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1 Introduction

Compressed sensing (or Compressive sampling) tries to exploit the sparsity of signals to either improve
the quality of reconstructions, or reduce the required number of samples.

The samples are usually taken by multiplication with some matrix with independent — normally
distributed — random values, or by selecting values from the Fourier transform of a signal. Important
is that the signal should not be sparse in the transformed domain. How many samples need to be
taken depend on the characteristics of the matrix and the signal.

Several introductory texts, as well as a lot of reference material, can be found on
http://www.dsp.ece.rice.edu/cs/|

2 Motivation

When taking a photograph or making an MRI scan of some object a lot of samples are taken, say
. However, using the right basis only a small number of coefficients m (m << I) suffices for a good
representation of the signal, as is demonstrated by the success of compression formats like MP3 and
JPEG. Compressed sensing is about bridging this gap, letting you take a number of samples that is
more closely related to m than [.

Given some measuring device that would yield, for example, wavelet or Fourier coefficients of a
compressible signal, and complete knowledge of the distribution of the coefficients it would be easy
to take exactly the right m samples and walk away with an excellent representation of the signal, see
figure 1.

Unfortunately this presents a paradox. To take the samples you need to know which ones to take,
but to select the right coefficients you have to know the distribution of the coefficients, which you
usually only know after having sampled the signal.

Compressed sensing provides a way out by using a transform (represented by multiplication with
a matrix) which is definitely not able to sparsely represent the signal, as in figure 2. This way each
coeflicient is “worth” more or less the same and there is little need to worry about which coefficients to

(a) Original (b) 1%, PSNR=26.26 (c¢) 10%, PSNR=35.26

Figure 1: Lena, the middle and right images are reconstructed from the largest 1% and 10%, respectively, of
the Haar wavelet coefficients (see equation 6 for a definition of PSNR).
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Figure 2: Graphical representation of taking compressed sensing measurements. Instead of measuring the
sparse vector (here with three non-zero components) a limited number of “noisy” measurements are taken.
Conceptually a matrix multiplication is used, but in an actual acquisition device it is usually not implemented
that way, see section 3.

take. Then, using the knowledge that the original signal is sparse (in some basis) a good approximation
of the original signal can be reconstructed from the measured data.

Theory and empirical data suggest that with this scheme the number of samples that have to be
taken is larger than the number of coefficients needed to represent the signal in a “good” basis, but
only by (roughly) a small constant factor (usually about 3-6) [48].

However, compressed sensing is not the only way to solve this problem, and it might not even
(always) be the best way. For example, in [21] a technique is described that speculatively samples a
subset of wavelet coefficients, starting at the coarsest level and using the results at each level to guess
where the most important wavelet coefficients at the next level are. If samples can indeed be taken
adaptively based on previous samples, and the signal has a predictable coefficient pattern, such an
adaptive method can be significantly more effective than traditional compressed sensing.

3 Acquisition devices

To apply compressed sensing to real world scenarios it is not sufficient to have some matrix to “mea-
sure” the signal, you have to have a device that takes suitable measurements of the signal. These
devices can be grouped into two categories: devices which inherently yield measurements suitable for
compressed sensing and devices which are explicitly constructed to yield suitable measurements. With
respect to imaging a popular example of the former is a CT scanner (including X-ray CT and MRI)
and an example of the latter is the single-pixel camera [27].

The single pixel camera uses a micromirror array and two lenses to optically take arbitrary sums
of the image pixels. Without actually having to take a photograph first. This enables the use of
more expensive sensors for example. So this is a relatively direct application of compressed sensing,
essentially performing the matrix multiplication in the optical domain. As can be imagined this makes
the acquisition process relatively slow (it can only take one sample at a time), but in this case the
idea is that it would be possible to use more advanced sensors than would normally be feasible, as
you only need one.

For CT reconstructions it might be less clear that compressed sensing applies, but using the
common interpretation of projections as slices of the Fourier transform it is clear that each of the
projections at least capture distinct information. For compressed sensing to apply it is then only
necessary that the Fourier transform of the image is not sparse. A promising area of research in this
direction is the application of compressed sensing to dynamic MRI, see for example [29].

Another example of a device explicitly constructed for compressed sensing is a coded aperture
camera. In its crudest form it can be made by simply putting a piece of cardboard in front of a lens,
as in [32]. This can also be applied to video [35], leveraging the inter-frame redundancy to further
reduce the required number of samples (or improve the reconstruction quality). Such schemes can
yield improved resolution and/or depth information (from a single photograph).



4 Reconstruction problem

Before proceeding with the actual reconstruction algorithms this section gives a mathematical for-
mulation of the reconstruction problem, which is generally formulated as a minimization problem.
Appendix B discusses theoretical bounds on the quality of the reconstruction.

4.1 Definitions
e f c R!is the real data
° f is an estimate/approximation of the data
e & is the measurement matrix

y € R* is whatever has been sensed (y = ®f)

e U is a representation basis

e x € R™ is a representation of f in basis ¥ (f = Wz), which is assumed to be sparse

[l = [lvll}

4.2 A posteriori formulation

The most common formulation used in compressed sensing assumes that the measurement matrix is
applied directly to the original signal and you can choose any suitable sparsity basis afterwards (hence
the “a posteriori”). Obviously there are some limitations, but as long as the choice of measurement
matrix is somewhat reasonable this works just fine in practice, see section 6) for results of using
different sparsity inducing transforms for reconstructions based on the same measurements.

Since z (Wx = f) is assumed to be sparse, most reconstruction methods try to solve the following
minimization problem (assuming no noise):

minimize(zZ) ||Z1 N B
. . =z (1)
subject to ®¥z =y

Usually it is assumed ¥ is square and orthogonal. See [10, p. 4] for the common case where ®
is a selection of rows from an orthogonal matrix. In addition, appendix A covers a few alternative
formulations.

It is possible to use the I, (with 0 < p < 1) norm (see [38]) in the minimization, which can improve
the quality of reconstructions. See section A.3 for a link between [, norms and probability density
functions. It is also possible to consider signals with are not truely sparse, but are merely compressible.
That is, the coefficients decay approximately exponentially. See for example [48] and [13].

In addition, compressed sensing can be applied in a multiscale setting, as in [48], by decomposing
the signal into a multiscale representation and then applying compressed sensing separately on each
level (except the finest scale). So for each level separate measurements are taken and the reconstruction
consists of a sequence of minimization problems (one for each scale).

5 Reconstruction algorithms

Of course, defining a minimization problem that “solves” the reconstruction problem does not immedi-
ately give you a feasible method of actually performing a reconstruction. An algorithm for performing
the minimization is still needed.

When comparing different reconstruction algorithms it is important to keep in mind that there are
three (more or less equivalent) minimization problems that can be solved (note that the equivalence
in equation 1 is replaced by a tolerance here), see [12, §4], [19], [6], [5] and [25]:

minimize(f) | W7 E||;, subject to [ly — ®f| < e (2)
minimize(f) ||y — ®f]|2, subject to |¥TE||; < R (3)
minimize(f) ||y — @2 + M| @7 E|; (4)
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Figure 3: Relative l2 error ( ) versus sparsity, using {1 (solid line) and I 1 (dashed line) minimization
with IRLS. The thin solid line depicts the relative Iy error of the best %-term approximation of x, note that
it behaves similar (upto a scaling factor) to the error of the solution of the I; minimization. Also note that
the results are roughly in line with the theory in [23], which also suggests a sharp transition boundary (in
the limit as n and k go to infinity) between being able to reconstruct a signal perfectly and not being able to

reconstruct it at all.

