
Evolutional Insights from UML and Source Code Versions using Information
Visualization and Visual Analysis

Shawn A. Bohner, Denis Gračanin, Troy Henry
Virginia Polytechnic Institute & State University

Department of Computer Science
Blacksburg, VA 24061, USA

{sbohner, gracanin, trhenry1}@vt.edu

Krešimir Matković
VRVis Research Center
Donau-City-Strasse 1

A-1220 Vienna, Austria
Matkovic@vrvis.at

Abstract

Risks associated with producing todays software appli-
cations are increasingly linked with size and complexity —
just too many aspects of software to fit in the head of even
the most talented software engineer. Understanding soft-
ware entails more than browsing the source code or review-
ing the models in the other software artifacts. We use infor-
mation visualization and visual analysis techniques to parse
data sets generated from UML and Java SDK source code
versions to examine patterns. This visual perspective pro-
vides relevant insights and additional navigation opportu-
nities for software engineers during development and main-
tenance activities.

1. Introduction

With the relentless growth in software, automated sup-
port for visualizing and navigating software artifacts is no
longer a luxury. The sheer size and complexity of many of
todays software systems exceed most human capabilities to
grasp them. Experience over the years visualizing software
(analysis, design, and code) has shown that there is often
information that is obscured or lost in the abstractions used
to render software visualizations [3].

Software visualization has long been used to seek in-
sights into the structure and composition of software [4].
Software design and more recently architecture metrics
have been gleaned both from source code and design ar-
tifacts of the development process [1].

An important aspect of this research is to identify the
patterns of change present in the various software releases.
Research has shown that many of the changes to software
occur and reoccur in the same areas of source code. To in-
vestigate this, we downloaded and analyzed several versions
of the JAVA SDK software as it evolved since it was first re-

leased. We were able to also download an early version of
the Unified Modeling Language (UML) analysis and design
models in Rational Model Definition Language (MDL). Our
objective with these was to examine how the design faired
against the strain of various releases.

We use a UML diagram to provide a starting point for ex-
ploring classes and their properties in Java SDK. The avail-
ability of large number of Java SDK source code versions
(72 versions) provides an excellent opportunity to explore
changes in the code using the UML design diagram as a
reference point. A plethora of information visualization
techniques and views is provided by the previously devel-
oped ComVis information visualization tool [6]. ComVis
includes conventional views like 2D and 3D scatter plots,
parallel coordinates, histogram, as well as other curve views
used for displaying function graphs. It provides features
like brushing, sorting, and linking that are very useful for
visual analysis.

In this paper, we first examine software complexity in the
context of todays increasingly large and complex systems.
We then discuss the notion of software change and how vi-
sualizing it can help to understand the evolving system. We
analyze the JAVA JDK and present out conclusions.

2 Related Work

Software complexity is the degree to which software
(system or component) is difficult to analyze, understand,
or explain [9]. Software visualization technologies are often
used to illumine insights or patterns in the software artifacts
the help us to better analyze, understand, or explain aspects
of software systems; and in this way, visualization reduces
the perceived complexities of software.

Information about software evolution can be gathered by
analyzing a history of software releases. Software archives
contain historical information about the development pro-
cess of a software system. Standard visualization tech-



niques can provide us with an ability interactively explore
that information [2]. We can apply data mining techniques
in combination with information visualization to explore
patterns and rules.

Software archives are usually implemented as source-
control systems that preserve change-sets of files as atomic
commits. If the specific order in which files were changed
is not available, heuristics can be used to find sequences of
changed files [5]. This approach provides the (unordered)
sets of files with (partial temporal) ordering information.

In order to effectively use information visualization tech-
niques, we need a well defined data model. A data model
consists of a data definition and a manipulation language
(structuring and operational definitions). The data model
applies to all the data sets under consideration, described,
explored, analyzed or manipulated.

Conventionally, data analysis approaches, such as tradi-
tional statistics or OLAP techniques [8], assume a relatively
simple multi-dimensional model [7] (simple with respect to
the separate data dimensions). For complex data sets it is
necessary to provide an adequate data model.

