
To appear in a IEEE TCVG sponsored conference proceedings

Fitted Virtual Shadow Maps

Markus Giegl∗ Michael Wimmer∗

∗Vienna University of Technology

Figure 1: Left: Shadow map reparametrization techniques (lightspace perspective shadow maps is used here) alone cannot guarantee
subpixel accuracy for neither all light directions nor large scenes, even with the largest shadow map supported by the GPU. Right:
Fitted Virtual Shadow Maps allow the scene to be shadowed with subpixel accuracy.

ABSTRACT

Too little shadow map resolution and resulting undersampling arti-
facts, perspective and projection aliasing, have long been a funda-
mental problem of shadowing scenes with shadow mapping.

We present a new smart, real-time shadow mapping algorithm that
virtually increases the resolution of the shadow map beyond the
GPU hardware limit where needed. We first sample the scene from
the eye-point on the GPU to get the needed shadow map resolution
in different parts of the scene. We then process the resulting data on
the CPU and finally arrive at a hierarchical grid structure, which we
traverse in kd-tree fashion, shadowing the scene with shadow map
tiles where needed.

Shadow quality can be traded for speed through an intuitive param-
eter, with a homogenous quality reduction in the whole scene, down
to normal shadow mapping. This allows the algorithm to be used
on a wide range of hardware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: shadow, shadow map, large environments, realtime
shadowing

1 INTRODUCTION

Shadow mapping is a very appealing approach to employ rasteri-
zation to solve the first hit visibility problem and use this result to
calculate the direct light shadowing of a scene. This elegant ap-
proach has just one fundamental problem: The shadow map must
contain enough information to allow the visibility queries to be an-
swered with subpixel accuracy for a given frame buffer resolution,

∗{giegl|wimmer}@cg.tuwien.ac.at, 1040 Vienna, Austria

otherwise aliasing artifacts will be visible. If this information is not
contained in the shadow map, then all any algorithm can do is try
to mask these artifacts, e.g. by means of filtering.

Please see the introduction section in [8] for a definition of the two
types of shadow map aliasing, projection and perspective aliasing.

Aila et al [1] and Johnson et al [10] elegantly bypass the aliasing
problem altogether but depend on hardware extensions for realtime
performance which are not currently available.

A straightforward way to increase the information contained in a
uniform shadow map is to increase the resolution of the shadow
map texture. This becomes impractical very fast, due to its
quadratic increase in memory consumption (on current hardware
the maximum supported texture size, typically 4096× 4096 is the
limiting factor, even before running out of memory).

This paper presents an algorithm which runs on current graphics
hardware and increases the effective shadow map resolution avail-
able to shadow the scene, while avoiding the quadratic increase in
memory consumption.

From a practical point of view a common complaint that e.g. game
developers have with the popular reparametrization techniques is
that there is a large quality difference between the best and the worst
case (as also shown by Lloyd et al [12]). The presented algorithm
addresses this criticism and allows for the same shadow quality in
all cases, while being orthogonal to shadow map reparametrization
techniques and shadow map focusing. It can therefore be combined
with these techniques, and we have done so for Light Space Per-
spective Shadow Maps [19] together with shadow map focusing
[3].

1.1 Abbreviations

The following is a list of abbreviations used in this paper:

FVSMs: Fitted Virtual Shadow Maps, LiSPSM: Lightspace Per-
spective Shadow Maps [19], SM: Shadow Map, SMing: Shadow
Mapping, SM-Tile: Shadow Map Tile (see section 3), SMTMM:
Shadow Map Tile Mapping Map (see section 4).

1

To appear in a IEEE TCVG sponsored conference proceedings

2 PREVIOUS WORK

The two most important categories of shadow algorithms are
shadow volumes [5] and shadow mapping [18].

Most of the shadow map publications try to solve the problem of
aliasing artifacts. Percentage closer filtering [15] alleviates repro-
jection problems by sampling the shadow map. In Variance Shadow
Maps, Donelly et al [6] use the variance of the depth values to fur-
ther improve the shadow map sampling results. A number of papers
have tried to solve the perspective aliasing coming from the per-
spective view frustum projection. Originally pioneered by Stam-
minger and Drettakis [16], who try to remove perspective aliasing
by subjecting the shadow map to the same perspective transform as
the viewer, this idea was later refined by Martin and Tan [13] with
Trapezoidal Shadow Maps, Wimmer et al [19] with Light Space
Perspective Shadow Maps and Chong et al [4] with A Lixel for
Every Pixel. However, all shadow map reparametrization meth-
ods deal only with perspective aliasing. They cannot increase the
principal resolution of shadow maps, which would be necessary for
example to improve projection aliasing, or in cases where the scene
is simply too large for the SM resolution. Furthermore, they work
well only for the case that light and view direction are orthogonal. If
these directions are parallel, they have to revert to uniform shadow
mapping because the shadow map parametrization runs across the
whole screen, not from near to distant points. Recently Lloyd et al
[12] have studied the use of more than one shadow map applied to
the sides or slices of the view frustum together with reparametriza-
tion techniques intensively, with interesting results; all these ap-
proaches can however only deal with perspective aliasing, but can
do nothing to alleviate projection aliasing. The work presented in
this paper aims to increase the resolution of shadow maps regard-
less of the view frustum orientation or whether the artifacts come
from perspective or projection aliasing.

Another approach to solve the aliasing problem are adaptive
shadow maps [7] (see also section 4.8 below for a comparison with
Fitted Virtual Shadow Maps), where shadow maps are stored in a
hierarchical fashion in order to provide more resolution where it is
required due to different aliasing artifacts. However, the approach
requires multiple readbacks and does not map well to current graph-
ics hardware. Lefohn [11] has proposed an extension that makes
better use of the GPU, whereas Arvo [2] slices the light view to
increase the resolution of the SM.

Second depth shadow mapping [17] can be used to reduce problems
due to depth quantization and self occlusions. Brabec et al [3]
improve uniform shadow map quality by focusing the shadow map
to the intersection of the view frustum with the scene.