There are a few other possibilities, like the Dantzig selector (see for example [12, §5.2]), but the above
covers most cases and will be the only ones considered in this report.

Usually problem 2 is most interesting to solve, as it gives a solution that is guaranteed to be in
agreement with the measurements (upto a certain tolerance). However, so far it also appears to be
the most difficult problem to solve, requiring either a very slow method or multiple iterations of an
algorithm that solves one of the other two very fast.

5.1 Newton-type methods

One of the traditional workhorses of optimization has been the Newton iteration, and it can be applied
directly to problem 2 by recasting it as a second order cone program and then solving it using a log-
barrier method (other possibilities exist, but this method is relatively easy to use). This is done in
the popular /;-magic package. The author recommends [8] for a practical introduction to these topics.

This method works quite well but is very slow, hundreds to thousands of times slower than a
simple least squares reconstruction for images of 256 x256 pixels. This is mostly due to the Newton
iterations which require the solution of a large matrix equation, which has a time complexity of O(I?)
in the most general case. It is possible to mitigate this by using less expensive approximations of
the Newton step, however, it is not clear whether such an algorithm can compete with the methods
detailed below.

5.2 TIteratively reweighted least squares

This method is relatively easy to implement and reasonably fast if a weighted least squares solution
can be solved cheaply, as it simply solves a sequence of weighted least squares problems. In [15] the
algorithm is described in more detail and its convergence properties are discussed at great length in
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Figure 4: Number of iterations before convergence versus sparsity, using /1 (solid line) and [ 1 (dashed line)
minimization with IRLS. Note that the maximum number of iterations was set to 200.

[20]. The following is the weighted least squares problem solved at each iteration:

l
minimize(Z Z w; T Z, subject to dVx =y
i=1

After each iteration the weights are adjusted in such a way that the sequence of solutions converges
to a solution of equation 1.

An implementation based on the work [15] of Chartrand and Yin was used to conduct tests similar
to those in the paper. However, instead of looking at the reconstruction rate, relative error was used
as an error metric and the data was constructed so that the coefficient magnitudes decay exponen-
tially instead of simply having a few non-zero entries (in section A.3 it is shown why this particular
distribution is relevant). Specifically, the data was constructed in such a Way that almost 90% of the
data is in the largest s coefficients (the i-th largest coefficient z(;) obeys z(;) = Ae™> (=D X=2/s).

Figure 3 shows the relative error of ll minimization compared to [y mlnumzatlon us1ng 10 ran-
domly selected matrices with 10 randomly selected vectors each, for each sparsity level. And figure 4
shows the number of iterations required. Clearly it can be advantageous to employ a method that can
do 1, minimization (for 0 < p < 1).

However, for large amounts of data this method can become quite slow because of having to
repeatedly solve a weighted least squares problem, which can be O(k?[) in the worst case. Furthermore
the described method only solves problem 2 with an exact equality constraint (¢ = 0), while in practice
it is useful to allow a larger value of €, to be able to deal with noise.

5.3 Greedy methods

There is also a (huge) class of reconstruction methods that are not a minimization method per se, but
that do find sparse representations of data. The best known examples of which are Matching Pursuit
and its close relative Orthogonal Matching Pursuit (OMP) [45]. The latter works by repeatedly
increasing the support of the estimate with the index corresponding to the highest element of (®W¥)7r,
where 7 is the “current” residual, and then solving a least squares problem within the current support
of the estimate.

In general a lot of these methods only work well for very sparse signals. For instance, the least
squares problem in OMP becomes larger and larger as the algorithm adds more and more non-zero



coefficients, which can make it prohibitively slow if a lot of coefficients have to be added. But there
are a number of variations with different performance characteristics, for example Stagewise OMP
(StOMP) [26], which selects multiple coefficients at a time.

5.4 TIterative thresholding/shrinkage

With this method the following iteration is done many times (typically in the hundreds or thousands
of iterations are used): 4 4 _
T = H(@ 4+ A% (y — ATY)) (5)

Where A = ®W¥ and H is some kind of (non-linear) thresholding or shrinkage operator. Proximity
operators [17] (like a shrinkage or soft thresholding operator) solve a minimization problem of the
form min, () + || — y||?, which for soft thresholding becomes min, A||z||* + [z — y||?.

The main advantages of this method are that it is easy to implement, very flexible and has a good
time/quality ratio. That is, it can give reconstructions of a quality similar to the more traditional
optimization methods in less time.

Using hard thresholding this can be used to (at least approximately) minimize the lp-norm. This is
detailed in [6], which uses formulations similar to problems 3 and 4 and makes a comparison between
(Orthogonal) Matching Pursuit and iterative hard thresholding. In essence it is shown that iterative
hard thresholding behaves very similar to (O)MP, with a few twists. The main differences are that
OMP performs a least squares minimization in each iteration and that (O)MP always keeps an element
in its non-zero set once it has been selected, while iterative thresholding may select a completely new
non-zero set at each iteration.

Appendix C discusses a modification of iterative thresholding that gives results comparable to (or
even better than) using a Newton-type method with Total Variation (TV) instead of a simple I1-norm
(in practice using TV often results in a high quality reconstruction), as is common when reconstructing
images [37], [5], [33].

5.5 Recursive Filtering

This is a method introduced in [28] which iteratively filters the result image and projects it onto the
feasible set {f € R! | ®f = y}. Originally formulated only for using Fourier measurements, but in
appendix D it is shown how it can be adapted to arbitrary measurement matrices. This adaptation
results in an iterative scheme that is almost equivalent to a generalization of iterative thresholding.

The advantage of this method is that filters based on much more complicated signal models can be
used. The disadvantage is that it would obviously be very hard to provide any theoretical bounds on
the performance of this method in general, without considering a specific filter. Also, it can be quite
slow in practice because of the complicated filters that may be used (see section 6, and specifically
figure 14).

5.6 Hierarchical Least Squares

This is a heuristic method, developed while trying to improve the initialization of the other methods in
this report. Some of these methods perform poorly if the initialization is too noisy (e.g. figure 6¢). To
get a less noisy, smoother, estimate of the signal very fast I tried to satisfy as much of the constraints
as possible in a coarse-scale representation. This made quite a large difference (producing a clearly
recognizable picture instead of the collection of points that can be seen in figure 6¢). And I found
that a simple thresholding scheme would improve the quality of the reconstruction even more (upto 6
PSNR points), leading to a very fast (see figure 14) reconstruction algorithm.

The method is described in algorithm 1. Note that it is assumed that the magnitude of the largest
singular value of matrix ® is < 1. For any ® with the property ®®* = I this is obviously true and
this applies to both the DCT and the noiselet ensembles used for the tests in section 6.

In line 2 the variable 7 is chosen to minimize the total number of iterations needed for the for
loop starting at line 8. This choice was found to give the fastest results (which should be obvious),
without sacrificing quality. Note that this minimization can be performed quite easily using a simple
loop that computes the iteration counts for a reasonable range of (integer) values of 7 (e.g. [1,n]).
The value of ¢t was determined empirically to yield a good trade-off between speed and quality.



