
Displacement Mapped Billboard Clouds

Stephan Mantler1 and Stefan Jeschke2 and Michael Wimmer2
1VRVis Research Center, Vienna, Austria

2Institute of Computer Graphics, Vienna University of Technology

Figure 1: Impostors of the dragon model. Left: traditional billboard cloud with 31 rectangles and 1.76 MB required texture memory. Middle:
traditional billboard cloud with 186 rectangles and 11MB required texture memory. Right: displacement mapped billboard cloud with 31
boxes and 10.3 MB required textured memory.

Abstract

This paper introducesdisplacement mapped billboard clouds
(DMBBC), a new image-based rendering primitive for the fast dis-
play of geometrically complex objects at medium to far distances.
The representation is based on the well-knownbillboard cloud
(BBC) technique, which represents an object as several textured
rectangles in order to dramatically reduce its geometric complexity.
Our new method uses boxes instead of rectangles, each box rep-
resenting a volumetric part of the model. Rendering the contents
of a box is done entirely on the GPU using ray casting. DMBBCs
will often obviate the need to switch to full geometry for closer
distances, which is especially helpful for scenes that are densely
populated with complex objects, e.g. for vegetation scenes. We
show several ways to store the volumetric information, with dif-
ferent tradeoffs between memory requirements and image quality.
In addition we discuss techniques to accelerate the ray casting al-
gorithm, and a way for smoothly switching between DMBBCs for
medium distances and BBCs for far distances.

1 Introduction

Image-based surface representations are popular in real-time ren-
dering due to their ability to provide rich visual surface detail at
very low computational expense. The most widely used examples
are texture and normal maps. More recently, so-calleddisplace-
ment mapsintroduce geometric detail using a height field that can
be rendered by exploiting modern graphics hardware, while keep-
ing memory and computational costs relatively low.

In addition to enhancing surface appearance, image-based repre-
sentations have also been used to accelerate rendering by replacing

complex parts of a scene with simple textured geometry that re-
semble the geometric models to certain degree. Such image-based
representations are calledimpostors. A recently proposed impostor
technique that received much attention arebillboard clouds(BBC)
by Decoret et al. [Decoret et al. 2003]. While most existing impos-
tor primitives are restricted to a particular viewing region, BBCs
represent a part of a scene as a collection of arbitrarily placed and
oriented texture-mapped rectangles to which parts of the original
geometry are projected (see Figure 1). Consequently, the repre-
sented scene parts can be observed from all sides. While the qual-
ity of BBCs is often sufficient for distant parts of a scene, the “flat-
ness” of the individual rectangles becomes very noticeable from
closer distances or at grazing angles. This cannot be easily avoided:
switching to full geometry earlier defeats the purpose of BBCs as
this leads to a much higher geometry load, while substituting a dif-
ferent BBC with a higher accuracy typically leads to noticeable
popping artifacts. This restricts the usefulness of the BBC tech-
nique for scene parts closer to the viewer.

In this paper, we introduce a new representation calleddisplace-
ment mapped billboard cloud(DMBBC) that overcomes this prob-
lem. The main idea is to replace thebillboard rectanglesof a BBC
with billboard boxes. Within every such box, fine scale geometric
details are represented using a texture-based representation called
volumetric displacement function, which can be a 2.5D height map
(the basic displacement map) or even a full 3D texture (a “volumet-
ric displacement map”). This leads to a much lower geometric and
visual error compared to BBCs. Impostors based on DMBBCs al-
low for fast rendering of complex scenes entirely on the GPU with
sufficiently high image quality even for closer objects. In particu-
lar, the artifacts typically associated with billboard clouds are sig-
nificantly reduced through the additional parallax and visual depth,
while the representation remains image-based, i.e. only negligible
additional geometric complexity is introduced. The new represen-
tation allows for smooth blending with traditional billboard clouds

so that distant scene parts can be rendered even faster. We show the
potential of the new representation for complex objects containing
curved surfaces, where traditional billboard clouds typically fail to
provide a sufficiently high image quality.

2 Related Work

For a comprehensive overview of impostor techniques (including
simpleplanar impostors, layered depth imagesandtextured depth
meshes), we refer the reader to a recent state-of-the-art report by
Jeschke et al. [Jeschke et al. 2005]. Since DMBBCs are based on
the billboard cloud technique, we will discuss in Section 2.1 work
closely related to this technique. Section 2.2 describes methods
based on textures that are processed in the pixel shader, mostly for
describing surfaces. Although the technique in this paper is not
restricted to surfaces, the used methods are quite similar.