Recently Queried Virtual Shadow Maps [8] have used the occlusion
query mechanism of GPUs to adaptively refine the shadow map
in quadtree fashion based on counting the number of pixels that
changed in the shadow during the last refinement step.

An excellent overview of shadow mapping and shadow algorithms
in general can also be found in Möller and Haines’ Real-Time Ren-
dering book [14], as well as in [9].

3 VIRTUAL TILED SHADOW MAPPING

The following section explaining Virtual Tiled Shadow Mapping,
on which Fitted Virtual Shadow Mapping is based, is reproduced
from [8]. Virtual Tiled Shadow Mapping is a brute-force approach
for increasing the resolution of the shadow map beyond the maxi-
mum texture size supported by the hardware. The basic algorithm

works as follows:

1. Allocate the biggest shadow map texture supported by the
GPU. For example 40962.

2. Partition the shadow map along the shadow map x- and y-
axis into n×n (e.g. 16×16) equally-sized SM-tiles (each tile
using the full shadow map texture resolution of e.g. 40962

texels, i.e. the effective resolution of the full shadow map in
this example is (16∗4096)2 = 655362).

For each tile

(a) Render a shadow map into the shadow map texture
(overwriting the shadow map for the previous tile).

(b) Use it immediately to shadow (modulate) the part of the
scene which is covered by the current shadow map tile.

There are two ways to implement the loop over the tiles: multi-pass
shadowing and virtual deferred shadowing.

3.1 Multi-Pass Shadowing

One way to apply successive shadow map tiles to the scene is by
multi-pass rendering. In the first pass, the scene is rendered nor-
mally (with full shading and depth-writes enabled), with the first
shadow-map tile applied to it. For each subsequent shadow-map
tile, the scene is rendered again, but only shadow mapping using
the relevant tile is applied to the frame buffer. Pixels falling outside
the shadow map tile are suppressed. Depth writes and shading are
disabled and the depth comparison function is set to EQUAL in those
passes (depending on driver support, it can make sense to substitute
LESSEQUAL for EQUAL).

3.2 Deferred Shadowing

Multi-pass shadowing, although easy to implement, comes with a
significant performance overhead of rendering the whole scene sev-
eral times. To speed up the application of the shadow map tiles to
the scene, we use a variation of deferred shading we call “deferred
shadowing” where the shadowing is done using a linear depth buffer
of the scene instead of re-rasterizing the scene geometry and the
information needed to do the next shadowing pass, i.e., the next
shadow map tile, is created on the fly between the passes. The
scene is first rendered to a texture that stores eye-space depth, called
the “Eye-Space Depth Buffer”. Each subsequent tiled shadowing
pass can then read this texture and calculate the world-space posi-
tion of the visible surface at each pixel using the screen coordinates
and the depth stored in the Eye-Space Depth Buffer. The world-
space position is then shadowed using the shadow map tile as be-
fore. Note that storing the unmodified eye-space z-coordinate in the
Eye-Space Depth Buffer guarantees that the shadow map lookup
produces the same results as if the original scene objects were used
for shadow mapping. This is important because any other method
of obtaining the z-value, e.g., using window-space z-coordinates
(which is highly non-linear) or a fixed-precision w-buffer (if it were
still supported on current hardware) would inevitably lead to image
artifacts. In detail this works as follows:

1. In a first pass, render the scene as described above, but into
a 4 component 32bit floating point render target. In the pixel
shader, store the unmodified eye-space z-coordinate into the
α-component. This component forms the Eye-Space Depth
Buffer (however for simplicity, we refer to the whole 4 com-
ponent target as the Eye-Space Depth Buffer). The color of

2

To appear in a IEEE TCVG sponsored conference proceedings

each pixel in the object when lit by this light (ignoring shad-
owing) is written to the RGB channels.

2. For each shadow-map tile

(a) Render a shadow map into the shadow map texture as
with Multi-Pass Shadow Mapping.

(b) Instead of rendering the geometry for the whole scene
again, render a full-screen quad with the Eye-Space
Depth Buffer bound as a texture.

(c) In the pixel shader for each fragment, look up the eye-
space depth of the fragment in the Eye-Space Depth
Buffer’s alpha-channel and unproject it into world space
(see below). Using the unprojected fragment, calculate
the shadowing term. Then modulate the already shaded
RGB value from the Eye-Space Depth Buffer with the
shadowing term.

(d) The resulting shaded and possibly shadowed fragment
is then written to the frame buffer.

The pixel shader operations in the individual passes are quite
straightforward, with the exception of the unproject operation. Un-
like a standard viewport unprojection, which transforms from win-
dow (xw,yw,zw)-coordinates to eyespace (xe,ye,ze)-coordinates,
this operation has to deduce eye-space (xe,ye,ze) from (xw,yw)
(given as texture coordinates, i.e. running from 0 to 1) and ze. This
can be done using the following matrix transform:

 xe
ye
ze

 = ze ·

 1
ax

0 − bx
ax

0 1
ay

− by
ay

0 0 1

·

 2 0 1
0 2 −1
0 0 1

·

 xw
yw
1

(1)

where the parameters ax, ay, bx, by in the first matrix should be
taken from the projection matrix P supplied to the graphics API:

P =

 ax 0 bx 0
0 ay by 0
0 0
0 0 1 0

4 FITTED VIRTUAL SHADOW MAPPING

4.1 Fitted Virtual Shadow Maps: Smart Refinement Where
Necessary

Like Queried Virtual Shadow Maps, Fitted Virtual Shadow Maps
aim to refine the shadow map only where needed. The algorithm
is also designed to be fast enough to do the full refinement each
frame. Instead of counting the number of changed shadow pixels
in the last refinement step, and use this metric to decide whether
to further refine a SM-tile into 4 sub-tiles, FVSMs try to discern
beforehand what SM-resolution is needed where in the scene.

The following gives an overview over the FVSM algorithm (please
see the following sections for details):

1. Render the view-space linear depth information of the scene
into the Eye-Space Depth Buffer, as above under Virtual Tiled
Shadow Mapping.