Algorithm 1 f = solve(y € R¥, ® € RExn®, €)

1: t:=0.85

2: choose 7 such that it minimizes the needed number of iterations
3: f+0

4: Ty

5: ns <+ 1

6: while ns < n do

7. Ns ¢+ ns?

8 for i =1 tomax(l,[Llog,(5=)]) do
9: Af + downscale(®*r,ns,ns)
10: if (1 —¢)Ns> 1 then
11: 0 < t - 100-th percentile of |Af|
12: Af <« Hog(Af)
13: end if
14: f + f+ upscale(Af,n,n)
15: f + constrainTolmage( )
16: ry—of

17: if (1-¢)Ns <1 then

18: break

19: end if
20: end for
21:  set [ to the smallest value for which [2” T] >ns
22: NS [2l/T]
23: end while
24: bar =N
25: 140
26: while i < ipey A 7|2 < € do
27 [+ [+ P
28:  f «+ constrainTolmage( f)
20 r+b—0f
30: 1+ 1+1
31: end while




The idea behind the bounds in line 8 is that the number of iterations should be related to how much
of the coefficients would be selected in total. Assuming that during each iteration a different set of
coeflicients is selected by the thresholding operation, the fraction of coefficients that was “corrected”
after j iterations is 1 — 7. So if you want to leave a fraction of « then you would need approximately
log,(«) iterations. The value for a used in the algorithm was determined empirically to give good
results. Finally, if 7 is larger less iterations at each resolution should be needed as the changes between
each resolution are smaller. This is compensated for by the % factor.

The downscale and upscale functions are resizing/resampling operations (using a bilinear kernel),
Hy is a hard thresholding operator with threshold 6 and constrainTolmage clamps all pixel values to
the range [0, 255].

Last but not least, the second while loop starting at line 26 attempts to reduce the norm of any
remaining residual to below the bound given by e. This is mostly done in this separate loop (without
thresholding) for efficiency reasons.

6 Results

Using the images shown in figure 17 the following reconstruction methods are compared:
Isqr Least squares reconstruction using a conjugate gradient method.
Isqr cs The same but using noiselet measurements.

tvqc The [j-magic “Total Variation with Quadratic Constraints” minimizer (available from
http://www.acm.caltech.edu/llmagic/).

grthMP Gradient thresholding as described in appendix C, with “model” M and minimizing the [ p norm.
The model can be 1, 2 or 3, with 1 using only (a discrete approximation to) the first derivative,
2 using only the second and 3 using a combination of both.

filter Recursive filtering as in [28], but without adding noise and operated in a manner similar to
gradient thresholding (gradually using lower denoising strengths). Adding noise is in the original
paper [28] was tried but did not seem effective in this setting.

I1qc The l;-magic “l;-norm with Quadratic Constraints” minimizer. Using a Haar wavelet transform
as sparsifying transform.

twist TwIST (see [5]), an iterative thresholding scheme (using soft thresholding), using a Haar wavelet
transform as sparsifying transform and operated in manner similar to the gradient thresholding
scheme by starting with 7 = 1 and decreasing it by a factor of 1.1 until the error bound is
satisfied. Here 7 is the regularization weight, (mostly) called A in the original paper and 7 in
the implementation.

thresholdP Exactly the same scheme as gradient thresholding, except that it uses the Haar wavelet transform
as with TwIST, with p = P.

hierlsqr Experimental least-squares based method that tries to build up the solution by solving least
squares problems on increasing levels of detail. Interesting because it is extremely fast (taking
seconds for reconstructions for which gradient thresholding takes minutes).

The methods were tested with the following measurement ensembles:

e Low-pass Discrete Cosine Transform (DCT), with the coefficients selected in a zig-zag order
similar to that used in JPEG.

e Noiselets [16] (using the implementation from [37], available at
http://users.ece.gatech.edu/~justin/spmag/).

The DCT is very closely related to the discrete Fourier transform and tends to concentrate most
of the energy of a photograph into coefficients corresponding to low frequencies [44]. This means
that it does not really act as a compressed sensing measurement matrix for photographs. Figure 6
demonstrates this, the DCT-based reconstruction clearly favours low-frequency components, yielding
a somewhat blurred image.


http://www.acm.caltech.edu/l1magic/
http://users.ece.gatech.edu/~justin/spmag/
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(a) Original (b) Noiselet coefficients ~ (c¢) Distributions of magnitude of gradi-
ent (dashed line) and noiselet coefficients
(solid line)

Figure 5: As can be seen the noiselet transform gives a very noisy result. The non-sparse nature of the noiselet
coefficients is also illustrated in the graph on the right. As can be seen the gradient is very sparse (clearly
concentrated around zero), in contrast to the noiselet coefficients.

The noiselet ensemble is much better suited for compressed sensing than the DCT for photographs,
as it is incoherent with Haar wavelets (see appendix B for a definition of incoherent), so for any signal
that has a sparse representation in a Haar wavelet basis (and this is true for most photographs, or in
general any piecewise-smooth image) it will act as a compressed sensing measurement matrix. Figure 5
shows the noisy nature of the noiselet coeflicients.

A combination of low-pass DCT (5% of the measurements) and noiselets (95%), as in [37], is not
used (anymore), as I feel this obfuscates the behaviour of compressed sensing reconstructions and
the quality of the reconstructions is virtually identical for most methods and values of k (e.g. for
tvae 92% of the PSNR values are less than 0.5 apart). The only exception is the filter method, as it
currently gives extraordinarily bad results (PSNRs below 10 for £ < 0.2) using just noiselets. This
is probably due to the initialization as the filter tries to match different blocks in the (extremely
noisy) initialization image, which most likely fails to give sensible results. But since it mainly serves
to demonstrate the possible advantages of a different model it is simply used with the combined
ensemble.

The error metric used throughout all the tests shown below is PSNR, this is defined as:

PSNR(f*) = —20logyo (11 (6)

255v/1

6.1 Visual comparison

This section shows some of the reconstructions that were made with the above-mentioned methods
and compares their visual appearances. In the next section a more numerical comparison is made. To
be able to clearly see some of the differences between the different methods the focus is on low quality
reconstructions (for higher quality reconstructions the differences between methods can be hard to
see, especially on paper).

First consider figure 6, this shows how a simple least squares reconstruction fails with noiselets
(fig. 6¢), as well as the effect different measurement ensembles can have on the compressed sensing
reconstruction. Noiselets are used as a typical example of the measurement matrices used with com-
pressed sensing. As can be seen in figure 6a the DCT data gives a (good) low-pass approximation
of the image, while the use of noiselet data increases the error for the least squares reconstruction
quite noticeably. For the tvqc reconstruction, on the other hand, the noiselet-based reconstructions
(fig. 6e—(f)) are only slightly worse. In fact, while giving a noisier impression, the tvqc reconstructions
based on noiselet data are actually able to show some of the smaller details that are lost using only
the low-pass DCT data (see the face and camera in figure 6f for instance).

Figure 7 shows the effect of using a (normal, decimated) Haar wavelet transform as a sparsifying
transform. For compression purposes it is a reasonable choice (although other wavelet transforms
generally perform better) as it can represent an image quite well with a small number of coefficients
(as demonstrated in figure 1). For compressed sensing, however, the decimated wavelet transform is
not satisfactory due to the “blocky” results as in figure 7c. An undecimated wavelet transform [40]



(a) lsqr, PSNR=24.76 (b) 1sqr, PSNR=19.40 (c) 1sqr, PSNR=6.04

(d) tvqe, PSNR=25.51 (e) tvqc, PSNR=25.15 (f) tvqc, PSNR=25.01

(g) Original

Figure 6: Reconstructions of cameraman. From left to right: pure (low-pass) DCT, 5% DCT + 95% noiselets
and pure noiselets, every reconstruction uses the same number of samples, 10% of the number of pixels in the
reconstructed image (k = 0.11). Note that the tvqc reconstruction (d) based on the DCT data has a lot less
ringing than the least squares reconstruction (a).

