
Eurographics Symposium on Rendering (2007)
Jan Kautz and Sumanta Pattanaik (Editors)

Pixel-Correct Shadow Maps with Temporal Reprojection and
Shadow Test Confidence

Daniel Scherzer† Stefan Jeschke Michael Wimmer

Vienna University of Technology, Austria

Abstract
Shadow mapping suffers from spatial aliasing (visible as blocky shadows) as well as temporal aliasing (visible
as flickering). Several methods have already been proposed for reducing such artifacts, but so far none is able to
provide satisfying results in real time.
This paper extends shadow mapping by reusing information of previously rasterized images, stored efficiently in
a so-called history buffer. This buffer is updated in every frame and then used for the shadow calculation. In
combination with a special confidence-based method for the history buffer update (based on the current shadow
map), temporal and spatial aliasing can be completely removed. The algorithm converges in about 10 to 60 frames
and during convergence, shadow borders are sharpened over time. Consequently, in case of real-time frame rates,
the temporal shadow adaption is practically imperceptible. The method is simple to implement and is as fast as
uniform shadow mapping, incurring only the minor speed hit of the history buffer update. It works together with
advanced filtering methods like percentage closer filtering and more advanced shadow mapping techniques like
perspective or light space perspective shadow maps.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
- Display algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Virtual reality

1. Introduction

In shadow mapping [Wil78], the shadow computation is per-
formed in two passes: first, a depth image of the current
scene (the shadow map) as seen from the light source (in
light space) is rendered and stored. Second, the scene is ren-
dered from the viewpoint (in view space) and each 3D frag-
ment is reprojected into the light space. If the reprojected
fragment depth is farther away that the depth stored in the
shadow map, the fragment is in shadow and shaded accord-
ingly.

Unfortunately, shadow mapping suffers from spatial and
temporal aliasing, visible as blocky pixels and flickering, re-
spectively. The primary problem is undersampling due to in-
sufficient shadow map resolution. To use the shadow map
resolution more efficiently, Brabec et al. [BAS02] focused
the shadow map to the visible scene parts, which makes
shadow maps useful for larger scenes. The downside is that

† {scherzer|jeschke|wimmer}@cg.tuwien.ac.at

now the shadow map extents are recalculated each frame and
therefore the rasterization is likely to differ each frame, thus
creating lots of temporal aliasing (flickering).

The point addressed in this paper is that different subse-
quent rasterizations are a vast source of information: each
rasterization is a discrete approximation of the same (or at
least a very similar) continuous depth image that would rep-
resent a perfect shadow map. Note that we do not need an in-
finite resolution shadow map for a fixed resolution view port.
Instead, a depth sample in the shadow map at each repro-
jected view space sample position is sufficient. In practice
this results in an irregular grid shadow map [AL04], which
can hardly be implemented in current hardware.

In this paper, instead of adapting the shadow map res-
olution, we accumulate the required information per pixel
over time by using a so-called history buffer in screen space.
This buffer accumulates shadow map test results for the
past few frames, reprojected to the current frame. A spe-
cial confidence-based history buffer update based on the cur-
rent shadow map ensures that it converges to an exact shad-

c© The Eurographics Association 2007.

D. Scherzer & S. Jeschke & M. Wimmer / Pixel-Correct Shadows Maps

Figure 1: Pixel-correct shadow maps as a result of using
a shadow map (size 10242) with shadow test confidence to-
gether with a history buffer. Note that projection and per-
spective aliasing are completely removed.

owing solution. Consequently, shadow borders sharpen over
time until both perspective and projective aliasing artifacts
are completely removed (see Figure 1). Likewise, temporal
aliasing (shadow flickering) is removed, since shadows are
smoothed during the convergence process. Note that in prac-
tice the convergence is typically faster than the eye adaption
so that the image quality appears consistently high.

The main contribution of this paper is a shadow mapping
algorithm that quickly adapts to pixel correct (hard) shad-
ows over time. Similarly, it eliminates image flickering by
smoothing shadows in case of insufficient information. No
scene analysis is required, so that the rendering speed is
practically not reduced. In addition, the algorithm is sim-
ple to implement and integrate into existing rendering en-
gines. It works together with advanced filtering methods like
percentage closer filtering and more advanced shadow map-
ping techniques like perspective or light space perspective
shadow maps.