2. Use the Eye-Space Depth Buffer bound to a fragment-shader
to create what we call the “Shadow Map Tile Mapping

Figure 3: Shadow Map Tile Mapping Map (SMTMM) creation.

Map” (“SMTMM”; see Figure 3). The SMTMM contains
information for each pixel in the scene about 1) where the
pixel will query the shadow map, when inquiring whether it
lies in the shadow, and 2) what resolution the shadow map
would require along each SM-axis at this position to supply
subpixel accuracy when answering the shadow map query.

3. Transfer the SMTMM to CPU memory and process it to create
the “Shadow Map Tile Grid”. The Shadow Map Tile Grid
contains information about what resolution each SM-tile of
a virtual n× n Tiled SM would need along each SM-axis to
supply subpixel accuracy when used to shadow the scene.

4. Construct the “Shadow Map Tile Grid Pyramid” above the
Shadow Map Tile Grid, by pulling up the maximum needed
SM-tile resolution along each axis.

5. Traverse the Shadow Map Tile Grid Pyramid recursively top
down, building an implicit kd-tree of SM-tiles. When the res-
olution requirement of a such created SM-tile can be satisfied
along both SM-axes with a SM-tile-texture with dimensions
supported by the GPU, the corresponding SM-tile shadow
map is created and immediately used to shadow its part of
the scene as under Deferred Shadowing (section 3.2) above.

The following explains the steps in more detail and in section 4.10
introduces an important optimization to the basic algorithm:

4.2 Virtual Shadow Mapping Preparation: Eye-Space Depth
Buffer

First, we render the view-space depth information of the scene into
the Eye-Space Depth Buffer, as above under 3.2. For efficiency
reasons we again use a 4× f loat RGBA-buffer and at the same time
render into it the unshadowed RGB color of the scene, so we do not
have to rerender the scene (Note: If an application is using depth-
first rendering, i.e. starting with a Z-only pass, then a 1× f loat
buffer should be used for the Eye-Space Depth Buffer for the Z-
only pass, with a conventional 1/z-depth buffer attached).

4.3 Shadow Map Tile Mapping Map Creation

The “Shadow Map Tile Mapping Map” (“SMTMM”) is a 4×
byte buffer. One can think of it as being laid on top of the frame

3

To appear in a IEEE TCVG sponsored conference proceedings

(a) 40962 normal SM (b) FVSM with 32×32 max SM-tiles

Figure 2: Quality comparison at end of test path through winter forest (LiSPSM SM reparametrization active in all screenshots).

buffer, normally having less resolution than the frame buffer, and
containing information about the shadow map resolution needs of
the scene in the area that each SMTMM “pixel” covers. Figure 3
gives a graphical representation of the SMTMM.

The first two byte values in each SMTMM entry (“pixel”) contain
information about the position where the center of the frame buffer
rectangle will query the shadow map; the last two byte entries rep-
resent the resolution needed along each SM-axis at the position
in the shadow map. We use byte values for the entries, to keep
the read back operation and the CPU processing in the next step
fast; for the same reason, the SMTMM is normally chosen to have
lower resolution than the frame buffer (see the results section for a
practical range of values). Using byte values for the shadow map
gives us information about the needed SM-resolution discretized to
a 256×256 grid of SM-tiles; this is no restriction in practice, since
one finds that for 40962 SM-tile-textures, a maximum refinement
along each SM-axis of 16 to 32 (i.e. max 32× 32 SM-tiles) gives
subpixel accuracy even for large scenes.

The position in the shadow map is calculated in the pixel shader
by transforming the screen-space coordinates (xw,yw) of the pixel
(passed to the pixel shader as texture coordinates) and the eye-space
z (=depth) entry ze, read from the Eye-Space Depth Buffer, into eye-
space (xe,ye,ze) using the matrix given in section 3.2 (formula (1));
from there it is transformed into the light space of the shadow map.
Since the coordinates will already be in the range [0,1], simply out-
putting them to the 4× byte SMTMM surface will automatically
lead to conversion into [0,255] byte range by the graphics hard-
ware.

The resolution requirement along each SM-axis is approximated as
follows in the pixel shader: First we calculate the (x,y)-coordinates
of the neighboring pixels in x- and y-direction in [0,1]2 (i.e. the
left/right and upper/lower neighbors position in texture coordinates)
from the texture coordinate of the current pixel passed to the pixel-
shader. We then use these texture coordinate to look up the corre-
sponding view-space depth values in the Eye-Space Depth Buffer;
from these, we calculate the smaller absolute ∆z along the x- and
y-axis, ∆zx and ∆zy. We then use these ∆z values together with
the x,y-coodinates of the neighboring pixels to construct an ap-
proximate rectangle representing the current pixel in space. Then
we project this rectangle into SM-space, and calculate a SM-axis-
aligned bounding box around it. The half length of each of this
bounding box’s extent, ∆sm axis, with sm axis = {0,1}, is then used
as the base measure for the required SM-resolution along each SM-
axis at this point.

To then quantize the needed SM-resolution along the SM-axis into

a byte value, we use the following formula:
−log2(round(∆sm axis + f loat2(0.5,0.5))/256
(i.e. we output it as a logarithmic value normalized to the range
[0,1], which the the graphics hardware again automatically converts
to byte range).

The full SMTMM creation pixel shader can be found in Appendix
A.

4.4 Shadow Map Tile Grid Creation

To create the “Shadow Map Tile Grid” (“SMTG”) we then read
back the SMTMM to CPU memory. In practice it suffices for
the SMTMM to have lower resolution than the frame buffer, e.g.
256× 256, which makes the readback and CPU processing fast
(note that the equality of the SMTMM dimension of 256 in this
example and the number 256 of distinct values in the SMTMM en-
tries is coincidental).