10



(a) Original (b) tvqe, PSNR=27.95 (c) 11qc, PSNR=22.80

Figure 7: Reconstructions of mri using a pure noiselet ensemble with £ = 0.1[.

(d) Original (e) tvqe, PSNR=29.61 (f) filter, PSNR=30.36

Figure 8: Reconstructions of football, both using an ensemble with 5% DCT and 95% noiselets, k = 0.2l.
Note the texture on the football.
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(c) tvge, k = 0.2, PSNR=28.73 (d) filter, k = 0.2, PSNR=31.02

Figure 9: Reconstructions of cameraman, all using an ensemble with 5% DCT and 95% noiselets. Note that
on the first row tvqc is clearly best and on the second row filter is best by a wide margin.
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(c) filter, k = 0.4l (d) filter, k = 0.51

(e) Original

Figure 10: Reconstruction of bridge (just a fragment shown), using an ensemble with 5% DCT and 95%
noiselets. Note the three bolts(?) missing in (b).

(d) Original (e) grth1l, PSNR=33.07 (f) grth10, PSNR=29.89

Figure 11: Reconstructions of peppers using a pure noiselets ensemble, k& = 0.2]. The assumption implicit
in grth10 that the gradient of the image is (truely) sparse clearly does not hold for this image and results in
degraded reconstruction in (f) compared to the grthll reconstruction (the same is true for grth10 vs. tvqc).
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(c) tvqe, k = 0.3, PSNR=26.11, time=800.70s (d) hierlsqr, k = 0.3, PSNR=25.51, time=13.95s

Figure 12: Reconstructions of bridge using a pure noiselet ensemble.

14



may give much better results due to translation invariance. It would be interesting to see if this is
indeed the case and if so, how much. Especially since total variation is similar to using only one level
of an undecimated wavelet transform [41].

The effects of using the more advanced model implicit in the filter method are shown in fig-
ures 8 and 9. As is apparent from the images the model can lead to much improved reconstruction
accuracy, especially of textures, but can also fail spectacularly, as in figure 9b where a lot of high-
frequency noise is introduced. This may be due to the (noisy) initialization, but may also be due to
“phase transition” effects similar to those observed in figure 3.

A potentially more serious effect of using a more advanced filter is shown in figure 10. Here three
bolts(?) are not clearly visible (fig. 10b) in the filter reconstruction upto approximately k = 0.4,
whereas in the tvqc reconstruction they are merely made a little less pronounced by noise (fig. 10a).
The advanced filter can obscure relatively large image features compared to the simple gradient thresh-
olding filter. Such behaviour might be extremely problematic in medical and industrial applications.

Figure 11 demonstrates what can happen when the sparsity assumption does not hold. Here the
mismatch is only minor, the image gradient is compressible but definitely not sparse, so the effect
is reasonably benign. However, it does demonstrate a problem inherent in all methods that try to
reconstruct truely sparse solutions (such as OMP), they clearly fail on signals that are not sparse.
On the other hand, they do (in principle) allow better reconstruction of signals that are sparse, as
demonstrated by the results for the (relatively sparse) mri image shown in figure 15.

As an indication of what can be achieved with hierlsqr figure 12 shows the results of reconstructing
bridge using different values for k. As can be seen hierlsqr produces a completely different kind of
error than tvge. Apart from hierlsqr giving a larger error (on most images) for the same value of k it
is not immediately clear which kind of error is to be preferred.

At http://www.cg.tuwien.ac.at/~jasper/imtest.html these images (and many more) can be
compared on-line. The site allows specific sets of images to be selected based on several attributes, to
make comparisons easier. Note that the site should work with any browser (except Internet Explorer).

6.2 Numerical comparison

As the least squares reconstruction consistently works much better with a low-pass DCT ensem-

ble, T show both results for the least squares reconstruction and just use noiselets for the rest in

figures 13, 14 and 15. In addition I show the PSNR values for a “best-k” reconstruction using a

DCT basis and a Haar wavelet basis. These reconstructions were made by performing the respective

transform and setting all coefficients except the k largest to zero before doing the inverse transform.
Some observations related to the quality of the reconstructions:

e Gradient thresholding can be configured to give similar reconstruction error rates to the /1 magic
total variation minimizer, while it can be (in some cases considerably) faster, see figure 14. Tt
should be noted, though, that for relatively high k the difference in performance diminishes.
Intuitively this can be understood by considering that tvqc tries to refine the solution (starting
with an initial estimate which is increasingly good for larger values of k), while gradient thresh-
olding tries to build up the solution (starting with a very smooth image that is a poor fit for
the constraints).

e By varying different parameters of gradient thresholding it can yield better quality reconstruc-
tions than tvqc for certain images (like mri). See figure 15.

e Although many texts stress that lp-norm minimization is the “ideal”, and that /;-norm mini-
mization is merely a way to make the problem more tractable, this is only true for truely sparse
signals. Minimizing the [p-norm for signals that are not sparse can actually result in a lower
quality reconstruction (see figures 11 and 15).

e TwIST is faster than ordinary soft thresholding in the Haar wavelet domain.

e Total variation reconstruction and gradient thresholding (and to some extent the llgc-related
reconstructions) allow a reconstruction of the original data that is comparable to or better than
a linear reconstruction based on low-pass DCT data.
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Figure 13: Graphs of the PSNR values for different values of k as a fraction of [. Note that the PSNR values for
the compressed reconstructions are bounded from above, due to the use of a non-zero ¢ for the reconstruction,
and that “lsqr cs” is not missing, its PSNR values are just very low. See figure 18 for RMS versions of these
graphs.
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Figure 15: Difference in PSNR compared to tvqc for grth and compared to 11qc for threshold and twist, using
only the (discrete) first derivative, only the second derivative and both. And also grth with soft thresholding
(using only the first derivative). The bars show the range of the difference in PSNR (so the top corresponds
to the maximum difference and the bottom to the minimum difference). Higher is better. grthll (soft
thresholding and using only the first derivative) is clearly quite similar in performance to tvqc.

e The best-k reconstructions are of higher quality, as would be expected. But mri and peppers
show that the compressed sensing methods can take advantage of choosing a good represen-
tation aposteriori, which means existing signals (taken using “noisy” measurements) might be
reconstructed better in the future as better models become known. Although the choice of
measurement matrix (in this case noiselets) is of course also dependent on the signal model.

e Comparing the quality of the filter method and tvqc also shows that a good model [§A.4] of
the image is crucial for the quality of a compressed sensing reconstruction.

Considering that the DCT should give a reasonably sparse (compressible) approximation of the
image (that’s why it’s used in JPEG compression after all), with coefficients concentrated towards the
DC component, it is quite nice that these methods are able to match (and even exceed) the quality of
a least squares low-pass DCT reconstruction using noiselet measurements. Especially if you consider
that a least squares reconstruction does very poorly on noiselet measurements (the PSNR is less than
10 for the noiselets ensemble and for the combination ensemble the PSNR is less than for the &/l = 0.1
pure DCT reconstruction).

Note that the results for TwIST are actually better (3-4 PSNR points) for the low-pass DCT
ensemble than for the noiselet ensemble (for k/l = 0.1,0.3 at least, for large values of k the difference
is reversed), but they are still worse than a simple least squares reconstruction based on the DCT
data. The results shown in figure 13 are better than those for the least squares reconstruction using
the noiselet ensemble though. So applying TwIST with a Haar wavelet transform is not a very good
method, unless speed is an absolute necessity.