2.1 Billboard clouds

A billboard cloud [Decoret et al. 2003] is a powerful impostor prim-
itive because it represents scene parts from all possible viewing
directions. This allows for a straightforward use of shadow map-
ping as well as an easy integration into most existing rendering
systems just like geometric levels of detail. Normal maps can be
stored with every rectangle, allowing for dynamic lighting at run-
time. Meseth and Klein [Meseth and Klein 2004] stored bidirec-
tional texture functions for the BBC rectangles in order to preserve
view and light dependent effects.

On the other hand, generating a BBC is not trivial. The rectangles
have to approximate the surface of a scene part with respect to a
user-defined geometric error. The problem is the choice of good
rectangles that fulfill two contradicting demands: on the one hand,
a small number of rectangles is desired, but on the other hand, every
rectangle should contain as few “empty texels” (texels that do not
represent anything at all) as possible in order to save memory. The
original method by Decoret et al. implemented a greedy search
based on rectangle evaluation in Hough space. An algorithm that
automatically finds one rectangle covering the largest portion of a
(water-tight) model was presented by Andujar et al. [Andujar et al.
2004]. Unfortunately, any greedy optimization that chooses rectan-
gles consecutively cannot give a guarantee that the resultingsetof
rectangles is good. Meseth and Klein [Meseth and Klein 2004] pre-
sented two additional algorithms for finding a good set of rectangles
based on mesh simplification and hierarchical face clustering. Wahl
et al.[Wahl et al. 2005] used a RANSACK algorithm for converting
sampled points to BBC. Fuhrmann et al. [Fuhrmann et al. 2005] as
well as Behrendt et al. [Behrendt et al. 2005] improve on the orig-
inal algorithm to create BBCs with more desirable properties for
forest rendering.

However, the most problematic issues with BBCs are artifacts that
occur when a rectangle is observed from a grazing angle, so that
the rectangle becomes apparent as such or it even completely dis-
appears. Curved surfaces are especially challenging in this respect.
Although some of the work mentioned above shows improvements
for special objects like trees, there is no automatic method that can
guaranteethe absence of cracks and wrong silhouettes. The dis-
placement mapped billboard cloud technique proposed in this paper
overcomes this drawback.

2.2 Texture-based surface descriptions

As an early approach,bump mapping[Blinn 1978] solely relies
on shading, providing no correct silhouettes nor parallax effects.
Several more recent methods enrich surfaces with geometric details
that are stored in texture maps. For instance,parallax mappingby
Kaneko [T. Kaneko and Tachi] (with its various extensions [Welsh
2004; McGuire and McGuire ; Tatarchuk 2006]) simulate the ap-
pearance of a height field by shifting the texture coordinates within
a texture depending on the viewing angle. Note that these tech-
niques are hardly applicable for our purpose because a billboard
cloud typically contains empty areas in the texture which cannot be
represented in this way.

Surfaces with a certain depth can also be represented using ray cast-
ing on the GPU. Hirche et al. [Hirche et al. 2004] were the first
who defined a volume on a surface. They extruded the triangles
along the vertex normals which results in prisms. Every prism is
decomposed into three tetrahedrons. The ray casting is then ap-
plied to every tetrahedron by calculating the entrance and exit point
and linearly sampling and evaluating a heightfield between them.
The first hit point with the heightfield determines the position, and
the color is read from a color texture. This technique supports cor-
rect object silhouettes, self-occlusions, interpenetrations, and even
shadowing. Later Dufort et al. [Dufort et al. 2005] extended the
work to semi-transparent data and Porumbescu et al. [Porumbescu
et al. 2005] discussed the mapping in a broader way. Note that the
idea of Hirche et al. is most closely related to the technique used
in this paper: the ray casting step is implemented entirely in graph-
ics hardware and allows for interactive frame rates, which makes
the basic idea perfectly suitable for our DMBBCs. The main con-
ceptual difference is that instead of prisms, DMBBC primitives are
boxes which we can directly use for ray casting and we will allow
the ray casting step to discover holes in the representation. We also
accelerated the ray sampling process by usingsphere tracing[Don-
nelly]. Cone step mapping[Paglieroni and Petersen 1994] or an
enhanced version based onsafety zonesby Kolb et al. [Kolb and
Rezk-Salama 2005] are further alternatives.