What we want is a n× n SM-tile-grid structure, with each grid
cell containing the needed resolution along each SM-axis and the
screen space bounding rectangle for each SM-tile, an axis aligned
rectangle around the pixels on screen that are affected by the SM-
tile. As in brute force n×n Virtual Tiled Shadow Mapping above,
n is the maximum number of SM-slices along each SM-axis we
would like to allow; a typical value for n would be 16 or 32, corre-
sponding to 256 or 1024 SM tiles for Virtual Tiled Shadow Maps.

The random memory access ability of the CPU is well suited for
this task; after having read back the SMTMM, we lock the surface
and process each pixel entry: We use the stored information about
the SM-tile position to access its corresponding SM-tile-grid cell,
and update 1) its needed SM-resolution entries along each SM-axis
(minimally by maximizing the existing value with the entries in the
SMTMM; see below for details) and 2) its screen space bounding
rectangle (through extending it to enclose the pixel position of the
current pixel in the SMTMM).

Since the SMTMM generally is chosen to have a much larger reso-
lution than the SM-tile-grid, e.g. 256 entries per axis compared to
e.g. 32, data from several SMTMM entries will be accumulated in
the same SM-tile-grid cell.

Minimally it would suffice to only record the maximum needed res-
olution along each SM-axis in each grid cell; however, to be able
to allow for discarding very few pixels requiring a large resolution
later on (which can come from e.g. a very small area on screen
having an orientation which leads to large projection aliasing), we

4

To appear in a IEEE TCVG sponsored conference proceedings

actually count the number of pixels in each grid cell requiring a cer-
tain resolution. We use fixed size arrays at each SM-tile-grid-cell,
to hold the pixel count statistics. To allow us to use fixed size ar-
rays and keep them small, we count the number of pixels below a
resolution η0 and above threshold resolution η1 in one array entry
respectively, and the number of pixels needing a resolution in be-
tween each in their own entry; this is to keep cache locality high,
since we are not interested in the detailed statistics of pixels with
very small resolution requirements, because evidently they are easy
to fulfill, and hypothetical pixels with extremely high resolution re-
quirements, which do not occur in practice. See the results section
for practical values for η0 and η1.

The following pseudocode illustrates the basic version of the
Shadow Map Tile Grid Creation:

// smtg ... instance of the SMTG

// shift ... shift-converts from the SMTMM SM-coordinates

// entries to SMTG ones (e.g. [0,255] => [0,31])

const int shift = 256/smtg.n

// smtmm ... instance of the SMTMM

// smtmm.n ... extent of SMTMM along both axes

for ix_smtmm = 0 to smtmm.n - 1

for iy_smtmm = 0 to smtmm.n - 1

SMTMM_Cell c_smtmm = smtmm(ix_smtmm,iy_smtmm)

SMTG_Cell c_smtg =

smtg(smtmm.ix_sm >> shift,smtmm.iy_sm >> shift)

// Update the screen-space, axis aligned bounding box

// around the SM-tile

c_smtg.abb_screen.ExpandToIncludePoint(

ix_smtmm/smtmm.n,iy_smtmm/smtmm.n

)

// Update the maximum needed SM-resolution

c_smtg.sm_res_x = MAX(c_smtg.sm_res_x,c_smtmm.sm_res_x)

c_smtg.sm_res_y = MAX(c_smtg.sm_res_y,c_smtmm.sm_res_y)

4.5 Shadow Map Tile Grid Pyramid Creation

After we have filled the SM-tile-grid with data from the SMTMM,
we proceed by building a pyramid (“Shadow Map Tile Grid Pyra-
mid”, “SMTGP”) of SM-tile grids on top of it, where each succes-
sive grid has halved dimensions of its predecessor and the needed
resolution along each SM-axis is the maximum of the correspond-
ing 2× 2 grid cells in the predecessor grid; i.e. we pull up the
needed resolution along each SM-axis by replacing 2×2 cells with
one cell in the next smaller grid, containing the maximum value of
each of the 4 cells and the screen space bounding rectangle around
all 4 bounding rectangles.

Note that the needed resolution along each SM-axis refers to a hy-
pothetical, focused shadow map needed to shadow the whole scene
with subpixel accuracy; replacing the 2× 2 = 4 values with their
maximum in the parent cell in the next higher Shadow Map Tile
Grid Pyramid level is therefore not a heuristic, but a mathematically
exact operation (The 1× 1 top level grid then contains the resolu-
tion needs for this hypothetical single shadow map which would
give subpixel accuracy for the current frame buffer dimensions; as
can be seen in the Results section below, the resolution require-
ments become ≥ 131072 even for medium sized scenes, 16× larger
than the maximum texture dimension of 8192 currently supported
in hardware; it would require more than 64 GB to store).

The Shadow Map Tile Grid Pyramid Creation in pseudocode:

// smtg ... instance of the initial SMTG

// smtg.n ... extent of SMTG along both axes

// i_pyramid ... SMTGP index

const int i_pyramid = log2(smtg.n)

while(i_pyramid > 0)

// smtgp ... instance of the SMTGP

smtgp(i_pyramid) = smtg

for ix = 0 to smtgp(i_pyramid).n - 1

for iy = 0 to smtgp(i_pyramid).n - 1

SMTGP_Grid_Cell c_curr = smtgp(i)(ix,iy)

SMTGP_Grid_Cell c_parent = smtgp(i-1)(ix >> 1,iy >> 1)

// Update the screen-space, axis aligned bounding box

// around the parent SM-tile

c_parent.abb_screen.ExpandToIncludeABB(c_curr.abb_screen)

// Update the maximum needed SM-resolution

c_parent.sm_res_x = MAX(c_parent.sm_res_x,c_curr.sm_res_x)

c_parent.sm_res_y = MAX(c_parent.sm_res_y,c_curr.sm_res_y)

i_pyramid = i_pyramid >> 1

4.6 Shadow Map Tile Grid Pyramid Traversal

Finally we traverse the grid pyramid top down, building an implicit
kd-tree as we recursively traverse it, as follows: If the resolution re-
quirement of the SM-tile-grid cell along at least one axis cannot be
satisfied with a SM-tile-texture with dimensions supported by the
GPU (e.g. on current GPUs typically: required SM-dimension >
4096), we split it symmetrically along one or both SM-axis into 2
or 4 subcells. We split into 2 subcells if only one axis has SM res-
olution requirements which cannot be fulfilled, otherwise we split
into 4 subcells. Otherwise we use Deferred Shadowing (see section
3.2), and immediately create the SM-tile with the required resolu-
tion along each axis and shadow the “Shadow Result Texture” (see
next paragraph) with it, using the Eye-Space Depth Buffer to get
the depth values of the scene, as described in section 3.2.