Finally, during testing the [;-magic tvqc minimizer demonstrated a very high sensitivity to the
measurement ensemble used. Minimization using a pure noiselets ensemble is upto 10 times faster than
minimization using a pure DCT ensemble or even upto 20-30 times faster than minimization using a
combination of 5% DCT and 95% noiselets. The quality of the reconstruction is almost identical (in
the latter case, for which 55 out of 63 cases have a PSNR difference of less than 0.3). Also note that
this speedup is not seen with grthll, with the noiselet ensemble it is on average just as fast as with
the pure DCT ensemble and only upto about a factor of 2 faster than with the combination ensemble
(which is quite natural, as twice as many transforms are performed).

7 Conclusion

Compressed sensing is about being able to reconstruct a signal from a relatively small number of
measurements, given the right kind of measurements. From the results above it is clear that this is
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indeed possible in practice, despite the lack of very concrete theoretical underpinnings. Already quite
a few measurement processes and application areas have been defined, and low error reconstructions,
using significant “undersampling” factors, are often obtained (shown above for greyscale, natural,
images).

For the quality of the reconstructions it is clear that, apart from the measurement matrix, the
model (implicitly) used for the reconstruction is of the utmost importance. This gives some room for
trade-offs between speed and quality, as well as improved reconstructions as models get better. The
latter also immediately suggests that it may often be a good idea to not just store the reconstructed
signal, but keep the original measurements around.

Currently, the main drawback of compressed sensing reconstruction methods is their performance,
as testified by the great number of methods avaiable (practically all emphasizing speed!). As shown
in the results there is quite a lot of variance in their performance, not always directly correlated with
the quality of the reconstructions.

Of the reconstruction methods considered here, the family of methods based on iterative thresh-
olding (including gradient thresholding) currently seems to have the best credentials. These methods
are among the fastest methods currently available, quite flexible and easy to use, while giving results
comparable to, or even better than, more traditional methods. For extremely large (3D) data sets a
multiscale approach like hierarchical least squares might be better suited though (depending on the
time available for reconstruction and the desired quality of course).

8 Future work

There are still many open problems in compressed sensing, the main one obviously being the lack of
any straightforward theoretical bounds on the quality of reconstructions, as can so easily be given
for a best-k reconstruction. And this is of course followed directly by the continuing quest for fast
reconstruction algorithms.

Intertwined with these two important endeavours is the choice of model. It is shown in this report
(appendix A), as well as in e.g. [3], that the choice of model has a definite effect on the reconstruction
method that must be used. And at the same time the choice of model can have a profound effect on
the quality of the reconstruction. Therefore, finding a (class of) model(s) that fits real-world signals
while allowing a fast reconstruction method could be very rewarding.

When considering to evaluate models for real-world signals another gap in the current theoretical
framework is immediately apparent. How can one quantify how well a model fits to a (class of) signals?
Apart from appealing to one’s intuition and the link between the penalty function used and probability
density functions described in section A.3, very little seems to have been done in this area. Solving
this problem would make it possible to define what the best model would be in a certain context
(instead of using an educated guess), and perhaps give a deeper understanding of the performance of
compressed sensing.

Also, any current theory on compressed sensing assumes that the measurements are fully incoherent
with the data. However, for the widely used Fourier transform this assumption already often does not
hold completely. This means that it does become interesting which samples are taken. Usually this
is ignored or an ad-hoc solution is presented. It would be very interesting to be able to give optimal
sampling positions, given an approximate distribution of the measurement transform coefficients. Or
if we assume “good” sampling positions (for example adaptive), it would be interesting to evaluate
the performance of compressed sensing reconstruction methods, both in theory and practice. This
would have immediate applications to (de)compression (and possibly resampling).

Similarly, it may be interesting to consider the performance of compressed sensing reconstruction
methods when appliead to a mixture of adaptive measurements using a good basis and (non-adaptive)
measurements using an incoherent basis. For example, traditionally an image might be compressed
by taking the (Haar) wavelet transform and storing only the k largest coefficients, would it be advan-
tageous to also use some noiselet measurements? It could be expected to be advantageous as noiselets
are in a sense complementary to Haar wavelets and might provide additional information that can
otherwise only be given using many more wavelet coefficients.

In a more concrete setting, based on the results shown in this report it would be interesting to
use TwIST with a gradient thresholding scheme (or the TV minimizer that is used in [5]) and see if
it is also faster in such a set up. And of course any theoretical validation of hierarchical least squares
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would be great, both to inspire confidence in the method and to identify ways of improving the current
algorithm.

One way of improving hierarchical least squares might lie in different ways of representing the
different scales. For instance, I have experimented with using anisotropic diffusion instead of thresh-
olding and resizing. This seemed to give a better quality result but was much slower, at least using
my implementation. However, as anisotropic diffusion is similar to applying a bilateral filter [4], this
could link hierarchical least squares to the multiscale method presented in [47], which uses a bilateral
filter on each scale.

8.1 Computed Tomography

Already there is great interest in using compressed sensing methods for CT reconstructions. Below
is a list of papers that deal with reconstruction of CT scan (not limited to X-ray CT) data using
compressed sensing methods:

1. Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-
CT [39]: an application of compressed sensing to (3D) cone beam CT, using total variation
regularization with a non-linear conjugate gradient solver.

2. Sparse MRI: The Application of compressed sensing for Rapid MR Imaging [33]: suitable spar-
sifying transforms and sampling trajectories are discussed, and three different undersampling
schemes are considered (two in 2D and one in 3D).

3. Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic LO-Minimization
[46]: introduces a homotopic method that tries to minimize the lp-norm instead of the I;-norm.
In [47] it is shown how such a method can be implemented using a (fast) multiscale method.

4. ITmproved k-t BLAST and k-t SENSE using FOCUSS [30]: shows how a newly developed method
(which can be linked to compressed sensing) can be seen as a generalization of two “celebrated”
methods, and presents results obtained with this new method.

5. k-t FOCUSS: A General Compressed Sensing Framework for High Resolution Dynamic MRI
[29]: extends k-t FOCUSS to explicitly incorporate prediction and residual coding.

6. Improving Non-Contrast-Enhanced Steady-State Free Precession Angiography with Compressed
Sensing [18]: minimization of an [;-norm is used to improve image quality and/or reduce acqui-
sition time.

The existing methods either try to take advantage of the sparsity in the scanned data directly, or
try to use a sparsity inducing transform to increase its sparsity, yielding to improved reconstruction
quality. Usually the aim is to minimize the number of required projections, which can lead to a
reduced radiation dose and/or shorter acquisition time.

8.1.1 Difference reconstruction

One way of increasing the sparsity of the image to be reconstructed is to use a reference image. If
you have a reasonably good model of what you want to scan, then the difference between the model
and the actual data will in most cases be much sparser than the actual data itself. This technique is
exploited in [14] for the purpose of background subtraction in videos, but may also be interesting in
industrial CT when scanning for defects for example.

By exploiting the sparsity of the difference image it is expected that less projections would be
necessary for a good reconstruction. This is because the quality of the reconstruction using compressed
sensing is directly related to the sparsity of the signal to reconstruct. In addition it might be possible
to reconstruct to a higher resolution than the resolution of the individual slices if a high resolution
model is available.

To be able to use this concept it is only necessary to measure the scanned data as usual and to
have the measurements corresponding to the model. Assuming a linear measurement process the two
sets of measurements can simply be subtracted to yield measurements corresponding to the difference
image.
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An important issue will probably be coping with differences in position and orientation between
the model and the scanned object. A given 3D registration algorithm could simply be applied once,
at the beginning, or after each iteration of a reconstruction process, depending on how accurate the
estimate turns out to be. Applying a registration algorithm after each iteration will probably be
costly, but perhaps the registration algorithm used would be able to benefit from a warm start.

