse). Since the geopotential height has different properties as the
temperature also the sensitive regions are differently located. While
the promising indicators are mainly located in the uppermost pressure
levels of the ECHAM5 temperature field, for the ERA-40 geopotential
height field they appear also in the lower to middle troposphere.

Preliminary Results from Statistical Analysis

The hypotheses which were generated during interactive visual explo-
ration are subject to statistical analysis. The employed least-squares-
fitting method [10] expects the timespan over which the curves are
fitted, and the corresponding latitude range as prerequisites. Linear
trends are calculated over the investigated timespan and region. The
statistical significance of a trend is determined by the Students t-test
and the goodness-of-fit measure, which is given by the coefficient of
determination R2 (compare to Wilks [29]). We define the trend signif-
icance and the goodness-of-fit as the quantitative criteria for assessing
the sensitivity and robustness of the explored parameter (for further de-
tails on the method see Lackner et al. [10]). Since this paper focuses
on hypothesis generation, we only give some preliminary results from
this analysis. A detailed computational analysis is, however, subject
of future work.

For the ECHAM5 dataset, for instance, the high significance for
the highlighted features in the lower stratosphere could be confirmed
applying the statistical analysis to the higher northern latitude region
of 60◦N–90◦N at the 20hPa–30hPa pressure levels (see the prominent
features in the scatterplots in Fig. 5 (a) and (b) showing temperature
trends (y-axis) vs. latitudes (x-axis), features in (b) are enhanced).
When evaluating the hypothesis generated for the geopotential height
field the ERA-40 reanalysis dataset we also got similar results.

On the other hand, the southern latitudes 25◦S–90◦S over the time-
span 2025–2050 were also evaluated. According to the explorative
visualization, these areas had a relatively low significance—see the
less prominent features in Fig. 5 (a). However, according to the statis-
tics the same areas returned a strong significance for the chosen time-
span stemming mainly from 25◦S–45◦S. Therefore, the features in this
latitude region were again examined using SimVis, but now display-
ing the maximum DOI values in order to focus on all areas contain-
ing features (see Fig. 5 (b)). Still, only small areas with low promi-
nence could be found, even though we already get a slightly improved
agreement. Getting back to statistics, we varied the timespans for
the least-squares-fit method, i.e., 2020–2045 and 2015–2040, respec-
tively. With these modified parameters also the statistical analysis re-
turned a noticeable lower significance for the respective latitude range,
which shows that the least-squares-fit reacts very sensitive to the cho-
sen timerange (the coupling of visualization and statistical analysis
was crucial to identify this relation).

Using this iterative approach between visual exploration and com-
putational analysis, we could benefit from the strengths of both do-
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Fig. 5. ECHAM5: Sensitive regions with respect to climate change high-
lighted in the scatterplot (latitude on x, temperature trend on y-axis)
were handed over to statistics for further analysis. In (a) the averaged
DOI attribution are depicted in order to visualize the importance of each
feature. On the other hand, the visual representation of the features is
enhanced in (b), showing the maximum DOI values.

mains: Finding the right parameters for statistics is usually cumber-
some, however, using interactive visual explorations these parame-
ter ranges could be efficiently narrowed down in an iterative process.
Moreover, we could investigate that the applied statistical method
reacts more sensitive with respect to the chosen timespan than ex-
pected. These examples show how the application of visual explo-
ration techniques—used in an iterative process—contributed to an im-
proved workflow in this application.

4.2 Parameter Optimization

As illustrated in Fig. 2 there are several parameters involved in the ex-
ploration scenario in this study. It is often challenging to come up
with the optimal settings, affecting the respective exploration steps
in the pipeline. For example, we derive climate parameters (linear
trend, SNR) from the original data in order to form our hypotheses.
Thereby, the timeframe over which these calculations are performed
significantly affects the derived data, and therefore also influences the
following steps in the pipeline. Using interactive visual exploration we
can assess the sensitivity of our results to the timeframe. To this end,
we have derived the parameters over 10 and 25 years for ECHAM5
and over 10 and 15 years for ERA-40. On the example of ECHAM5,
we briefly show how SimVis was used to come up with parameters
that then were suitable for our analysis.