2. Previous Work

Removing the inherent drawbacks of shadow maps is
an active research field and therefore a number of pa-
pers exists. We divide the approaches into filtering-based,
reparameterization-based and pixel exact solutions and
name the most relevant representatives.

Filtering: Hard jagged shadow map edges can be sub-
stituted with high-frequency noise. For example, percentage
closer filtering (PCF) [RSC87] uses Poisson disk sampling
in light space to approximate the reprojected eye fragments.
An alternative is to use (bi)linear or cubic filtering of numer-
ous shadow map test results to blur shadow map edges. This
produces smooth shadow map boundaries which are incor-
rect but convincing.

Reparameterizations: There exist a number of reparam-
eterization approaches which try to allocate more samples to
close regions. Perspective shadow maps [SD02] use the post
perspective view space to warp the shadow map. Light space
perspective shadow maps [WSP04] warp the light space with
a view-aligned transformation. The approaches have in com-
mon that they target perspective aliasing. Perspective alias-
ing is caused by the mismatch between uniform shadow map
resolution and the non-uniform resolution that is caused by
perspective eye views.

Pixel exact solutions: Adaptive shadow maps [FFBG01]
store the shadow map in a hierarchical grid structure that is
updated each frame. Alias-free shadow maps [AL04] trans-
form all visible eye fragments into light space and provide
a hierarchical software implementation to efficiently evalu-
ate shadow information at these (undiscretized) points. Tiled
shadow maps [Arv04] tile the light view to change the sam-
pling quality according to a heuristical analysis. All these
approaches only achieve interactive frame rates, while our
method runs at practically the full speed of standard shadow
maps.

Especially in off-line ray casting approaches, a number
of papers exists that make use of information stored over
time [HBS03]. A recent Siggraph sketch [NSI06] argues that
this can also be done in real time in a so-called reprojection
cache, an idea that seems similar to our history buffer.

3. Pixel-Correct Shadow Maps

The main idea in this paper is to reuse shadowing informa-
tion of previously rendered frames to increase the shadow
accuracy of the current frame while taking into account the
confidence of this information. We accumulate this informa-
tion in a so-called history buffer, which will be introduced in
detail in Section 3.1. The actual shadow mapping operation
is then performed in every frame by the following steps:

1. Calculate the shadowing for all fragments of the current
frame using standard shadow mapping.

2. Transform the history buffer to the current frame (see
Section 3.2). Note that in practice we will do the reverse
and transform each fragment from the current frame back
into the history buffer.

3. Update the history buffer using the current shadow map
(see Section 3.3).

4. Shadow the current frame according to the updated his-
tory buffer.

3.1. Temporal Smoothing with the History Buffer

In order to reduce temporal aliasing, we interpret each pixel
as a separate function with the time as the input domain (usu-
ally represented by a frame number). Temporal anti-aliasing
is then done by smoothing this function. An obvious way

c© The Eurographics Association 2007.

D. Scherzer & S. Jeschke & M. Wimmer / Pixel-Correct Shadows Maps

would be to use floating averages

s(n) =
f (n)+ f (n−1)+ ... f (n− k)

k
(1)

were k is the number of frames we consider and f is the
function we want to smooth. f (n) is the function result for
the current frame, f (n− 1) for the last frame and so forth.
This straightforward approach raises two problems. First, we
would need to store f (x) for every pixel for the last k frames,
which results in high storage costs. We would prefer to cal-
culate our results incrementally, so that we would only have
to store the functions of a single frame. Second, if all frames
are weighted equally, arriving at the actual value of the func-
tion for the current frame would need k consecutive identical
frames, which introduces a latency of k frames. Instead, we
want to have increasing weights for more recent frames. This
would let the function converge quickly to the current frame
while maintaining some smoothing.