More recently, Policarpo et al. [Policarpo et al. 2005] applied ray
casting to the original polygons of a mesh and implicitly defined
a thick surfaceinside the object. While this works considerably
faster than Hirche’s method, silhouettes are still defined by the
mesh geometry. They extended their work to better discover silhou-
ettes [OLIVEIRA and POLICARPO 2005] and to support multiple
height values per texel position [Policarpo 2006]. However, their
algorithm is based on the assumption of a continuous surface with
well defined “inside” and “outside” values, which do not exist in
the context of DMBBCs. The same applies to the work of Wang
et al. [Wang et al. 2003; Wang et al. 2004] who use massive pre-
processing in order to reduce the cost for intersection searching at
runtime. Please note that most of the presented techniques are ex-
plained in more detail in a book of Watt and Policarpo [Watt and
Policarpo 2005].

3 Displacement Mapped Billboard Clouds

After a description of the basic method in Sections 3.1 and 3.2,
Section 3.3 describes in more detail the construction of DMBBCs,
showing different ways how to store the acquired data for balancing
memory consumption and image quality. Section 3.4 presents a
suitable acceleration technique for the ray casting algorithm as well
as blending between different representations.

Figure 2: Left: billboard rectangle with its according validity re-
gion. Right: billboard box. Darker shaded regions show the ren-
dered primitives together with the displayed contents. Note the dif-
ference between the flat rectangle and the volumetric contents of
the box.

Figure 3: DMBBC representation of a chestnut tree consisting of 8
billboard boxes.

3.1 DMBBC definition

As mentioned earlier, abillboard rectanglein a BBC is used to
represent all model parts that are closer to the rectangle than a user-
definedvalidity threshold±ε. This validity threshold effectively
represents a cuboid volume around the billboard rectangle, thebill-
board box(see Figure 2). The billboard box exactly defines the
convex hull of the volume representing a DMBBC.

For a DMBBC, instead of simply projecting the model parts onto
the rectangle and storing one color value, we store volumetric in-
formation, the so-calledvolumetric displacement function. At each
texel (u,v), fuv(w) gives an opacity value for the heightw along
the rectangle normal, and an optional color value. For now, we as-
sume thatf is stored as a 3D texture with equidistant samples inw.
Figure 3 shows the billboard boxes of a tree model.

3.2 Basic rendering algorithm

For displaying contents of a billboard box, we use a GPU ray-
casting algorithm which determines the intersection of the viewing
ray with the contained volumetric displacement function. The entry
points of the viewing rays are interpolated from the corners of the
billboard box by rendering the faces of the billboard box with in-
terpolated(u,v,w) coordinates. The direction of the rays in texture
space can simply be calculated with a world-to-texture space-matrix

(provided as vertex attributes). The calculation of this matrix is very
straightforward so we omit the derivation here.

The ray casting itself samples linearly along the ray in texture space
(using a user-defined sampling rate) until an intersection is found,
just like many previous methods described in Section 2.2. The
search stops if either the ray leaves the box (which can be easily
determined using the texture coordinates) so that the fragment can
be discarded, or it intersects an opaque texel in the volumetric dis-
placement function. In the latter case, the color value at the current
position defines the output color. To optionally shade the current
pixel, a normal can be read from an according map and used to ap-
ply an illumination model, as was already shown for BBCs [Decoret
et al. 2003]. Note that the shader needs to output the correct depth
value of the intersection point in order to correctly solve visibil-
ity between potentially overlapping billboard boxes. This is also
straightforward and details are omitted here.

3.3 DMBBC generation

For generating the DMBBCs, we assume that the billboard rectan-
gles together with the error valueε are already given. The rec-
tangles can be obtained using any of the algorithms mentioned in
Section 2.1. The extents of a billboard box are defined by a rectan-
gle together withε. The (u,v) texture resolution of the rectangle
(defined by the closest distance the impostor should be valid for,
see [Decoret et al. 2003]) is also valid for the box. Now given
the original geometric model, we need to calculate and store the
volumetric displacement functionfuv(w). There are several ways
how to represent this function. One obvious choice is as a 3D tex-
ture (see Section 3.3.1). However, if the high memory consumption
of this approach is not acceptable, Section 3.3.2 and Section 3.3.3
present two other methods that significantly reduce the memory re-
quirements while often providing a sufficiently high image quality.