In order to be able to calculate meaningful linear trends, the orig-
inal data is smoothed first using a moving average over a timespan
of N years. Then, the linear trend of a year i is calculated as a mov-
ing difference between the smoothed data ỹ, i.e., trendi = 1

N (ỹi+N/2−
ỹi−N/2). The linear trend fit curve for each time frame over N + 1
years is calculated using the derived trend values as a slope, i.e.,
fiti j = ỹi−N/2 + [ j− (i−N/2)]trendi, where j runs from i−N/2 to
i + N/2. As a next step, the fitted trend curve is removed from the
original data y to obtain the detrended standard deviation s for the cur-
rent timeframe, determining the natural variability of the climate data:

si =
[ 1

N−1

i+N/2

∑
j=i−N/2

(yi−fiti j)
2
] 1

2

Finally, the signal-to-noise ratio is computed as the ratio of the trend
to the standard deviation, i.e., SNRi = trendi

si
(compare to Ladstädter et

al. [11]).
The resulting parameters are explored using SimVis, in a similar

setting as described in Sec. 4.1. When the ECHAM5 data is smoothed
over a shorter time frame (10 instead of 25 years) there are obviously
more high-frequency features present in the data, which can also be
observed in Fig. 6 (a) showing SNR values (y-axis) over time (x-axis).
Comparing Fig. 6 (b) and Fig. 3 (b) shows that averaging over less data
points leads to less pronounced formation of features. For the long-
term trend in which we are interested, a longer timeframe is clearly
favorable, since the high-frequency characteristics are effectively flat-
tened out and do not show up in the visual exploration.
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Fig. 6. ECHAM5 temperature: derived parameters computed over 10
years instead of 25 years. The features which were barely visible with
25 years (Fig. 3 (b)) are now highlighted in (b). The function plots of the
derived temperature trend seem to contain a lot of noise.

When examining the linear temperature trends using a function
graphs view one gets a high response in the upper and lower trend
values (10-years), which also seem to contain a lot of noise (see
Fig. 6 (c)). Here, no clear highlighted trends can be identified in the vi-
sualization, in contrast to Fig. 3 (d) and 3 (e), arrow 2. Using 25 years
we obtain clearer signals and thus better-defined features. Accord-
ingly, we used 25 years instead of 10 years in the ECHAM5 dataset,
and 15 instead of 10 years in the ERA-40 dataset, respectively.

4.3 Analyzing Relations Between Selections

Up to now we were performing our investigation mainly in one direc-
tion, e.g., brushing high absolute SNR values and examining the re-
sulting feature in other dimensions. In science, this principle is known
as implication (a→ b). In the following, we want to check whether
this interrelation also exists in the opposite direction, i.e., whether we
we get a similar feature in one dimension when specifying a feature in
another dimension (a← b). If this interrelation can be confirmed the
respective statement is stronger (a↔ b).

When examining the derived temperature trends in the function
graphs view (ECHAM5, 25 years, see Sec. 4.1), one can visually iden-
tify three streams of curves, which were very prominent in the visu-
alization and also seemed to belong to the high absolute SNR feature
(highlighted in red in Fig. 3 (d) and (e), indicated by small arrows).
Using similarity-based brushing we can examine the interrelations be-
tween these visible trends and the other dimensions. In Fig. 7 (a) such
a brush is specified, aiming to approximate the visible structure of the
respective curves. Here, similarity is evaluated based on the gradients
of the function graphs and the target function. Three families of curves
are emphasized in red and blue within the function graphs view (con-
text data depicted in black). The bottom family of enhanced curves
stems from the uppermost pressure level, which has been excluded,
and is therefore colored in blue (second level feature).

Examining the resulting feature in a 2D scatterplot (SNR over time,
see Fig. 7 (b)), one can see that the highlighted curves have a relatively
high (negative) signal-to-noise ratio—note, that the high SNR feature
is disabled in the scatterplot. The similarity feature is highlighted in
another 2D scatterplot (see Fig. 7 (c)), where it is approximately hori-
zontally centered around the zeroline (the tropical region), and located
in the uppermost pressure levels. A similar feature can be examined
in Fig. 3 (f)—indicated by orange ellipses—when going into the oppo-
site direction (i.e., selecting high absolute SNR values in a scatterplot).
However, in the previous examination these two highlighed spots were
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Fig. 7. A prominent visual structure in the function plots view is brushed
based on it’s similarity to a user defined target function (a). Three fami-
lies of curves are thereby highlighted. The respective feature contains a
relatively high signal-to-noise ratio highlighted in (b), and can be located
in the upper pressure levels, centered around the tropical region (c).
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Fig. 8. Cooling trend brushed in the lowest pressure level indicated by a
green ellipse in Fig. 3 (c) shows relatively low SNR values (a) and corre-
sponds to a certain geographic area also including the Tibetan Plateau.

not very dominant—they were occluded by other highlighted areas in
the upper pressure levels, where the most prominent feature was in
the high northern latitudes. Due to the use of similarity based brush-
ing, the areas in the tropics containing these families of similar curves
could be located. Since this relation seemingly exists in both direc-
tions (a↔ b) the corresponding statement is supposed to be stronger
and can be considered for further investigation (e.g., using statistics).