The “Shadow Result Texture” is a 1×byte texture with the same
dimensions as the frame buffer, into which we write only the results
of the shadowing. This makes the application of the SM-tiles faster,
since we write to a surface with only one byte entry per pixel; it also
allows us to avoid any potential problems with slightly overlapping
SM-tiles, since shadowing results of a tile which is applied later can
simply overwrite previous results. (The Shadow Result Texture can
also be used to apply postprocessing effects to the shadow, such as
screen space blurring depending on distance to the shadow caster.)

Pseudocode for the traversal of the Shadow Map Tile Grid Pyramid:

// SMT ... SM-tile instance

// P ... SMTGP pos index + pyramid index

// smtq ... queue holding SMT

smtq.push(SMT(P(0,0),P(0,0)))

while(!smtq.empty())

SMT smt = smtq.pop()

int ip_x = smt.ip_x, int ip_y = smt.ip_y

int sx = max(0,ip_y-ip_x), int sy = max(0,ip_x-ip_y)

Rect rect(ix << sx,iy << sy, ((ix+1) << sx)-1,((iy+1) << sy)-1)

// ex and ey are 0 for no further refinement, 1 otherwise

int ex =

Refine(smtgp(MAX(ip_x,ip_y)).MaxSmResInRect(rect).sm_res_x,

ip_x,framebuffer.nx)

int ey =

Refine(smtgp(MAX(ip_x,ip_y)).MaxSmResInRect(rect).sm_res_y,

ip_y,framebuffer.ny)

if(ex > 0 || ey > 0) // refine this SM-tile further

int ip_x_sub = smt.ix + ex, int ip_y_sub = smt.iy + ey;

int ix_sub = smt.ix << ex, int iy_sub = smt.iy << ey;

for diy=0 to ey

for dix=0 to ex

smtq.push(SMT(P(ix_sub+dix,ip_x_sub),P(iy_sub+diy,ip_y_sub)))

else // do not refine this SM-tile further

ShadowShadowResultTextureWithSmTile(smt)

with

// sm ... SM-texture

Refine(sm_res_needed,i_refinement,framebuffer_nx_or_ny) {

return sm_res_needed > i_refinement -

5

To appear in a IEEE TCVG sponsored conference proceedings

log2(sm.n) - round(log2(framebuffer_nx_or_ny/smtmm.n)+0.5)

}

4.7 Apply Shadow to Scene

In a final step we modulate the scene RGB from the Eye-Space
Depth Buffer with the Shadow Result Texture, and write the result-
ing shadowed scene into the frame buffer.

The whole algorithm not only leads to a greatly reduced number
of SM-tiles that need to be created compared to the brute force
approach, but also uses smaller and rectangular SM-tile textures
for farther away SM-tiles. It therefore makes much higher quality
shadow maps possible in realtime. Please see the Results section
for a quantitative comparison.

4.8 Comparison with Adaptive Shadow Maps

One previously published shadow mapping technique that looks
similar to our approach, is “Adaptive Shadow Maps” [7], and its
GPU-based implementation, “Dynamic Adaptive Shadow Maps on
Graphics Hardware” [11]. In contrast to Adaptive Shadow Maps
our algorithm is built around performing the complete refinement
procedure for each frame, making it well suited for dynamic scenes.
Adaptive Shadow Maps on the other hand, have to cache the re-
cently used shadow tiles for best performance - an approach which
is not suited to dynamic scenes, because, whether the light direction
changes or objects in the scene move, this invariably invalidates the
cached shadow maps (see the large performance drop for this case
in [11], even though the test scene consists only of a single tree on
a small quad). This also means that we do not need video memory
for cached tiles. Our algorithm has the added advantage that the
shadow map can be “focused” [3] on the relevant part of the scene
each frame.

4.9 Quality vs Performance Parameter

Fitted Virtual Shadow Maps allow for the introduction of a very in-
tuitive quality vs performance parameter ξ : Subtracting an integer
number ξ from the logarithmic resolution requirement value com-
ing from the SMTMM, when deciding whether to further refine a
SM-tile, allows us to intuitively influence the quality of the result-
ing shadow in the scene; the larger ξ , the less tiles will be created
and the better the performance will be. This allows the algorithm
to be tuned to a wide range of hardware. Note that the influence of
the parameter is smooth, in the sense that it influences the shadow
quality of the whole scene in the same way. If ξ is chosen to be
large enough, so that only one SM-tile is created, then the shadow
quality of Fitted Virtual Shadow Mapping is the same as normal
shadow mapping.

4.10 Shadow Map Tile Texture Size Optimization

The basic FVSM algorithm refines the shadow map, until the re-
quired resolution of each SM-tile along each SM-axis is small
enough that it can be satisfied with the maximum SM texture size
which the GPU can handle. In practice, the resolution needs along
both SM-tile axis do seldom require a quadratic SM-texture with
maximum resolution. This can be understood from the fact, that
there will always be perspective shortening in the scene, i.e. the
pixels farther away from the eye-point will always require less SM-
resolution (Note that due to the splitting of the SM into tiles this is

always the case for farther away tiles, independent of the view di-
rection relative to the light direction, contrary to SM reparametriza-
tion techniques, which can only profit from the perspective short-
ening for light directions which are not parallel or antiparallel to
the view direction); Projection aliasing can of course counteract
this, but even then, the projection aliasing does not normally influ-
ence both SM-axis at the same time. This leads to the optimization,
that, instead of using a quadratic maximum sized texture for all
SM-tiles, we create a rectangular SM according to the resolution
requirements along each axis. There are 3 different ways to do this:

1. Render into a sub-rectangle of the same quadratic, maximum
sized texture.

2. Render into a sub-rectangle of a series of quadratic power-of-
two shadow map textures, where each texture in the series has
halved dimensions relative to its predecessor.