3.3.1 Volumetric Representation

The highest DMBBC quality can be achieved by sampling the volu-
metric displacement function in a 3D texture. The resolution (sam-
pling interval) of the texture inw-direction should be chosen so
that the voxels are approximately cubic, which effectively general-
izes the concept of texture resolution to 3D in the sense that a texel
defines the smallest representable feature. The 3D texture is then
filled by rasterizing the triangles of the original model into these
voxels, and collecting for each voxel its normal vector and color
information. If multiple polygons occupy the same voxel, this data
can be either averaged with equal weights (this was used to generate
Figure 4, c), or, if inside/outside information is available, the out-
side sample can be preferred. We currently do this step in software,
but a GPU-based implementation (eg. by rendering the model into
each of the volume slices) would be straightforward if preprocess-
ing time becomes an issue. The software approach requires between
several seconds and a few minutes per billboard box, depending on
the size of the original mesh. At runtime, the ray casting algorithm
has to test whether the 3D texture contains an object part at the cur-
rent sampling position or not, indicated by either a special color or
by using the alpha channel.

Although the obtained image quality is relatively high as also
shown in Figure 4, c, the memory consumption is also high due
to the typically large amount of empty texels. If the model should
be dynamically illuminated at runtime, normal vectors can also be
stored for every texel, again by averaging the normals of all surfaces
that fall into a voxel or by selecting any of them. However, note that
this further increases the required memory even though normals can

a. Original meshes.

b. BBC models (tree: 16 rectangles; car: 31 rectangles)).

c. Volumetric DMBBCs: the volumetric data is stored as 3D tex-
ture, resulting in good visual quality at the expense of relatively
high memory requirements.

d. Shell DMBBCs: only one value per(u,v) position is stored. The
tree still looks good except for the trunk, but the car shows many
cracks and misses details at the front.

e. Thick shell DMBBCs: two values per(u,v) define an interval.
The tree is distorted by many incorrect “slabs”, but the jaguar
model looks better than with a shell DMBBC.

Figure 4: Original, BBC, and DMBBC renderings of two models.

be stored with lower texture resolution and/or compressed to only
2 bytes per normal at the expense of slightly reduced output image
quality. However, if certain assumptions about the input model can
be made, the following two sections present ways how memory can
be saved with little impact on the quality.

3.3.2 Shell Representation

If we assume that the volumetric displacement function contains
only one occupied region (voxel) for each(u,v) texel, thenfuv(w)
can be more efficiently represented by a single displacement value.
This dramatically reduces memory requirements. We call this a
shell DMBBC.

The displacement value defines at what distance to the billboard
rectangle the sample was acquired. Here the same problem occurs
as for the 3d texture case: if multiple model parts map to the same
(u,v) position, one has to decide wether to average over all height
values, color values and normals or to just select one of them. Note
that this issue is quite apparent since we deal with the whole thick-
nessε and not only with the thickness of one 3D texel as in Sec-
tion 3.3.1.

In contrast to pure displacement maps, which represent surfaces,
the geometry contained in a billboard box is not guaranteed to be
contiguous. Therefore, a ray needs to be able to tracethroughholes
in the representation. On the other hand, continuous surfaces should
not be pierced. We solve this by assigning a user-definedthickness
(therefore “shell” representation) to the samples. If this thickness is
chosen too small, holes will appear in continuous surfaces, if it’s too
large, the model will look very blocky. At runtime, the ray casting
algorithm tests whether the current sampling position is within the
thickness distance to the displaced sample so that it can be assumed
to be hit by the ray. Currently we adapt the thickness manually
using visual inspection. It might also be defined as the standard
derivation over all acquired texel positions.

A shell DMBBC basically needs the same amount of memory as
a BBC, except that along with the color information an additional
displacement value per(u,v) position must be stored. On the other
hand, the overall image quality is typically lower compared to the
3D texture approach. Figure 4 d shows an example for this where
the introduced error is not too apparent for a largely unstructured
model (here a tree) but becomes too obvious for an object with
continuous surfaces and wrinkled details (here a car). The latter
problem is caused by the global “thickness” value that on the one
hand has to ensure that continuous surfaces appear closed but on
the other hand should also preserve small details. The next section
presents a method that overcomes this problem.