Fortunately, the commonly used exponential smoothing
method circumvents these two drawbacks and is quite fast to
compute. It works iteratively and allows adjustable weights:

s(n) = w∗ f (n)+(1−w)∗ s(n−1) 0 < w ≤ 1 (2)

Here w is a weight and s(n− 1) is the result of the previous
evaluation. w allows balancing fast adaption of s to chang-
ing input parameters against temporal noise of the function.
With increasing w, s(n) depends more on the result of the
current frame function and less on older frames and vice
versa. The name exponential smoothing comes from the ex-
ponential falloff of the influence of older frames implied by
the recursion. s(n) needs to be defined for each screen pixel

sx,y(n) = w∗ fx,y(n)+(1−w)∗ sx,y(n−1), (3)

thus defining the so-called history buffer. This buffer is sim-
ply a screen size array that allows us to capture shadowing
information of a potentially infinite number of old frames
with exponential falloff. Note that in practice we need to
double-buffer this array, since current hardware cannot read
from and write to the same buffer in the same frame. The
function fx,y(n) is simply the result of the shadow map test
for each fragment. This test returns 0 for a shadowed frag-
ment and 1 if the fragment is lit. The buffer has a fairly small
memory footprint, containing for each fragment fx,y(n) and
the depth. The latter is needed for a correct depth buffer
lookup (Section 3.2). Also note that the weights w can be
calculated individually for each pixel (wx,y). This will be-
come important in Section 3.3, where wx,y will be based on
the individual pixel history.

3.2. History Buffer Transformation

In practice, when evaluating Equation 3, we have to get the
shadowing information from previous frames from the his-
tory buffer, namely sx,y(n−1). The history buffer represents
shadowing information for 3D fragments in world space.

Consequently, if the camera moves, for every currently ren-
dered fragment we have to find the corresponding position
in the history buffer (i.e., the previous frame). Since we have
the 3D position of our current fragment, we can simply use
the view (V) and projection (P) matrices and their inverses
of the current and the last frame to do the transformation:

pn−1x′ ,y′ ,z′
= Pn−1 ∗Vn−1 ∗V−1

n ∗P−1
n ∗pnx,y,z (4)

The obtained position will normally not be at an exact frag-
ment center in the history buffer except for the special case
that no movement has occurred. Consequently, filtering the
history buffer for the lookup should be done. In practice, the
bilinear filtering that graphics hardware offers shows good
results.

An important issue is the treatment of fragments that have
no corresponding entry in the history buffer. These are frag-
ments that project to a position outside the history buffer.
For instance, such new fragments occur on the left screen
border in Figure 2 after a translation to the left. Similarly,

Figure 2: New fragments (shown in red) without history that
result from a camera translation.

fragments might be missed in the history buffer due to dis-
occlusions if new scene parts appear behind occluders (as for
the trees in Figure 2). In order to detect such cases, we check
the depth difference between the current fragment and the
corresponding history buffer entry. If this distance exceeds a
certain threshold, we conclude that this fragment is new and
therefore has no history. For all new fragments the original
unsmoothed shadowing function is used sx,y(n) = fx,y(n).

3.3. Confidence-Based History Buffer Updates

While temporal smoothing with the history buffer reduces
temporal aliasing, shadow edges are only smoothed without
improving their accuracy. To achieve this, we take the con-
fidence of a sample into account, which can be motivated
as follows. The use of a simple shadow map test as source
function fx,y(n) for the history buffer shows the following
property: If an eye fragment transformed into light space is
exactly at the center of a shadow map pixel, the correspond-
ing shadow map test result is the correct shadowing solu-
tion for that eye fragment. We use this property to associate

c© The Eurographics Association 2007.

D. Scherzer & S. Jeschke & M. Wimmer / Pixel-Correct Shadows Maps

with each shadow map test result a confidence, which is a
measure for the correctness of the test in dependence on the
max-norm distance of the transformed eye space fragment to
the nearest shadow map sample:

con f x,y = 1−max
(
|x− centerx| , |y− centery|

)
∗2, (5)

were con f x,y is the confidence at the fragment position (x,y)
and (centerx,centery) is the pixel center. If we assume a
sample size of 1, we get a highest max norm distance 0.5,
which explains the factor 2.

The central idea of this paper is now to use this shadow
map confidence as input for the weight w for the his-
tory buffer update (Equation 3). In combination with the
constantly updated history buffer, this allows us to com-
pute pixel exact shadows even with very low resolution
shadow maps, provided we have different rasterizations of
the shadow map in each frame. The reason this works is that
each new shadow map sample influences the current shad-
owing result s(n) only if it has a high confidence. As long as
different rasterizations are produced, it is very likely that a
“good” shadow test result appears, and this will have a high
influence on the shadow result, whereas “bad” shadow test
results only have little influence.

