Optimized HLOD Refinement Driven by
Hardware Occlusion Queries

Jean Pierre Charalamhos'2, Jifi Bittner?, Michael Wimmer!, and Eduardo
Romero?

Vienna University of Technology
2National University of Colombia
3Czech Technical University in Prague

Abstract. We present a new method for integrating hierarchical levels
of detail (HLOD) with occlusion culling. The algorithm refines the HLOD
hierarchy using geometric criteria as well as the occlusion information.
For the refinement we use a simple model which takes into account the
possible distribution of the visible pixels. The traversal of the HLOD
hierarchy is optimized by a new algorithm which uses spatial and tem-
poral coherence of visibility. We predict the HLOD refinement condition
for the current frame based on the results from the last frame. This al-
lows an efficient update of the front of termination nodes as well as an
efficient scheduling of hardware occlusion queries. Compared to previous
approaches, the new method improves on speed as well as image qual-
ity. The results indicate that the method is very close to the optimal
scheduling of occlussion queries for driving the HLOD refinement.

1 Introduction

Interactive visualization of complex models comprising millions of polygons is
one of the fundamental problems in computer graphics. In order to achieve inter-
active rendering of such models, the amount of processed data has to be substan-
tially reduced. Level-of-detail methods allow aggressive reduction of the amount
of data sent to the GPU at the expense of sacrificing image quality. Particularly,
hierarchical level-of-detail (HLOD) methods proved capable for interactive vi-
sualization of huge data sets by precomputing levels-of-detail at different levels
of a spatial hierarchy. HLODs support out-of-core algorithms in a straightfor-
ward way, and allow an optimal balance between CPU and GPU load during
rendering [1].

An orthogonal approach of reducing the amount of rendered primitives is
occlusion culling [2]. Occlusion culling methods aim to quickly cull the invisible
part of the model and render only its visible part. In order to achieve this task,
most recent methods employ hardware occlusion queries (HOQs) [3.,4].

The effects of HLODs and occlusion culling can be effectively combined [5,6].
Moreover, it was shown that HOQs can also be used to drive the HLOD refine-
ment [7]. In this case, the occlusion queries allow more aggressive culling of the
HLOD hierarchy, further reducing the amount of rendered primitives. However,

2 J. P. Charalambos, J. Bittner, M. Wimmer, and E. Romero

due to the latency between issuing a HOQ and the availability of its result, the
direct use of HOQs for refinement criteria causes CPU stalls and GPU starvation.

In this paper we introduce a novel traversal algorithm for HLOD refinement
driven by HOQs. The algorithm minimizes CPU stalls and GPU starvation by
predicting the HLOD refinement conditions using spatio-temporal coherence of
visibility. As a result, it provides substantial speedup over previous methods
while maintaining comparable image quality.

2 Related Work

Rendering very large models has received serious attention in recent years.
Among other techniques, HLOD-based methods proved efficient for handling
these datasets. HLOD systems either use polygonal representation of LODs [8],
point-based representations [6], or a combination of both [9]. They commonly
employ a screen space error (SSE) to drive the HLOD refinement [8,5]. As an
alternative, Charalambos [7] proposed the wvirtual multiresolution screen space
error (VMSSE) which also considers the degree of occlusion.

Occlusion culling methods are another popular technique for handling large
models [2]. Recent methods employ HOQs mainly due to their efficiency and
simplicity. The main goal of the recent techniques is to cope with the latency
between issuing the query and availability of its results as well as reducing the
number of issued queries [3,4].

The combination of occlusion culling and discrete LODs was addressed by
Andtjar et al. [10], who introduced the concept of hardly visible sets. In the con-
text of view-dependent LOD El-Sana et al. [11] proposed cell solidity values with
the same purpose in mind. Gobetti et al. [6] presented a method for integrat-
ing hardware occlusion queries into an HLOD-based system. This method copes
with the query latency by using temporal coherence as proposed by Bittner et
al. [3]. It does not, however, exploit the results of HOQs for driving the HLOD
refinement.

Charalambos proposed a different method which also integrates occlusion
culling into an HLOD-based system, and it additionally exploits the results of
HOQs to drive HLOD refinement using the VMSSE [12]. In order to minimize
the effect of latency of HOQs, this technique performs several simplifications,
which may degrade the visual quality as well as the performance of the resulting
algorithm. Moreover, these effects are more noticeable in the case of scenes with
higher depth complexities [12]. In this paper we focus on these problems and
propose an optimized method for efficiently scheduling the occlusion queries,
which improves both the running time as well as the visual quality compared to
the previous methods.

3 Integrating HLODs and HOQs

This section overviews the problem of integrating HLODs and HOQs, and briefly
describes previous approaches. We first describe the visibility-based traversal of

Lecture Notes in Computer Science 3

an HLOD hierarchy and then we focus on the computation of the visibility-based
HLOD refinement criterion.