3.3.3 Thick Shell Representation

A more accurate representation of the volumetric displacement
function is thethick shell DMBBCrepresentation, which storestwo
height values per(u,v) position. The interval between the two val-
ues represents the part of the volume that is occupied by the model.
We have simply stored the lowest and the highest displacement val-
ues for generating Figure 4 e, but other options might also be pos-
sible. Consequently, at runtime the ray caster tests if the currentw
value is within the stored interval at the current(u,v) position in
order to determine if the model is hit.

There are many possibilities to balance image quality and memory
requirements in the actual memory layout of a thick shell. It would
for example be possible to store colors and normal vectors sepa-
rately for the lower and higher interval boundaries and to linearly

interpolate between the resulting output color values at runtime de-
pending on the actual height. However, in order to save memory,
for generating Figure 4 e we simply stored one additional height
value compared to the shell DMBBC approach. This works well
for relatively thin objects such as the trunk of a tree where the color
can typically be assumed to be identical for both sides. This also
saves almost 50% memory. However, as Figure 4, c also shows,
while the jaguar model looks considerably less cracky compared to
shell DMBBCs (see Figure 4, d), the chestnut shows many incor-
rect “slabs” because neighboring leaves and branches are merged
into one billboard box. This makes this technique much less useful
for highly unstructured models like vegetation.

3.4 Rendering optimizations

While the basic rendering algorithm was already described in Sec-
tion 3.2, this section describes how to accelerate the rendering
process (see Section 3.4.1) using distance functions and how to
smoothly blend between DMBBCs and BBCs (see Section 3.4.2).

3.4.1 Rendering Acceleration Using Distance Functions

GPU-based ray casting can become very costly since it is linear in
the number of texels the ray projects to in each texture rectangle. In
order to increase rendering speed without reducing the image qual-
ity we adapted an approach by Donnelly et al. [Donnelly], which
is based ondistance functions. Please note that it works similarly
for all DMBBC variants presented in Section 3.3.

In the preprocessing step, a so-called 3Ddistance textureis cre-
ated. The(u,v) dimensions of this texture are the same as for the
billboard boxes. Thew dimension can be chosen as a tradeoff be-
tween fast intersection calculation and required memory. For every
3D position in the distance texture, the closest Euclidean distance
to the next non-empty element within the billboard box (defined by
the 3D texture, the shell, or the thick shell) is stored. Texels that lie
within a non-empty region have a distance of zero. Note that the
distances define spherical regions around every texel.

At runtime, instead of using uniform sampling (as defined in Sec-
tion 3.2), we read the distance texture for the current texel and ei-
ther stop (if the value is 0) or move along the ray to the border of
the distance region and repeat. Therefore, the distance function can
be used to efficiently skip large empty parts in a billboard box with-
out missing an intersection. Also, since the traversal automatically
stops within occupied voxels, the main loop of the traversal is very
efficient, only consisting of a texture lookup and two arithmetic
operations. By using this technique we obtained speedup factors
between 2 to 10 for typical objects.

3.4.2 Blending between Representations

One problem when rendering different representations for an ob-
ject at different viewing distances is to stage a smooth transition
between those representations, i.e. to avoid noticeable popping ar-
tifacts which inevitably draws the observer’s attention to any visual
differences. Due to the construction of the underlying billboard
cloud, it is possible to calculate at which distance the maximum
displacementε encoded in a DMBBC projects to less than one dis-
play pixel. Behind this distance rendering can simply be switched
to regular BBCs for faster performance, without being too much
noticeable.

However, if the transition should occur at closer distances (typi-
cally for performance reasons) a blending can be applied between
the DMBBC and its corresponding BBC in the following way: the
displacement (i.e., the height of the billboard box) is linearly re-
duced to zero before switching, thus flattening the billboard box to
the according billboard rectangle, similar to the geomorphing ap-
proach for terrain rendering [Hoppe 1998]. This provides a seam-
less transition between the two representations and requires only to
dynamically adjust the size of the box and the according world-to-
texture-space-matrix.