3. Render into shadow map textures with the exact needed di-
mensions (= resolution) along each SM-axis.

The memory requirements of the 4 different approaches are as fol-
lows (with tmax being the maximum texture dimension, and w and
h being the needed minimum width and height SM texture dimen-
sions to satisfy the SM-tile resolution requirements):

SM dimension mem usage for tmax = 4096
tmax

2 1 64 MB
w×h sub-rect of tmax

2 1 64 MB
w×h sub-rect of max(w,h)2 4/3 85 MB

w×h 2 ·4/3 171 MB

This can be seen, by observing that the for optimiza-
tion 2, the required SM textures have dimensions:
{tmax

2,(1
2 tmax)2,(1

4 tmax)2, . . .} leading to the series (with
tmax

2 pulled out) ∑1+ 1
4 + 1

16 + . . . = ∑n=0 (1
4)n ≤ 1

1− 1
4

= 4
3 .

For optimization 3, we arrive at the series (tmax
2 pulled out again)

∑(1 ·1+ 1
2 ·1+1 · 1

2)+(1
2 ·

1
2 +(1

2 ·
1
2) · 1

2 + 1
2 · (

1
2 ·

1
2))+ . . . = 2 ·

∑1+ 1
4 + 1

16 + . . . = 2 · 4
3 .

The effective memory consumption given for tmax = 4096 is for
1× f loat SM textures.

Evidently what we want is a combination of small GPU memory
consumption together with good performance; please see the Re-
sults section below for a performance comparison of the differ-
ent approaches and a resulting recommendation which optimization
variation to use in practice.

4.11 Handling Semitransparent Objects

When using deferred shadowing semitransparent objects must be
treated separately, due to the fact that only the depth entry of the
foremost opaque pixel is stored in the Eye-Space Depth Buffer.

A trivial solution is evidently to render the semitransparent objects
after having shadowed the scene without shadowing them; this will
give them a (slight) glow effect, which might or might not be ac-
ceptable.

A second approach would be to again render the semitransparent
objects after having shadowed the scene, shadowing them with with
conventional shadow mapping (i.e. using a single shadow map). In
practice, semitransparent objects are usually implemented to only

6

To appear in a IEEE TCVG sponsored conference proceedings

receive shadows, but not cast them, due to the increased complex-
ity of the shadowing problem when semitransparent objects are in-
volved. The fact that in this case no self shadowing can occur makes
this approach practical. Also note that the shadow (and therefore
any artifacts) will be less visible, the more transparent the object is.

Less practical but more accurate solutions would work along the
line to render the semitransparent objects to a separate buffer, stor-
ing the color and linear depth of the foremost semitransparent ob-
ject. One could then use this buffer later on to also shadow the
foremost semitransparent object correctly. Note that in this case
one also needs double the entries int the SMTMM.

Finally, a completely different approach would be to not use De-
ferred Shadowing, but Multi Pass Shadowing (see section 3.1) to
apply the SM-tiles to the scene, sped up by restricting the part of
the scene that needs to be rerendered to the screen space extent (see
4.5 above) of each SM-tile. In this case the semitransparent objects
can be rendered and shadowed (with the SM-tile) as if only a single
shadow map was being used.

5 RESULTS

Figure 4: Performance comparison between normal, Virtual Tiled
and Fitted Virtual SMing along path in forest test scene.

Figure 5: FVSM performance comparison between different SM-
tile creation modes.

Unless otherwise noted, all results were created on a NVidia
GeForce 8800GTS with 640 MB of RAM and a Pentium4 3.4 GHz
(2 GB RAM).

The aim of our work is to research the applicability and improve
the quality of dynamic shadow map shadows when applied to large

Figure 6: FVSM SM-tile application to shadow result texture:
Comparison between using a fullscreen rectangle and using the SM-
tile screen space bounding rectangle.

to medium sized scenes. In practice, the resolution of shadow maps
currently supported in hardware suffices to create shadows for light
sources with a small area of influence (spotlight located near the
ground with a small spread angle, point light lighting a small room,
etc), especially when combined with shadow map reparametriza-
tion. In addition, evidently the render costs of an algorithm such as
FVSMs, although being much faster than brute force Virtual Tiled
SMing, are currently too high to apply it to several light sources
(see figure 4 for a frametime ccomparsion).

Our test scene of broad-leaf trees on a hilly terrain was chosen ac-
cordingly: It is a medium sized outdoor scene, which makes it of
practical interest, since dynamically shadowing outdoor scenes in
high quality continues to be a challenge. It will in many cases be
lit by the sun, i.e. a single light source which can be modeled by a
directional light or far away spotlight, and which can therefore be
shadowed using a single shadow map (preferably of a very high res-
olution). It also lends itself to be efficiently modeled and rendered
using alpha textured geometry, and can therefore not be shadowed
e.g. by shadow volumes; in our case the fence and the leaves on the
trees are alpha textured quads (this could be extended to e.g. using
billboards or billboard clouds for farther away trees). Additionally,
animating the direction of the sunlight turns it into a fully dynamic
scene from the point of view of shadowing it (Note that even if
the scene itself is completely static, any change in the light posi-
tion, direction etc would result in invalidating any cached shadow
map information, making it unsuited for algorithms that are built
on caching shadow map information from previous frames to work
efficiently).

Figure 1 shows a screenshot from our test scene; it compares the
quality of normal shadow mapping (40962 shadow map) with Fit-
ted Virtual Shadow Maps (lightspace perspective shadow maps
(LiSPSM) active in both cases).