8.1.2 D2?VR

In [36] a variation on backprojection is presented which directly yields a new projection based on the
measured projections. By eliminating an intermediate representation and the related interpolation
this method can achieve a better reconstruction quality.

Compressed sensing could potentially be applied in two ways. You may want to start with an
undersampled set of projections and reconstruct a full set of projections, or you may want to try to
improve the quality of the reconstruction directly. For the latter it is not clear how this would be
done without an intermediate representation though.

When going from a small number of projections to a full set of projections the main problem that
could show up is that there will probably be way too much correlation between the measurements (the
small number of projections) and the data to reconstruct (the full set of projections). In addition a
suitable sparsity inducing transform should be found, just applying a wavelet transform or something
similar per projection will most likely not promote as much sparsity as a 3D wavelet transform on the
equivalent volume data.

To see how D?VR can be reduced to computing a sum of transformed (filtered) projections,
amenable to a fast implementation (on a GPU for example), assume we have (filtered) projection
data representing a volume. A projection i is taken along lines parallel to D; and its centerline is
described by tD; + C; (t € R). For simplicity we define both the (unit-length) up and right vectors
for a projection, U; and R; (U;, R; and D; should be orthogonal). So any point p € R? projects onto

Ti(p— C;), where T; = [RZ- Ui] T For the moment the projections have infinite width and height. A
line td + ¢ projects onto projection i as:
=tT;d + Ti(C — Cl)

Thus (a;(z) and b;(x) give bounds on the volume considered):

bi(z)
PZ((I}) = / o f(tl)z +C; + TZT.’E) dt
a;(z

= / > Q(Ti(tD; + C; — Cj + T w)) dt
a;(z) P

:Z/ Q;(tTyD; + T;(C; — C;) + T;T ) dt

j i(z)

= Z/( : QLT (T;T) ' TyDi + T;(C; — Cj) + Ty T @) dt
] a;(x

= Z/ Qi(T;(Cs — C3) + T, T (w + t(T;T)) "1, D;)) dt
j a;(x)

Note that for ¢ = j the integral reduces to (b;(x) — a;(x))Q;(x).
Looking just at the integral it can be simplified as follows, showing that each projection is a sum
of the affinely transformed, smeared, filtered projections:

Q5 (z,x) —/( ) Q;(tTyD; + x) dt

A(@) = Q2. T;(C; — C)) + TyT] x)

Pa) =Y Qh()
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Or alternatively:
2(@) = Q;(T;(C; — Cj) + T;T] x)

bi ()
S@= [ @t D) i
a; (T

Pia) = Y @)

When implementing this the question of what bounding volume to take should be addressed, too
large a bounding volume will probably not give satisfactory results, but the bounding volume must
obviously be at least as large as the object to reconstruct.

8.2 GPU-related

Due to the very computationally demanding nature of compressed sensing it can be interesting to im-
plement (parts of ) a reconstruction method on the GPU. Some of the papers that deal with either CT
reconstructions or compressed sensing reconstruction methods on the GPU (or similar architectures):

1. Fast GPU Implementation of Sparse Signal Recovery from Random Projections [2]: an imple-
mentation of Matching Pursuit on the GPU.

2. A Simple Compressive Sensing Algorithm for Parallel Many-Core Architectures [7]: an algorithm
that is superficially similar to iterative thresholding (embedded in a continuation scheme, not
unlike gradient thresholding) suitable for parallel implementation.

3. How GPUs Can Improve the Quality of Magnetic Resonance Imaging [43]: describes how a
reconstruction method that can operate directly on non-Cartesian data can be implemented on
the GPU.

4. Accelerating advanced MRI reconstructions on GPUs [42]: describes an implementation of an
MRI reconstruction method on the GPU that allows arbitrary sampling trajectories and can
incorporate prior anatomical knowledge.

5. Hyperfast parallel-beam and cone-beam backprojection using the cell general purpose hardware
[31]: shows how backprojection can be sped up using the Cell Broadband Engine (not a GPU,
but similar in architecture).

In the interest of speeding up compressed sensing reconstructions it would no doubt be interesting
to implement a(nother) thresholding algorithm on the GPU and compare it to other methods on the
GPU and CPU. As the thresholding operation can be done per-pixel, this kind of algorithm naturally
lends itself to a parallel implementation, provided that multiplication by the measurement matrix can
also be performed efficiently.
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A Alternative formulations

A.1 A priori formulation

This formulation requires knowledge of the sparsity basis beforehand:

minimize(f) ||‘1/Tf||1
subject to q)\Ifo =y

(7)

Tt is assumed that ® has properties CS1-3 from [22] and that ¥ is orthogonal (or a tight frame), see
[22] and [48]. This could also be expressed as:
minimize(z x ~
ine(a) il
subject to Pz =1y

A.2 Filtering formulation

A more general formulation similar to the a posteriori formulation (adapted from [28]) which may be
given as the following fixed point equation:
-1
— | ® y
=z [ ®

The original paper uses a (probably not essentially) more specific formulation (® is a subset of the
rows of a Fourier transform and @ is the rest). The following additional definitions are used in this
formulation:

KA

:2?:

e = is a (non-linear) filter that “smooths” /regularizes the data (for example: Z(a) = ¥SU~lq
where S is a shrinkage operator)

e ® is a basis for the null-space of ® (such that rank( [%}) =1)

e z=0f

It is likely that this formulation is a generalization of the aposteriori formulation, as the algorithms
are nearly equivalent (given the right filter). See appendix D for a description of the algorithm
corresponding to the filtering formulation.
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A.3 Probability density functions

A compressed sensing reconstruction tries to minimize the following penalty function (usually for
p=1):
p(x) = |l=||”

This is done because signals are often sparse and this penalty function tends to favour sparse signals.
However, which p is best? In the literature people mostly tend to focus on as small a p as possible,
but this is not a very good fit for real-world images. So what does make a good fit?

To analyze how well a certain norm/penalty function “fits” a signal it is possible to rewrite the
penalty function to a form which uses a function that is similar to a probability density function:

() =[]

= Z |z: [P
e

I
\

—

S
i
—
o
=
8
=
=

g() = el

As can be seen g is similar to a probability density function (pdf), specifically that of an exponential
distribution. It is not properly scaled for it to be a true pdf, but this is not important for the
minimization as any scaling would simply result in an additional constant term (due to the logarithm).
Since minimizing the negated sum of logarithms of g(x;) is equivalent to mazimizing the product of
g(z;), compressed sensing reconstruction can be interpreted as mazimizing the probability of x under
a distribution implied by o(x).

Now it is both clear how the penalty function used in compressed sensing can be related to a
probability density function, and how an (arbitrary) probability density function can be related to the
penalty function. This suggests that a good penalty function would correspond to a pdf that comes
as close to the pdf of the true signal as possible. Preliminary testing seems to support this.

A.4 Model-based recovery

Compressed sensing implicitly (or explicitly) uses a model of the signal to improve the quality of
the reconstruction by finding a signal that both matches the measurements and is likely to occur,
according to the model. Normally this model just assumes sparsity of the signal (possibly in some
basis), which may fail to fully take advantage of the structure in real-world signals. In recursive
filtering described in section 5.5 pretty much any model is allowed, but practically no guarantees can
be given. In [3] an attempt is made to bridge this gap by introducing a restricted form of model that
falls somewhere in-between the two extremes discussed here.