Note that we do not blend between the original geometric model
and the DMBBC, as visual artifacts should be quite reduced due to
the similarity of the DMBBC with the geometric model.

4 Results

We have implemented the variants of the DMBBC algorithm de-
scribed in Section 3.3 as HLSL Shader Model 3.0 pixel shader and
tested them with a number of objects. All of the following tests
were performed on an Pentium D PC running at 3.2GHz with 1GB
of RAM and an ATI Radeon X1900 XT graphics card, running Win-
dows XP.

Figure 1 and Figure 4 provide a visual comparison of the dragon,
the jaguar and the chestnut tree model rendered as geometry, BBCs,
and DMBBCs. Table 1 provides some details for these models. The
dragon model was chosen because its billboard cloud representa-
tions are typically visually unpleasant due its curved surface, and
the DMBBC representation offers a vastly improved representation.
The chestnut tree is one of the target applications of the DMBBC
algorithm; billboard cloud representations of trees have been used
quite successfully, and we show that DMBBCs can provide a higher
quality representation by eliminating the edge-on artifacts which
are quite visible for trees (e.g., see Figure 4).

Figure 1 and Figure 4 demonstrate that the DMBBC algorithm
is quite universally applicable. The comparison of various mod-
els rendered as BBC and DMBBC in Figure 5 illustrates how the
DMBBC representation manages to preserve the general shape of
the models more closely.

faces ε (DM)BBC generation time (s)
model original rects/boxes BBC DMBBC
hippo 31583 10 10 130 303
moped 56882 5 22 834 1014
chestnut 159160 20 8 358 806
jaguar 188844 4 31 1129 2146
buddha 865792 10 8 1692 1794
dragon 871414 4 31 2799 2934

Table 1: Original and BBC/DMBBC figures for various models.

Concerning memory requirements, Table 2 shows statistics about
the test models. While the volumetric DMBBC needs considerably
more memory than the BBC, the shell and thick shell variants store
the data more memory efficient. Also note that in Figure 1, a com-
plex BBC still does not reach the visual quality of the according
DMBBC, although it occupies even more memory. In general the
tradeoff between a high image quality and low memory consump-
tion must be made for a particular application.

The rendering speed of DMBBCs is fully determined by the pixel
rendering power of the graphics hardware. DMBBCs therefore
trade CPU and/or vertex processing power as well as CPU/GPU
bandwidth for pixel processing speed. For Figure 6, we created

Figure 5: Left: BBCs of the hippo, moped and buddha. Right: the
according DMBBCs.

memory requirements (MB)
volumetric shell thick shell

model BBC DMBBC DMBBC DMBBC
hippo 0.37 12.2 0.76 0.93
moped 0.42 18.2 0.59 0.76
chestnut 1.85 17.25 2.67 3.1
jaguar 0.62 100 2.43 3.27
buddha 0.59 3.22 0.89 1.15
dragon 1.76 10.3 3.18 3.88

Table 2: Continuation of Table 1: memory requirements for the dif-
ferent representations, including normal data and distance textures
for rendering acceleration.

BBC and volumetric DMBBC representations for the willow tree
model with an error threshold of 20%. We then measured the av-
erage rendering time of a single such model for a number of view-
points at distances from 500 to 5000 units in 20 unit increments.
Furthermore, we performed the same test with the BBC represen-
tation of the same model, with the same error threshold as for the
DMBBC, and the original geometry. Please note that the distance
where the projected error threshold of the BBC becomes smaller
than one pixel is at approximately 1300 units.

It can be observed that the frame rates for the full geometry and the
BBC model are independent of the distance (and therefore inde-
pendent of the screen size), leading to the conclusion that the GPU
is certainly not fill rate limited for these models. The significantly
lower performance of the visually equivalent BBC model is caused

 0

 200

 400

 600

 800

 1000

 0 250 500 750 1000 1250 1500 1750 2000

fra
m

e
ra

te
 (1

/s
ec

)

view distance (units)

full geometry, 396950 faces
bbc, e=10%, 18 planes

dmbbc, 18 boxes

Figure 6: Frame rate vs. distance for full geometry, BBC and
DMBBC representations of the willow tree model. Note that the
top line (BBC) implies significant visual artifacts; rendering the
BBC representation is therefore only useful once the visual error
becomes sufficiently small (1 pixel at approximately 1300 units).

by the abundance of texture state changes required to render them—
while the full geometry only uses two textures, the BBC represen-
tation requires a separate texture for each rectangle, causing a much
larger overhead even if they are packed into larger texture atlases.