Figure 4 shows frame time curves from a path through a for-
est scene with 105 triangles rendered into a 1024× 1024 frame
buffer (you can download the videos of the flythrough along the
path at http://www.cg.tuwien.ac.at/research/vr/fvsm). The upper-
most curve depicts brute force Virtual Tiled SMing, using 16× 16
40962 shadow maps; FVSM show Fitted Virtual SMs with adaptive
SM-tile shadow map textures sizes, 32×32 maximum refinement.
The 1×1 SM-curve finally gives the frame times for conventional
SMing using a 40962 shadow map texture (leading to greatly re-
duced shadow quality). LiSPSM [19] was active for all renderings.
Figure 2 shows screenshots at the end of the path through the forest
scene (the full path can be viewed in the ”Winter Forest Frametime
Curve Path” folder in the accompanying media).

7

To appear in a IEEE TCVG sponsored conference proceedings

Figure 5 shows a performance comparison (along the same path in
the scene) between different FVSM SM-tile creation modes (see
section 4.10). The important thing one can see is, that this opti-
mization smoothes the frametime peaks, i.e. it improves the worst
case performance of the algorithm. One can also see that each of
the SM-tile creation modes is faster than its predecessor. Since the
memory consumption of the 3rd scheme relative to the first two is
4/3 (i.e. it consumes only one third more memory), in practice
rendering to a sub-rectangle of a series of quadratic power-of-two
shadow map textures is the best compromise between performance
and memory consumption in most cases.

Figure 6 compares the performance of applying the SM-tiles to
the shadow result texture using a fullscreen quad or the screen
space bounding rectangle around each respective SM-tile (see sec-
tion 4.5). Note that again the frametime peak at around 3.5s is
smoothed, improving the worst case performance of the algorithm
by around 25%.

For a 10242 frame buffer we found that a 2562 SMTMM gave good
results, while at the same time keeping the SMTMM creation- and
processing overhead low.

For the detailed SM-tile-required-resolution-statistics parameters
η0 and η1, we have found that η0 = 17 and η1 = 22 work well
in practice.

Figure 7 shows the influence of the quality vs performance parame-
ter ξ for ξ = 0, . . . ,5, where ξ = 5 gives equivalent shadow quality
to normal shadow mapping. One can see that the shadow quality
decreases homogenous in the whole scene.

We would also like to address the implementation problem of vis-
ible SM-tile boundaries in the resulting shadow due to precision
issues (note that there is no other source for visible boundaries,
since the SM-tiles are generated by the algorithm as to provide sub-
pixel accuracy): This is easy to fix, by letting the SM-tiles over-
lap slightly; note that due to the fact that the shadowing results are
accumulated in the shadow result texture first, before being com-
bined with the scene color, overwriting previous shadow values
from other SM-tiles can be done without any problem.

The absence or presence of undersampling artifacts when using
shadow mapping with focusing can be best seen in motion, so
please take a look at the accompanying videos and screenshots
found at http://www.cg.tuwien.ac.at/research/vr/fvsm.

6 CONCLUSION

We have introduced Fitted Virtual Shadow Maps, a new smart
shadow map algorithm which allows for the efficient shadowing
of large scenes without undersampling artifacts, while at the same
time making use of previous shadow map improvements, such as
shadow map focusing and shadow map reparametrization tech-
niques. Virtual Shadow Mapping allows the algorithm to bypass
the memory cost and texture size limits of current GPUs. Instead of
brute force Virtual Tiled Shadow Mapping, Fitted Virtual Shadow
Maps employ a combination of GPU and CPU processing to cre-
ate a map, which contains information about what resolution would
be required where in a shadow map. This leads to an performance
increase of at least an order of magnitude over the brute force ap-
proach, while still greatly reducing or even removing perspective
and projection aliasing. The algorithm can be tuned with several
parameters according to the quality requirements of the scene; most
importantly the shadow quality can be uniformly reduced down to
normal shadow mapping by use of a very intuitive quality-vs-speed
parameter.

REFERENCES

[1] Timo Aila and Samuli Laine. Alias-free shadow maps. In Proc. Euro-
graphics Symposium on Rendering 2004, pages 161–166, 2004.

[2] Jukka Arvo. Tiled shadow maps. In Proc. Computer Graphics Inter-
national 2004, pages 240–247, 2004.

[3] Stefan Brabec, Thomas Annen, and Hans-Peter Seidel. Practical
shadow mapping. Journal of Graphics Tools, 7(4):9–18, 2002.

[4] H. Chong and S. J. Gortler. A lixel for every pixel. In Proceedings of
Eurographics Symposium on Rendering 2004, 2004.

[5] Franklin C. Crow. Shadow algorithms for computer graphics. Com-
puter Graphics (Proc. ACM SIGGRAPH 77), 11(2):242–248, 1977.

[6] William Donnelly and Andrew Lauritzen. Variance shadow maps.
In SI3D ’06: Proceedings of the 2006 symposium on Interactive 3D
graphics and games, pages 161–165, New York, NY, USA, 2006.
ACM Press.

[7] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P.
Greenberg. Adaptive shadow maps. In Proc. ACM SIGGRAPH 2001,
pages 387–390, 2001.

[8] Markus Giegl and Michael Wimmer. Queried virtual shadow maps. In
Proceedings of the 2007 Symposium on Interactive 3D Graphics and
Games. ACM Press, 2007.

[9] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and
François Sillion. A survey of real-time soft shadows algorithms. In
Eurographics State-of-the-Art Reports, 2003.

[10] Gregory S. Johnson, Juhyun Lee, Christopher A. Burns, and
William R. Mark. The irregular z-buffer: Hardware acceleration for
irregular data structures. ACM Trans. Graph., 24(4):1462–1482, 2005.

[11] Aaron Lefohn, Shubhabrata Sengupta, Joe M. Kniss, Robert Strzodka,
and John D. Owens. Dynamic adaptive shadow maps on graphics
hardware. In ACM SIGGRAPH 2005 Sketches, 2005.

[12] Brandon Lloyd, David Tuft, Sung-eui Yoon, and Dinesh Manocha.
Warping and partitioning for low error shadow maps. In Proceedings
of the Eurographics Symposium on Rendering 2006, pages 215–226.
Eurographics Association, 2006.