3.1 Visibility-Based HLOD Traversal

The HLOD algorithm recursively traverses the hierarchy starting at the root
node. At every traversed node it evaluates a refinement condition. If this con-
dition indicates that the node should be refined, the traversal continues with
the children of the node. Otherwise, the traversal terminates and the LOD as-
sociated with the node is rendered. The set of nodes where the refinement stops
forms the front of termination nodes. The refinement condition commonly uses
the SSE, which corresponds to the projection of the model space error onto the
screen [8,5]. The SSE for the given node is compared to a user-defined threshold
given in pixels (7), known as pizels-of-error [5].

The HLOD algorithm can be improved by integrating occlusion culling into
the traversal of the hierarchy. Firstly, we can cull nodes which are completely
invisible [6]. Secondly, for visible nodes we can use the results of HOQs in the
refinement condition. This can be achieved by using the VMSSE [12,7], which
modulates the SSE using the result of the HOQ.

By using the VMSSE we can reduce the number of rendered primitives. How-
ever, the HLOD refinement becomes dependent on the result of the HOQ, which
is not readily available at the time when the refinement criterion is evaluated,
due to the latency between issuing the HOQ and the availability of the result.
Waiting for the result of the query would cause a CPU stall and in turn a GPU
starvation. A way to cope with this problem is to predict the result of the HOQ
and use the predicted value in the evaluation of the refinement condition. If the
prediction were perfectly correct, we would only stop the refinement where it
would have been stopped if the result of the query had already been available. A
simple prediction method which uses the processing order of the nodes has been
proposed by Charalambos [12]. However, this prediction is rather simplistic and
inaccurate, leading to two main drawbacks: (1) When the prediction is too con-
servative, more nodes get refined and in turn more primitives are rendered, (2)
when the prediction is too aggressive, the node is rendered, but the same node is
then also refined when the result of the query is available. That means that the
refined children are rendered together with their parent, which can cause visual
artifacts.

In order to cope with this problem, our new algorithm predicts the refinement
condition based on the criteria determined in the previous frame. The prediction
is used to decide whether to immediately refine the node or stop the refinement,
or delay the decision till the result of the query becomes available.

3.2 Virtual multiresolution screen space error

The classical HLOD refinement criterion is based on the SSE which bounds the
error of projecting the simplified geometry onto the screen. The SSE only con-
siders the distance of the object from the viewpoint, and disregards the occlusion

4 J. P. Charalambos, J. Bittner, M. Wimmer, and E. Romero

of the object. However if the object is largely occluded, we most likely do not
perceive subtle details in the remaining visible part of the object. This suggests
that the computed SSE could be reduced if occlusion is considered [10,7].

In this paper we use a modification of the VMSSE proposed by Charalam-
bos [7]. This method evaluates the relative wvisibility 1, which is the ratio of
unoccluded pixels to the number of pixels an object projects to. The number of
unoccluded pixels is computed by an HOQ, while the number of projected pixels
is calculated analytically.

The method presented in [7] used the relative visibility x4 to scale the SSE
linearly. However a simple linear scaling of SSE might lead to visual artifacts
because it does not take the possible distributions of visible pixels into account:
For larger relative visibility, it is likely that larger wvisibility windows appear,
which make errors due to decreased LOD levels more perceptible. A proper way
for handling this issue would be to analyze the distribution of visible pixels in
conjunction with visual masking analysis. However both techniques would be
too costly for evaluating the HLOD refinement criterion in real time. A simple
model which aims to reflect the possible clustering of visible pixels was proposed
in [13]. It assumes that the likelihood of larger visibility windows to appear is
proportional to relative visibility p, and therefore modulates the SSE using a
sigmoid bias function B(u) (see Figure 1-a):

VMSSE = By () - SSE, (1)

where the bias B, ,(p) is a function of y with user-defined parameters s and t.
t € [0,1] is the movable turn over point and s € [0,1] is the smoothness. The
closer the movable turn over point ¢ is to 0, the more conservative the SSE mod-
ulation is, i.e. the SSE will be modulated strongly just if only a few unoccluded
pixels exist. The smoothness parameter s linearly interpolates between 1 and the
unsmoothed sigmoid. Particularly, if s = 0 then the sigmoid function becomes
equal to relative visibility (u).

Fig. 1. a) Sigmoid bias function B,.(u) used to compute the VMSSE. In the cyan
region (u < t) the function provides aggressive scaling, while in the blue region (p > t)
the scaling is rather conservative. The s value is used to control the smoothness of
the curve. b) Candidates for update of the front of termination nodes. In red we show
nodes for which refinement has stopped for all its children. In blue we show nodes one
level below the termination nodes

Lecture Notes in Computer Science 5

4 Coherent HLOD culling algorithm

This section describes the proposed HLOD culling algorithm. We first describe
the complete traversal algorithm and then we focus on its crucial part, which
predicts the HLOD refinement condition by using temporal coherence.

4.1 Visibility-based HLOD traversal

The aim of our new algorithm is to perform efficient traversal of the HLOD
hierarchy while using visibility information to drive the HLOD refinement. A
naive algorithm would issue an occlusion query for every traversed node, wait
for its result, compute the refinement condition, and decide whether to descend
the hierarchy. Waiting for the result of occlusion is costly as it stalls the CPU and
in turn causes GPU starvation. Our algorithm solves this problem by predicting
the refinement criterion using temporal coherence of visibility. When proceeding
from one frame to the next, it is most likely that refinement will stop at the
same set of nodes where it has stopped in the previous frame. The exceptions
are when refinement is shifted up or down from the current level of the node due
to a change in its VMSSE.