B Theoretical bounds

Naturally there is wide interest in establishing firm theoretical bounds on the quality obtainable
through compressed sensing methods. This issue is far from settled, but this appendix tries to give
an overview of some of the more common attempts at specifying bounds.

B.1 Important concepts

(In)coherence: Coherence pu(®, W) measures the the largest correlation between any two elements of
® and VU [10, p. 4]:
u(®,¥) = /n- (Jnax | <k, > |

Restricted Isometry / Uniform Uncertainty: The isometry constant ds (s € P) of a matrix A is the
smallest number such that:
(1= 0)ll2)|* < [l Azl|* < (1 + 65) [l

holds for all s-sparse vectors x. See [13].
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Figure 16: The value of C plotted against d2x as in bound 3.

B.2 Bound 1

According to [10] formulation 1 can recover any sparse signal with R components exactly with “over-
whelming probability” (1 — §) as long as the following inequalities hold:

k> CR2(®, 0) log(1/9)
k> C" log?(1/9)
Or similarly (from [9]):
k> C log*(l)

Where C is roughly 23(M + 1) and the probability of exact reconstruction is 1 — O(I=M), as M
approaches zero I approaches 1 (and then C is still 23), so the quality of the reconstruction is
determined by the constants hidden in the O notation. Since the constant appears to be 1.25 (see
page 17 of [9]) this does not give much real-world information, as in practice much lower constants
are needed to give satisfactory results.

B.3 Bound 2

If ® has properties CS1-3 from [22] and (k,[) is a sequence of problem sizes such that k < [ = AkY
(A > 0,7 > 1), than the solution x* of formulation 7 has the following guarantee (with R an upper
bound for the p-norm of x, with 0 < p <1 and C depending on p, A,~, (n:), p):

|z —z*|2 < C R (k/log(1))*/* VP k — oo

B.4 Bound 3

Assume that dop, < v/2 —1 (with dox an isometry constant of ®¥) then the solution z* of formulation
1 obeys (xy being x with all entries, except the k largest, set to zero):

Jo =2l < C o — il
lz — 2" |2 < C k™2 ||lz — |y
See [13]. The constant C' takes on the following value (in both cases), also see figure 16:
C=21+p)(1-p~"
p =201 — d) "
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B.5 Discussion

Obviously there have been quite a few attempts at establishing theoretical bounds on the performance
of compressed sensing. But, they all have their problems that make it quite hard to really apply any
of them to real-world scenarios. I'll point out some of the problems I encountered with all of the above
mentioned methods.

Bound 1 only applies to truely sparse signals. And, perhaps more importantly, it contains a
constant for which it isn’t exactly clear what it is (it might be documented somewhere, but I haven’t
found a clear definition).

Bound 2 includes a hard to determine constant and only seems to apply to the otherwise least
used and least flexible approach (in that it requires knowledge of the sparsity basis before taking
measurements), the a priori formulation described in appendix A. In [48] some numerical estimates
are computed of the constant used, and they are indeed quite reasonable in practice (between 0.0253
and 0.216).

Bound 3 (as well as any other bound that might use isometry constants) suffers from two major
flaws. First of all, it’s not that easy to get an actual isometry constant. There a number of proofs that
indirectly give some probabilistic bounds on these constants for certain types of (random) matrices,
but it is not immediately clear that the probabilities involved are indeed “overwhelming”, nor is it
obvious what the isometry constants actually are (see for example [11], section 3).

In an attempt to verify bound 3 numerically I had a look at estimating the isometry constants
numerically by computing singular values of random subsets of colums of the often used Gaussian
ensemble (a k-by-1 matrix with A(0, ;) distributed random entries). This did indicate that the
isometry constants for this matrix can indeed lie within the required range (0 < V2 —1). However,
this is of course by no means a proof and definitely says nothing about other matrices.

Finally, the RIP apparently suffers from a number of flaws that could make it a bad indicator of
the suitability of a matrix for compressed sensing. See for example [50] and [23] (and the presentation
[24] comparing their data to the RIP).

Note that [50] contains an error bound that is superficially similar to bound 3 (theorem 4), also
dealing with data that is not exactly sparse. However, this bound assumes that the attained solution is
indeed a minimizer of 1 (and specifically that ||x|; > ||«*||1), which is not necessarily true in practice
(and in fact was not true in my experiments). As the constant in this bound depends on the error in
the solution I have not been able to get some values for this constant yet.

Finally, the theory on thresholds explained in [23] is also used in [26] to evaluate the performance
of Stagewise OMP and it shows quite an excellent correspondence between theory and practice. As in
practice the performance of compressed sensing does seem to more or less behave in the all-or-nothing
way modelled by this theory (see figure 3 for example) it would be interesting to compare it to the
real-world performance of other method.

C Gradient thresholding

This appendix desribes the gradient thresholding method as used in the results section. First the
actual thresholding operation is introduced, then the algorithm is presented, and in the last subsection
connections to other methods are discussed.

C.1 Thresholding

Thresholding applied directly to TV minimization can be quite tricky, however, a method similar in
spirit to [34] is quite possible. Here the horizontal and vertical gradients are thresholded separately.
In [19] the following iteration is used (where the columns of ¥ form an orthonormal basis):

JH=vHT(f + 2% (y - ©f)) (9)

Note that the original paper uses a slightly different formulation, but it should be equivalent with the
substitution f = WUz and some trivial manipulation.
Equation 9 can be rewritten and then moulded a bit to rely less on ¥ being a square orthogonal
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matrix:
Fits Fi * Fi
frr=f ety —2f))
Fits — \Ile”%
Fit1 H(jzur%)

Fitl = gzt

fi+1 _ q,(i,i+1 + :E”% _ fz‘+§)
fi+1 = pzits + \I!(:Ei“ — :E”%)
fi+1 _ fi+% + \I,(iiJrl _ 531‘4%)

Using a directional derivative D = U* this results in the following definitions which seem to work

quite well in practice:

itz = pfita
1
Fitl = ]Ei+% + DT (FH — ji+%) (10)

C.2 Algorithm

The thresholding iteration discussed above is used in an iterative manner as in [6, §3]. With a
maximum of 50 inner loops and not increasing the sparsity bound by one at a time, but rather by the
width/height of the image. The maximum number of inner loops is intentionally made higher than is
usually needed; for most signals a few tens of inner iterations suffices for the first outer iteration and
after that only a few (two or three) inner iterations are required.

In addition the initialization is done recursively (and/or based on a resized image) to make the
method more robust to a noisy initialization. In the final algorithm (alg. 2) n is the width/height of
the image, S is an upscale operator and Hy ,/Hpy s are thresholding operations like the one defined
above, for the vertical and horizontal direction (each keeping only the largest s coefficients).