4.4 Further Results
When analyzing the ECHAM5 dataset (25 years) in the 2D scatterplot,
a negative (cold) temperature trend feature (considering high absolute
SNR values) visually emerged in the pressure level closest to the sur-
face (indicated by a green ellipse in Fig. 3 (c)). This feature varies
from the more prominent warming trend features with high SNR also
located in this pressure level. Brushing the area (green ellipse) with
a rectangular brush reveals that this feature corresponds to relatively
low SNR values in the timespan 2022 to 2052 (see Fig. 8 (a)). When
looking at the geographic location, one can identify that the brushed
feature corresponds to a certain area which is mainly located at the
Tibetan Plateau (see Fig. 8 (b), where also a land-sea coloring is incor-
porated). According to the process illustrated in Fig. 2, the next step
would be to use statistical analysis in order to evaluate whether this ge-
ographical region has a special characteristic—this is subject of future
work. However, using classical statistical analysis, it would have been
very challenging to identify this region in the spatial context. Also
when using a binary classification scheme instead of smooth brushing
(e.g., with a hard selection of |SNR| ≥ 1), this feature would have been
challenging to detect.

4.5 Performance Issues
The presented study was carried out on a system consisting of the
following components: The hardware used was a modern PC-based
system (Intel Core2 Quad CPU, 4 GB RAM, 320 GB harddisk, 64bit



Windows) with a NVIDIA GeForce 8800 graphics card. The SimVis
software is written in C++, using OpenGL and Cg shader language.

The two datasets investigated during this case study consist of
180K cells, defined at 42 time steps (ERA-40) and 108 time steps
(ECHAM5), respectively. The derived data of ECHAM5 resulted in
approximately 2.3 GB of data, for example. Due to algorithmic op-
timizations and an effective data handling framework, we are able to
handle analysis sessions with multiple linked views at interactive fram-
erates. By the use of binning techniques, large amounts of function
plots can be depicted and analyzed, while still providing full interac-
tivity. To the best of our knowledge no other comparable system can
handle such large amounts of function graphs interactively on a PC.

5 CONCLUSION AND FUTURE WORK

The generation of hypotheses in climate research is a crucial task. In
this paper, we demonstrate the useful integration of state-of-the-art in-
teractive visual exploration technology into the hypothesis generation
process in climate research. The goal was to investigate atmospheric
regions in space and time that are sensitive with respect to climate
change. In order to rapidly come up with promising hypotheses, we
explored derived parameter spaces using interactive visual exploration
of complex features specified in multiple, linked attribute views. For
analysis, the emerged hypotheses were handed over to statistical anal-
ysis. Up to now, the results from visual exploration could already
be confirmed in some exemplary cases. We also applied visual ex-
ploration in individual cases where the correlation could not be es-
tablished. Here, our visual exploration framework showed to be es-
pecially useful to further investigate these cases, and to improve the
understanding of the influence of different parameters on computa-
tional analysis. The power of this approach is that no prior knowledge
about the data is needed to rapidly formulate hypotheses. Therefore,
parameter ranges affecting for instance the computational analysis can
be narrowed down efficiently.

Lessons learned from this case study are that interactive visual ex-
ploration with the opportunity to interactively drill down into certain
aspects of the data (through brushing) substantially supports the ex-
ploration and analysis process of climate researchers in many ways.
Using interactive visual exploration allowed us to examine the whole
field without knowing its characteristics in advance, which showed to
be very useful. Interesting features or patterns can be found by brows-
ing interactively through the field. The findings narrow down the scope
for a later, more specialized treatment using statistical tools, which
then are applied to gain quantitative results. For visualization research
it is very rewarding to see how positively new technology is adopted
in a challenging application domain. Generally, we see great poten-
tial for visualization when performing undirected exploration since it
efficiently complements computational analysis (e.g., statistics). We
think that the approach presented here of using visual exploration to
come up with promising hypotheses and then quantitatively evaluating
the results can be generalized to several other scenarios.

In future work we will focus on further fusing statistical methods
yielding quantitative results in our visual exploration framework. We
also want to perform a detailed quantitative evaluation of the results
gained from this study using computational analysis. Here again, we
want to show how visual exploration and statistics can interact in a
feedback loop to gain in depth insight into the data.
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