On the other hand, the rendering performance of a DMBBC model
is highly dependent on the viewing distance. The lower perfor-
mance of the more complex DMBBCs is mostly caused by pixel
shader overdraw—since the renderer modifies depth information,
no early culling may be performed and the full shader must be eval-
uated for each of the billboard boxes. It can be seen that although
the initial performance is very low, the DMBBC renderer surpasses
the performance of the original geometry rather quickly. Figure 6
illustrates that the DMBBC representation is ideally suited for ac-
celerating rendering at moderate distances, and provides a good
transition from full geometry to BBC representations. Also note
that the rendering speed is practically equal for the three DMBBC
variants described in Section 3.3 because the ray casting loop is
almost identical.

Furthermore, since the performance of pixel processing within the
GPU is increasing rapidly with each generation of GPUs (and GPU
bandwidth less quickly by far), it can be expected that the slope
of the DMBBC curves in Figure 6 will become larger, shifting the
break-even point closer to the viewer.

5 Conclusions

We have introduced displacement mapped billboard clouds, a new
image-based rendering primitive for complex objects. DMBBCs
complement traditional billboard clouds for near to medium dis-
tances, where the visual shortcomings of BBCs are especially ap-
parent and distracting. The main advantage of DMBBCs is that
they allow an image-based representation to be used at closer dis-
tances than ordinary BBCs, leading to significantly higher render-
ing speeds than with the original geometry, while still providing
good image quality. The improved image quality is due to the geo-
metric detail added by image-based primitives, which also capture
discontinuous geometry using so-called volumetric distance func-
tions . The high rendering speed owes to the fact that a DMBBC

is displayed entirely by modern graphics hardware with a fast ray
casting algorithm. Conventional shading and shadowing techniques
like normal maps and shadow mapping for realistic illumination can
still be used with the new technique. In addition, different objects
can intersect each other, while the representations look still correct.

The scale of volumetric DMBBCs reaches from a purelyvolumetric
representation (i.e., one billboard box for the whole model) to an
almost purelygeometricrepresentation (large number of very thin
billboard boxes). In other words, DMBBCs smoothly fill the gap
between image-based and geometry-based representations.

In terms of future work, one interesting question is how to opti-
mally simplify an object for displacement-mapped rendering. In
our implementation we used the classical error metric of Decoret
et al. [Decoret et al. 2003] based on the distanceε of a scene part
to the rectangle it is mapped to. Although the displacement map
practically eliminates the error measured by this metric, keeping
the offsets small is still desirable in order to reduce overdraw in
the output image. However, other metrics could adapt to the spe-
cial characteristics of the DMBBC algorithm. For instance, while
in shell DMBBCs, pixels can only adequately represent one surface
piece, this does not hold true for the volumetric approach. New
metrics can also be based on other optimization criteria, like us-
ing fewer boxes or making best use of memory by minimizing the
number of empty pixels in every box.

References

ANDUJAR, C., BRUNET, P., CHICA , A., NAVAZO , I.,
ROSSIGNAC, J.,AND V INACUA , A. 2004. Computing maximal
tiles and application to impostor-based simplification.Computer
Graphics Forum 23, 3, 401–410.

BEHRENDT, S., COLDITZ , C., FRANZKE, O., KOPF, J., AND
DEUSSEN, O. 2005. Realistic real-time rendering of landscapes
using billboard clouds. InComputer Graphics Forum, vol. 24,
507–516.

BLINN , J. F. 1978. Simulation of wrinkled surfaces. InSIGGRAPH
’78: Proceedings of the 5th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 286–292.

DECORET, X., DURAND, F., AND SILLION , F. X. 2003. Bill-
board clouds. InSCG ’03: Proceedings of the nineteenth annual
symposium on Computational geometry, ACM Press, New York,
NY, USA, 376–376.

DONNELLY, W. ch. Per-Pixel Displacement Mapping With Dis-
tance Functions, 123–136.

DUFORT, J.-F., LEBLANC, L., AND POULIN , P. 2005. Inter-
active rendering of meso-structure surface details using semi-
transparent 3d textures. InProc. Vision, Modeling, and Visu-
alization 2005, 399–406.