3 Data Model

In our approach we are considering a two-level data
set that consists of data points (tuple values) ofn di-
mensions. The data set under consideration isD =
{x1, . . . ,xi, . . . ,xd} whered is the size of the data set and
eachxi = (xi

1
, . . . , xi

j , . . . , x
i
n), a collection of attributes,

one for each dimension. A tuple attributexi
j can be categor-

ical, numerical, or a data series itself.

x
i
1

... x
i
j

... x
i
n

xi1 ... xim

...

xi1 ... xim
xi1 ... ximx ij,1 ... x ij,nij

tuple i in D

sub-tuple k in Dij

x
i
1

... x
i
j

... x
i
nx

i
1

... x
i
j

... x
i
nx

i
1

... x
i
j

... x
i
n

Figure 1. Generic data tuple

For each tuplexi and each data series attributexi
j in

a data tuple, we have a separate set of “sub-tuples” with
its own cardinality and dimension. The set of sub-tuples
is defined asDij = {x1

ij , . . . ,x
k
ij , . . . ,x

dij

ij } wheredij is
the number of sub-tuples. A sub-tuple inDij has a form
(xij,1, . . . , xij,nij

) wherenij is a sub-tuple size and each
sub-tuple attribute is either categorical or numerical. The
sub-tuplexk

ij is then(xk
ij,1, . . . , x

k
ij,nij

). One can consider

a data set with more than two levels of tuples, however we
are limiting this discussion to two-level data sets.

Since we have a complex data set consisting of scalars
and time series data across various dimensions, we will use
multiple linked views. The mixture of function graphs and
scalars is particularly challenging. We have used a combi-
nation of the curves view and conventional views in [6] in
order to analyze similarly structured data sets.

The curve view shows all function graphs at once. When
combined with brushing techniques it can be used to nicely
display curves in focus and those forming the context. We
have also used transparency to depict curves density. We
have successfully displayed and explored data sets contain-
ing more then 40,000 function graphs per dimension using
the curve view.

4 Visualizing JAVA SDK

The first step in visualizing data is to create a a tuple col-
lection for a data set corresponding to the UML data. Once
the UML data is analyzed, the source code versions are pro-
cessed to create tuples with values that are data series. The
data set analyzed contained scalars and simple data series
(curves). The curve view shows all function graphs at once.
When combined with brushing techniques it can be used to
nicely display curves in focus and those forming the con-
text. We have also used transparency to depict curves den-
sity.

ComVis tool supports composite brushing so a user can
combine brushes in an iterative manner. For more detailed
explanation of analytical procedures and brushing mecha-
nism see [6].

4.1 Static View

The UML data set provides the initial insight into the
software set. The linked views are selected to explore “in-
teresting attributes.” The bottom view uses parallel coordi-
nates to represent number of attributes, number of methods,
number of static attributes, number of throws, inheritance
level, number of nested classes, number of classes that re-
turn objects of the tuple class and the number of classes
containing objects of the tuple class (Figure 2). The upper
three views, from left to right are a 2D plot of number of
methods versus number of attributes; a histogram of num-
ber of throws; and a 2D plot of number of throws versus
number of attributes.

One can immediately see by selecting classes with the
highest inheritance level (6) using a rectangle brush that all
other attributes are very low. Similar information can be
gathered from the upper three views where the brushed data
(colored rectangles) indicate small attribute values and nar-
row ranges of values.



Figure 2. Visualizing UML reference data set.

As we move the rectangle down and select classes at
lower and lower inheritance level, we see increase in the
range of values of other attributes, as shown in Figure 3 (in-
heritance level 5) and Figure 4 (inheritance level 0)

Figure 3. Inheritance level 5.

Figure 4. Inheritance level 0.

We can also explore other views to detect pattern in the
data. The analytical procedure is iterative in nature. In-
cremental application and composition of brushing in the
linked views provides focus on the relevant data patterns.

4.2 Multi-Version View

As the software evolves and changes, the attribute values
change. The data set presented in the previous Section can
be considered as a static snapshot in time. Access to source
code versions allow as to gather many such snapshots and
put them together using the described data model.

Each of the attributes now has a history and its value
depends on the version of the source code. An individual,
scalar value, is now replaced by a time series where the time
dimension corresponds to the version number. Moreover,
new data related to changes in the number of classes, pack-
ages and class hierarchy now becomes important.

In order to illustrate this point, Figure 5 provides an over-
all view of the Java SDK source code. The lower view
provides a curve view [6], a family of 8,537 curves, each
representing a class over a sequence of 72 versions (from
1.1.2012 to 1.6.0). An individual curve has values 0 or 1,
representing the change of appearance of a class, i.e. if it
is present (value 1) or absent (value 0) in a give version of
the code (time values from1 to 72). While a simultaneous
presentation of 8,537 curves in a curve view is not necessar-
ily useful, the ability to brush (select) to provide focus and
content makes this view very useful.