Algorithm 2 f = solve(y € R*, & € RkX"Q, €, n, recursivecall)
1: if (%)% > k then

2. f < S*solve(y, S, ¢, , true)
3: else

4 f <+ S(PS)Ty

5. end if

6: imaz := D0

7. for s = n to n? with step size n do
8 pf+ f

9 for i =1 to i,,ax do
0. [ Hyy(f + 9T (y - of))
1 f e Hu (f+07(y — of))
12: if converged then
13: break
14: end if

15:  end for
16: if ”y - (I)fHQ < € then

17: break

18:  else if recursivecall NTV (f) > TV (pf) then
19: break

20:  end if

21: end for

As the recursive calls mainly serve as a denoising step they are aborted as soon as the total variation
rises. Also, in the implementation it is ensured that @ is scaled so as to ensure that the magnitude of
its largest singular value is 1 (by dividing it by the square root of the largest eigenvalue of ®P*).
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C.3 Relationship with other methods

To relate the above defined iterations to other methods it is possible to work out the thresholding
iterations for a more general sparsity inducing matrix A. The objective has the form:

Fup(f) = 10f =yl + A AP
Now define the surrogate functional and its gradient with respect to f as in [19] (p > 1):

Fo,(f,a) = |@f —y|* + AAS|P = |@f — ®a® + || f — al®
= fTOTRf —2f" 0Ty + y 'y + AAf
— [fO*Df +2f*P*Pa — a*P*Pa+ f*f —2fFa+a"a
=f"f=2f"(a+ @ (y — Pa)) + MN|ASf|IP + a"a + y*y — a" 2" Pa
ViFgp(fia) =2f = 2(a+ ®*(y — ®a)) + AT (JAf[P~" xsign(Af))

Note that either the largest eigenvalue of ®*® should be less than one, or || f —al|? should be multiplied
by a constant larger than the largest eigenvalue of ®*®.

Using e = a + ®*(y — ®a) (the result of a Landweber iteration) and solving for a zero of the
gradient results in the following equation:

ViF; ,(f,a) =0
2f — 2e + A\pAT (JAf|P~1 % sign(Af)) =0

f AT AfP «sign(Af) = ()

Using the definitions:

Equation 11 can be rewritten as:
)\p AT p—1 : _
[+ 5Y (|| * sign(z,)) = e

[g] (f + 22 AT (fa "« sign(,)) = [g] )

{x,, + 22 AAT (|2, [P x sign(xr)))} B [w]

Tn

Assuming the above is solved for some x,., then:
A1 Ty
=l 7]
_|A ! a, . 0
A 0 Wy,

= AT(AAT) g, 4 (I — AT(AAT) L A)e
=e+ AT(AATY Yz, — Ae)

Note that the above reduces to the usual thresholding scheme if A is orthonormal. Also note that
if A is rectangular, but the rows are orthonormal (AAT = I), then an iteration like 10 would be exact
(in the sense that it would minimize the surrogate functional).

In the case of gradients the matrix A = D is rectangular and the rows are not orthonormal.
However, the matrix AAT is diagonally dominant, with very few nonzeros off the diagonal. Even so, it
seems to be advantageous to not use the exact form above, but rather the simpler form of equation 10
shown above (it has much better convergence behaviour).

Another way to view iteration 10 is as an undecimated (Haar) wavelet thresholding (see [40]), where
the low-frequency components are left untouched. This can be seen by considering the following (not
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unique!) reconstruction formula for the undecimated Haar wavelet transform (where A gives the
low-frequency components):

fn+1 — ATAfn+% —|—DTJ~Un+1
_ ATAfnJr% + DT(E™! — Fnts +9~Cn,+%)
— ATA']FTH_% _’_DTDfn-‘r% + DT(i,n—i-l _ i,n-i—%)
_ f~n+% + DT(in+1 _ i,n+%)
The above ignores what happens at the boundary. To get an exact reconstruction the first and last
row of AT and DT should be scaled by 2, but this usually hardly makes a difference.

In a more general setting matrices A, B and AT, B® with the property A®A + B®B = I can be
considered. First rewrite the surrogate functional as is done in [49] (above p(Af) = A||Af]|P was
used):

Fop(f.a) = 12f —yl* + o(Af) = |@f — ®a|? + || f — al?
=freTOf —2f @y 4y y + p(Af)

— [fOFDf 4+ 2 D" Pa — a* P *Pa+ f*f —2f a+aa
=f"f=2f(a+ @ (y — Pa)) + @(Af) +a"a+y'y —a" @ Pa
=|If = (a+@*(y — ®a))|* + p(Af) + a*a + y"y — a*®*Pa

—[l(a + @*(y — ®a))||?

Using the definitions:

ARA+ BEB =1 za=Af zp = Bf
e=a+ ®*(y — Pa) wa = Ae wp = Be

AR = [AR BR] - |:33A]

B

Minimization of the surrogate functional with respect to f can be rewritten as follows (dropping all
terms of F5_(f,a) that do not depend on f):

w,p
argmin F1,(f,0) =argmin || = e|* + o(Af)
= A" argmin [A% (w4 —wa) + B (zp —wp)|]” + ¢(zxa)
= AR argmﬂjn AR (24 —wa)||? +2 < AB(z4 —wa), BR(zp — wp) >
+ |1BR(zp — wp)|* + ¢(za)

Note that the objective in general has no unique minimum. As x4 is supposed to be the “interesting”
part to minimize, and we want to leave unrelated features alone as much as possible, we can choose
to fix xp = wp. It is easily seen that this leads to the equation below and that this minimization also
leads to a minimum of the above objective (as the gradient of the two middle terms is then zero):

r [argming, A% (x4 —wa)|? + o(xa)

. S _
arg min Fyp o (f,a)=A wp

= Afz* + BRwp
=e+ A (2% —wy)

Where 27 is the solution of an ordinary regularized minimization problem, with the same regularisation
term as in the original minimization problem, except that it has one less linear transformation (and
can be solved by any ordinary thresholding method):

o = argmin |47 (@, — )| + ()

This results in the following thresholding iteration:

~i ~i 2\ T ~i
IA+1 =H,(z%4 + (AR) AR(wT — "))
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Note that in practice it does not seem to be advantageous to use an extra level of iteration though...
This is somewhat in contrast to the results in [40], where instead of implementing the thresholding op-
eration iteratively, the (pseudo-)inverse of the undecimated wavelet transform is computed iteratively,
with very good results.

D Recursive filtering

In [28] the filtering formulation (see section A.2) is (indirectly) introduced. Here the original signal is
iteratively approximated by finding a fixed point of a filtering and projection operation. Specifically,
they define the following iterative process (where 1™ is a noise term):

—1
P zZ"
frts =2(")
s = pfrts
ZTH—% — én-&-é +77n

2n+1 _ ,yngn—i-% 4 (1 _ ,7)2n

Equivalently, using u = [ﬂ and A = {z} , we can define the following iteration:

o+ o]

f~n+1 _ A*lﬁnJrl

Note that ®*(®®*)~1y = &*(®P*)~1®f is the projection of f onto the row space of ® and the
null space of ®. Similarly, note that (I — ®*(®®*)~'®)f is the projection of f onto the null space of
® and the row space of ®. Using this the above iteration can be kept completely in the domain of the
original signal:

Fn+ 1 —/ rn
e ==
fn—}-% _ fn+% +A—1nn
3 _ a—1,01Y 0
s+ [ 2]
= O*(®D*) "Ly + (I — *(BD*) 1) frti
=T 0n (@) Ty — o f )
f'nJrl _ ,Ynfn+% + (1 o ’Y)fn
Note that this iteration bears great similarity to the iterative thresholding iteration. In fact, if
a thresholding operation is substituted for =, and no noise is added, the only essential difference is
in using f + ®*(®®*)"1(y — ®f) instead of the Landweber iteration f + ®*(y — ®f). Assuming the
eigenvalues of ®*® are not too large the Landweber iteration converges to the least squares solution

though, and in practice this difference seems to have little impact (and the Landweber iteration is
considerably faster!).
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(a) cameraman (256x256) (b) mri (128x128)

(c) football (256x256)

(e) bridge (512x512) (f) lenna (512x512)

(g) chirp (256x256)

Figure 17: Original images used for tests in the same order as in figures 13, 14 and 18 (most of these are also
shown elsewhere in this document).
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Figure 18: Graphs of the RMS values (scaled to percentages of full-scale) for different values of k as a fraction
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