[13] T. Martin and T.-S. Tan. Anti-aliasing and continuity with trapezoidal
shadow maps. In Proc. Eurographics Symposium on Rendering 2004,
pages 153–160, 2004.

[14] Tomas Möller and Eric Haines. Real-Time Rendering, Second Edition.
A. K. Peters Limited, 2002. ISBN 1568811829.

[15] William T. Reeves, David H. Salesin, and Robert L. Cook. Render-
ing antialiased shadows with depth maps. Computer Graphics (Proc.
ACM SIGGRAPH 87), 21(4):283–291, 1987.

[16] Marc Stamminger and George Drettakis. Perspective shadow maps.
ACM Transactions on Graphics (Proc. ACM SIGGRAPH 2002),
21(3):557–562, 2002.

[17] Yulan Wang and Steven Molnar. Second-depth shadow mapping.
Technical Report TR94-019, University of North Carolina at Chapel
Hill, 1994.

[18] Lance Williams. Casting curved shadows on curved surfaces. Com-
puter Graphics (Proc. ACM SIGGRAPH 78), 12(3):270–274, 1978.

[19] Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. Light
space perspective shadow maps. In Proc. Eurographics Symposium
on Rendering 2004, pages 143–151, 2004.

8

To appear in a IEEE TCVG sponsored conference proceedings

(a) 40962 normal SM (b) FVSM, ξ = 0

(c) FVSM, ξ = 1 (d) FVSM, ξ = 2

(e) FVSM, ξ = 3 (f) FVSM, ξ = 4

(g) FVSM, ξ = 5

Figure 7: Influence of quality vs performance parameter ξ ; ξ = 5 gives 1 SM-tile and is therefore equivalent to normal SMing. (LiSPSM
SM reparametrization was active in all cases). Performance in frames per second can be observed in the upper right corner, respectively.

9

To appear in a IEEE TCVG sponsored conference proceedings

A APPENDIX: SMTMM CREATION PIXEL SHADER

Ps_OUT PsCreateShadowMapTileMapping(Ps_IN IN)

{

Ps_OUT OUT;

// texture coordinate of center of current pixel

float2 tc_pixel_center = IN.v2_tc.xy;

// texture coordinates of right,left,upper and lower neighbor of current pixel, clamped to rendertarget extent

float2 tc_pixel_neighbor_right =

float2(clamp(tc_pixel_center.x + rendertarget_nr_pixel_inv.x, 0, 1), tc_pixel_center.y);

float2 tc_pixel_neighbor_left =

float2(clamp(tc_pixel_center.x - rendertarget_nr_pixel_inv.x, 0, 1), tc_pixel_center.y);

float2 tc_pixel_neighbor_upper =

float2(tc_pixel_center.x, clamp(tc_pixel_center.y + rendertarget_nr_pixel_inv.y, 0, 1));

float2 tc_pixel_neighbor_lower =

float2(tc_pixel_center.x, clamp(tc_pixel_center.y - rendertarget_nr_pixel_inv.y, 0, 1));

// read viewspace z for current pixel from Eye-Space Depth Buffer

float z_view_center = tex2D(tex_shadow_depth_buffer, tc_pixel_center).w;

float2 v2_dz_view_use = float2(

sm_tile_mapping_pick_smaller_dz(z_view_center,tc_pixel_neighbor_left,tc_pixel_neighbor_right),

sm_tile_mapping_pick_smaller_dz(z_view_center,tc_pixel_neighbor_lower,tc_pixel_neighbor_upper)

);

// pos of left neighbor of current pixel in the shadowmap

// ScreenspaceToShadowmapCoordinatesAndLightspaceDepth uses the matrix from section "Deferred Shadowing" to transform to eye-space.

float3 pos_sm_left = ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_neighbor_left.x, tc_pixel_center.y, z_view_center - v2_dz_view_use.x

);

// pos of right neighbor of current pixel in the shadowmap

float3 pos_sm_right = ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_neighbor_right.x, tc_pixel_center.y, z_view_center + v2_dz_view_use.x

);

// pos of lower neighbor of current pixel in the shadowmap

float3 pos_sm_lower = ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_center.x, tc_pixel_neighbor_lower.y, z_view_center - v2_dz_view_use.y

);

// pos of upper neighbor of current pixel in the shadowmap

float3 pos_sm_upper = ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_center.x, tc_pixel_neighbor_upper.y, z_view_center + v2_dz_view_use.y

);

float2 pos_sm_max = Max(pos_sm_left.xy,pos_sm_right.xy,pos_sm_lower.xy,pos_sm_upper.xy);

float2 pos_sm_min = Min(pos_sm_left.xy,pos_sm_right.xy,pos_sm_lower.xy,pos_sm_upper.xy);

// Approximate extent of the current pixel projected onto the shadowmap

float2 dxy_pixel_on_shadowmap = 0.5 * (pos_sm_max - pos_sm_min);

// Measure of resolution needed to shadow this pixel with subpixel accuracy

float2 pixel_shadowmap_resolution_measure;

// use pixel_shadowmap_resolution_measure = -log2(round(dxy_pixel_on_shadowmap + float2(0.5,0.5))/256

frexp(sqrt(2.0) * dxy_pixel_on_shadowmap, pixel_shadowmap_resolution_measure);

//pixel_shadowmap_resolution_measure *= (1.0/256.0);

// [0,255] => [0,1] (for output to 8-bit surface)

pixel_shadowmap_resolution_measure = ldexp(-pixel_shadowmap_resolution_measure, -8);

// Postion of pixel center in the shadowmap

float3 pos_shadowmap =

ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_center.x, tc_pixel_center.y, z_view_center

);

// Output SM-tile position and resolution measure along SM x- and y-direction.

OUT.color = float4(pos_shadowmap.x, pos_shadowmap.y, pixel_shadowmap_resolution_measure.x, pixel_shadowmap_resolution_measure.y);

return OUT;

}

10