Figure 5. Time series example.

The upper three views, from left to right, include a his-
togram of individual classes; a histogram of number of
classes in individual packages; and a histogram of number
of classes that are present for a given number of versions.

For example, we can use the middle histogram to se-
lect a package that has the highest number of classes, 216,
(com/sun/org/apache/bcel/internal/generic). We see from
the left histogram the relative number of its classes com-
pared to all the classes. We see from the right histogram
that its classes are present in a small number of versions.
Looking at the curve view we can see those classes (and
therefore the package) appeared just recently.

The curve view provides other key information. There
are six locations along x-axis where curves exhibit signifi-
cant changes between 0 and 1. Those six locations corre-
spond to the six major Java SDK releases, from 1.1 to 1.6.
However, there are also several other locations with less vis-
ible change in appearance. Those indicate some smaller re-
visions. Using a curve view it is easy to detect and grade



changes in the code organization.
Another example of this type of visual analysis is pro-

vided in Figure 6. First we brush (1) all the curves that ap-
pear (change from 0 to 1) between versions 34 and 35 (Java
SDK 1.3). The histogram of classes shows there are many
new classes introduced here. Once can say that the curve
view provides more qualitative picture while the histogram
provides more quantitative picture.

Figure 6. Classes appearing in JDK 1.3.

Now we add (logical AND) another brush (2) of all
the curves that disappear (change form 1 to 0) between
version 47 and 48 (Java SDK 1.4), we see that there are
only two classes that appear only in Java SDK 1.4 (Fig-
ure 7), com.sun.java.swing.plaf.windows.WindowsMenuUI
and org.apache.xpath.operations.Neg.

Figure 7. Classes appearing in JDK 1.3 and
disappearing in JDK 1.4.

Switching between the static and multi-version view of
the software provides additional level of visual analysis.

5 Conclusions

The analysis of relationships within a complex data se
is a common task in many application domains, includ-
ing software visualization. A novel combination of linked
views, advanced brushing, and curves view represents a
valuable tool for interactive visual analysis and analysisof
data sets that include multiple families of function graphs
(curves/surfaces).

The process of the composite brush construction cap-
tures the essence of interactive visual analysis procedures:
It is interactive and iterative. The initial brush providesthe
initial data selection in one view. That selection is immedi-
ately displayed in the linked views and analyzed from dif-
ferent perspectives to formulate a hypothesis that is then
tested using new brushes. During this iterative procedure,
new, possibly unexpected patterns can be found.

This very general approach and tool can be effectively
applied for software visualization to tackle the complexity
of software evolution and changes. The key to that is to
leverage existing UML model and/or source code versions
and provide the available information using the described
data model.

References

[1] B. Berenbach. The evaluation of large, complex UML anal-
ysis and design models. InProceedings of the 26th Interna-
tional Conference on Software Engineering, pages 232–241,
23–28 May 2004.

[2] M. Burch, S. Diehl, and P. Weißgerber. Visual data min-
ing in software archives. InSoftVis ’05: Proceedings of the
2005 ACM symposium on Software visualization, pages 37–
46, New York, NY, USA, 2005. ACM Press.

[3] B. George, S. A. Bohner, and R. Prieto-Diaz. Software in-
formation leaks: A complexity perspective. InProceedings
of the Ninth IEEE International Conference on Engineering
Complex Computer Systems, pages 239–248, 2004.

[4] D. Gračanin, K. Matković, and M. Eltoweissy. Softwarevisu-
alization. Innovations in Systems and Software Engineering:
A NASA Journal, 1(2):221–230, 2005.

[5] H. Kagdi, S. Yusuf, and J. I. Maletic. Mining sequences of
changed-files from version histories. InMSR ’06: Proceed-
ings of the 2006 international workshop on Mining software
repositories, pages 47–53, 2006.

[6] Z. Konyha, K. Matković, D. Gračanin, M. Jelović, and
H. Hauser. Interactive visual analysis of families of function
graphs. IEEE Transactions on Visualization and Computer
Graphics, 12(6):1373–1385, Nov./Dec. 2006.

[7] H. Samet.Foundations of Multidimensional and Metric Data
Structures. Elsevier, Amsterdam, 2006.

[8] E. Thomsen. OLAP Solutions: Building Multidimensional
Information Systems. John Wiley & Sons, New York, 1997.

[9] H. Zuse.Software Complexity: Measures and Methods. Wal-
ter De Gruyter Inc, 1991.