Different rasterizations are provided by sub-pixel jittering
the light space projection window in the light view plane
based on a pseudo random sequence (Halton). Interestingly,
translational jittering alone does not provide the required
rasterization randomness. This is probably caused by the fact
that translational jittering may or may not lead to a differ-
ent rasterization of the shadow edges. Consequently, we use
an additional plane rotation (with the rotation angle being a
member of the Halton sequence), which ensures completely
different rasterizations of shadow edges for each frame.

We apply a power function to the confidence

wx,y = con f m
x,y, (6)

obtaining a single intuitive parameter m to balance fast his-
tory buffer adaptation against temporal noise, as mentioned
in Section 3.1. If m is chosen relatively low (around 3),
the history buffer (and thus shadowing) adaption performs
quickly, but some temporal noise remains. If m is chosen
relatively high (about 15), the history buffer adapts slowly,
but shows no temporal noise. In this case, it is strongly bi-
ased towards more accurate shadow map samples, converg-
ing to practically pixel exact shadows. The temporal noise
is visible as unsharp shadow edges that vary over time. In
practice we use a low value of m if the camera is moving
and start increasing m as soon as it stands still. This lets the
shadow map adapt similarly to the eye, making the conver-
gence practically invisible if the framerate is above 30Hz
(see also Figure 3 and the video provided with this paper).

4. Implementation and Results

With vertex and pixel shader support, the method is efficient
and simple to implement: the reprojection matrix is multi-
plied with the post-perspective vertex position in the vertex
shader and interpolated. The only thing left to do in the pixel
shader is to use this position for the lookup in the history
buffer.

All images were taken with a shadow map resolution of
10242. Frame buffer objects were used to render the history
buffer in 16bit floating point format. Depth was stored with
the same precision. Two instances of the history and depth
buffer are required (one for reading and one for writing),
resulting in an overall memory requirement of only 4MB
for a screen resolution of 10242. Frame buffer and history
buffer are written in one pass using the multiple render tar-
get functionality. Minor speed penalties of the method occur
primarily in the fragment shader, where a read and a write
to the history buffer is necessary. On a Pentium4 3.2GHz
with NVIDIA GeForce 8800GTX graphics card, for a 10242

window we measured an average frametime of 15ms for the
scene shown in Figure 4, of which about 1.5ms is the over-
head incurred by our method.

All images shown of our method use a value of m = 15 for
the weight calculation. The accompanying video uses m = 3
while moving and increases m each frame of non-movement
by 0.1. Figure 3 shows the convergence properties of our
method when standing still for varying strategies of choosing
m for example viewpoints. The y-axis shows the total pixel
error as the percentage of pixels differing from the fully con-
verged solution, counting only pixels with a maximum dif-
ference greater than 30 in RGB (with a range from 0–255).
The x-axis is in frames. At frame 0 we already have an error
of only 0.25% with preceding coherent camera movement,
quickly converging to 0.1% error in 20 frames. Typically
this error is not noticeable anymore. Figures 4 and 6 show
comparisons of light space perspective shadow maps and our
method (see also Figure 1 on the colorplate). Note especially
in Figure 4 the dueling frusta case. As Figure 6 shows, us-
ing PCF-filtered lookup results for fx,y(n) creates smoother
shadow borders. If we use a largely undersampled shadow
map representation, as for example a uniform shadow map in
a large scene, convergence to the pixel exact solution is slow.
We greatly increased the convergence by using light space
perspective shadow maps, which already reduce perspective
aliasing errors. With this we can provide the pixel exact so-
lution in a few iterations (about 10 to 60). Figure 5 shows
the convergence for an example viewpoint. It is important
to note that through the exponential smoothing, we have al-
ready removed all flickering artifacts, and the convergence is
extremely smooth. In our experiments, the pixel exact solu-
tion is quickly reached when an observer stops to investigate
shadow map edges in detail (see the enclosed video).

c© The Eurographics Association 2007.