FUHRMANN , A. L., UMLAUF, E., AND MANTLER, S. 2005. Ex-
treme model simplification for forest rendering. InProceedings
of the 2005 Eurographics Workshop on Natural Phenomena, The
Eurographics Association, E. Galin and P. Poulin, Eds.

HIRCHE, J., EHLERT, A., GUTHE, S.,AND DOGGETT, M. 2004.
Hardware accelerated per-pixel displacement mapping. InGI
’04: Proceedings of the 2004 conference on Graphics interface,
Canadian Human-Computer Communications Society, School of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 153–158.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control
and its application to terrain rendering. InVIS ’98: Proceedings
of the conference on Visualization ’98, IEEE Computer Society
Press, Los Alamitos, CA, USA, 35–42.

JESCHKE, S., WIMMER , M., AND PURGATHOFER, W. 2005.
Image-based representations for accelerated rendering of com-
plex scenes. InEUROGRAPHICS 2005 State of the Art Reports,
The Eurographics Association and The Image Synthesis Group,
Y. Chrysanthou and M.Magnor, Eds., EUROGRAPHICS, 1–20.

KOLB, A., AND REZK-SALAMA , C. 2005. Efficient empty space
skipping for per-pixel displacement maps. InProceedings of the
VMV 2005 Conference.

MCGUIRE, M., AND MCGUIRE, M. Steep parallax mapping.I3D
2005 Poster.

MESETH, J., AND KLEIN , R. 2004. Memory efficient billboard
clouds for btf textured objects. InVision, Modeling, and Vi-
sualization 2004, Akademische Verlagsgesellschaft Aka GmbH,
Berlin, B. Girod, M. Magnor, and H.-P. Seidel, Eds., 167–174.

OLIVEIRA, M. M., AND POLICARPO, F. 2005. An efficient
representation for surface details. Tech. Rep. RP-351, Federal
University of Rio Grande do Sul - UFRGS.

PAGLIERONI, D. W., AND PETERSEN, S. M. 1994. Height distri-
butional distance transform methods for height field ray tracing.
ACM Trans. Graph. 13, 4, 376–399.

POLICARPO, F., OLIVEIRA , M. M., AND COMBA , J. L. D. 2005.
Real-time relief mapping on arbitrary polygonal surfaces. In
SI3D ’05: Proceedings of the 2005 symposium on Interactive
3D graphics and games, ACM Press, New York, NY, USA, 155–
162.

POLICARPO, F. 2006. Relief mapping of non-height-field surface
details. InTo appear in Proceedings of the 2006 Symposium on
Interactive 3D graphics and games, ACM Press, New York, NY,
USA.

PORUMBESCU, S. D., BUDGE, B., FENG, L., AND JOY, K. I.
2005. Shell maps.ACM Trans. Graph. 24, 3, 626–633.

T. KANEKO, M. INAMI , N. K. Y. Y. T. M. T. T., AND TACHI , S.
Detailed shape representation with parallax mapping.

TATARCHUK , N. 2006. Dynamic parallax occlusion mapping with
approximate soft shadows. InSI3D ’06: Proceedings of the 2006
symposium on Interactive 3D graphics and games, ACM Press,
New York, NY, USA, 63–69.

WAHL , R., GUTHE, M., AND KLEIN , R. 2005. Identifying planes
in point-clouds for efficient hybrid rendering. InThe 13th Pacific
Conference on Computer Graphics and Applications.

WANG, L., WANG, X., TONG, X., L IN , S., HU, S., GUO, B.,
AND SHUM , H.-Y. 2003. View-dependent displacement map-
ping. ACM Trans. Graph. 22, 3, 334–339.

WANG, X., TONG, X., L IN , S., HU, S., GUO, B., AND SHUM ,
H.-Y. 2004. Generalized displacement maps. InProceedings
of the Eurographics Symposium on Rendering 2004, Springer-
Verlag, 227–233.

WATT, A., AND POLICARPO, F. 2005.Advanced Game Program-
ming with Programmable Graphics Hardware. A. K. Peters Lim-
ited. ISBN 156881240X.

WELSH, T. 2004. Parallax mapping with offset limiting: A per
pixel approximation of uneven surfaces. Tech. rep., Infiscape
Corporation.