D. Scherzer & S. Jeschke & M. Wimmer / Pixel-Correct Shadows Maps

Figure 3: This figure shows the convergence for two example viewpoints while standing still for different strategies of choosing
m. The left graph shows the behavior after a preceding coherent rotation of the camera (filled history buffer) and the right graph
shows the behavior when starting with an empty history buffer.

Figure 4: The famous dueling frusta case where reparameterizations of the shadow map can only provide similar results as
uniform shadow maps. On the left: light space perspective shadow maps; in the middle: light space perspective shadow maps
with PCF 3x3 filtering; and on the right: our new method.

Figure 5: Shadow adaption over time after 1 (top-left), 20
(top-right), 40 (bottom-left)and 60(bottom-right) frames.

5. Conclusions and Future Work

In this paper we presented a new shadowing method based
on shadow maps that produces pixel accurate shadows in real

time. It resolves perspective and projective aliasing, which
are present in all existing real-time shadow algorithms. Fur-
thermore this shadow method creates temporally smooth
shadow transitions, thus resolving temporal aliasing and
flickering artifacts that are a major problem of shadow map-
ping. In addition, the algorithm is simple to implement and
to integrate into existing rendering engines. It works together
with advanced filtering methods like percentage closer fil-
tering and more advanced shadow mapping techniques like
perspective or light space perspective shadow maps, and has
practically no performance overhead over standard shadow
mapping.

A possible avenue for future work is to extend the idea to
soft shadows. Here the jittering would have to be applied to
positions on the area light source to create physically correct
soft shadows. This approach would include the real 3D vis-
ibility solution for area/volume light sources, which has not
been solved so far in real time. Another important issue we
want to study are dynamic scenes. Our optimizations of m

c© The Eurographics Association 2007.

D. Scherzer & S. Jeschke & M. Wimmer / Pixel-Correct Shadows Maps

Figure 6: Light space perspective shadow maps (top-left). Our new pixel correct shadow method (bottom-left). To the right both
methods with 3x3 PCF filtering to produce fake soft shadow borders. LispSM (top-right) and our pixel correct shadow method
below. Please note that not even PCF filtering can hide the projection aliasing artifacts and false inter-object shadows present
in the scene shadowed with LispSM.

distinguish only between a moving or a still observer. This
model would have to be adapted to include moving objects
and light sources.

References

[AL04] AILA T., LAINE S.: Alias-free shadow maps. In
Proceedings of Eurographics Symposium on Rendering
2004 (2004), Eurographics Association, pp. 161–166.

[Arv04] ARVO J.: Tiled shadow maps. In CGI ’04:
Proceedings of the Computer Graphics International
(CGI’04) (Washington, DC, USA, 2004), IEEE Computer
Society, pp. 240–247.

[BAS02] BRABEC S., ANNEN T., SEIDEL H.-P.: Practi-
cal shadow mapping. Journal of Graphics Tools: JGT 7,
4 (2002), 9–18.

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K.,
GREENBERG D. P.: Adaptive shadow maps. In SIG-
GRAPH 2001 Conference Proceedings (Aug. 2001), Fi-
ume E., (Ed.), Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 387–390.

[HBS03] HAVRAN V., BITTNER J., SEIDEL H.-P.: Ex-
ploiting temporal coherence in ray casted walkthroughs.

In SCCG ’03: Proceedings of the 19th spring confer-
ence on Computer graphics (New York, NY, USA, 2003),
ACM Press, pp. 149–155.

[NSI06] NEHAB D., SANDER P. V., ISIDORO J. R.: The
real-time reprojection cache. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Sketches (New York, NY, USA, 2006),
ACM Press, p. 185.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.:
Rendering antialiased shadows with depth maps. Stone
M. C., (Ed.), vol. 21, pp. 283–291.

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective
shadow maps. In Siggraph 2002 Conference Proceedings
(July 2002), vol. 21, 3, pp. 557–562.

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. Computer Graphics (SIGGRAPH ’78
Proceedings) 12, 3 (Aug. 1978), 270–274.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER

W.: Light space perspective shadow maps. In Proceedings
of Eurographics Symposium on Rendering 2004 (2004).

c© The Eurographics Association 2007.