Our coherent HLOD culling algorithm proceeds as follows: we start the
traversal of the HLOD hierarchy at the root node. At each traversed node, we
predict the refinement condition for the node based on the refinement conditions
and the results of occlusion queries from the previous frame (the prediction will
be described in detail in the next section). The prediction indicates one of the
following actions: (1) refine, (2) stop refinement, or (3) delay the decision to the
moment when the visibility of the node for the current frame is known.

In case (1), the children of the node are traversed by putting them in the
priority queue. In case (2) and (3), we issue a HOQ for the node and put it in
the query queue. In case (2), we also render the geometry associated with the
node immediately and stop the refinement. In case (3), we delay the processing
of the node until the result of the HOQ becomes available in the query queue.
The decision is then made using the updated information about the visibility of
the node: If the node is invisible, it is culled. If the VMSSE is lower than the
threshold, refinement stops and the geometry of the node is rendered. Otherwise
the refinement continues by inserting the children of the node in the priority
queue.

The new traversal algorithm is outlined in Figure 2. Note that the differences
to the traversal algorithm of Gobetti et al. [6] were colorised. Also note that the
function CaleSSE() computes the node SSE [8], which is a quick operation.

4.2 Predicting the HLOD refinement condition

The crucial part of the new method is the prediction of the refinement condition
based on the relative visibility. As stated in the previous section, the prediction
suggests either refine, stop, or delay. Let us first analyze the consequences of
these actions for the traversal algorithm:

J. P. Charalambos, J. Bittner, M. Wimmer, and E. Romero

PriorityQueue.Enqueue(hierarchy.Root);
while = PriorityQueve. Empty() V - QueryQueue. Empty() do
while —QueryQueue. Empty() N (ResultAvailable(QueryQueue. Front()) V
PriorityQueue. Empty()) do
node<—QueryQueue.Dequeue();
visiblePixels«GetOcclusionQueryResult(node);
if wvisible Pizels> O then
PullUp Visibility (node);
u «— visible Pizels/ BBox Pizels(node);
node.bias <« B, 1 (u);
VMSSE « node.bias*CalcSSE(node);
node.stopRefinement < VMSSE < 7;
Traverse(node);

if = PriorityQueue. Empty() then
node«PriorityQueue.Dequeue();
if InsideViewFrustum(node) then
stopMode«—PredictRefinement(node);
node.stopRefinement < —(stopMode=Refine);
node.visible « false;

node.lastVisited < framelD;

if node.stopRefinement then

IssueOclussionQuery (node);

L QueryQueue.Enqueue(node);
if - (stopMode=Delay) then

| Traverse(node);

Traverse(node);
if node.stopRefinement then
| Render(node);

else
| PriorityQueue.EnqueueChildren(node);

Fig. 2. Coherent HLOD Culling

Refine. The children of the node are traversed immediately. No HOQ nor
rendering is performed for the current node. If it turns out that the prediction
was too conservative (it actually might have stopped for the current node)
we end up rendering more geometry than necessary.

Stop. An HOQ is issued and the node is rendered immediately. When the
result of the query is available we compute the VMSEE of the current node.
If the prediction was too aggressive, we have to continue by traversing the
children of the node. Note that in this case we end up rendering geometry
of (some) child nodes over the geometry of the parent node, which increases
the rendering cost and can also lead to visual artifacts.

Delay. In this case wait for the result of the query to decide on the refinement
condition. Thus for a node which was delayed and for which refinement

Lecture Notes in Computer Science 7

should have stopped we have induced a latency in passing its geometry to
the GPU.

From this analysis we designed a prediction technique which aims to minimize the
number of incorrect predictions by assuming coherence of the front of termination
nodes. It primarily aims to predict either refine or stop conditions with high
accuracy. If we expect a stop condition, but with lower confidence, the predictor
returns delay. We also return delay for nodes which have been previously invisible
and thus we expect the refinement will terminate without rendering the geometry
of these nodes. The main idea of the prediction is to estimate the VMSSE by
combining the SSE of the current frame with the cached bias values from the
previous frame:

VMSSES" = SSE; * bias;_1 (2)

The prediction works as follows (see also the pseudocode in Figure 3):

— Node was invisible in the previous frame. In this case the prediction returns
delay.

— Refinement stopped for the node in the previous frame. We calculate VM SSE®5t,

and if it is still below the threshold, the predictor returns stop. Otherwise,
a significant change in the node visibility has occurred and the predictor
returns refine.

— The node was refined in the previous frame, but refinement stopped for all
its child nodes. In this case, the node is a good candidate for pulling up
the termination front (see the red node in Figure 1-b). We verify this by
first checking whether refinement for all children would still stop in the cur-
rent frame based on their estimations VM SSE®t. If any of these indicates
continue refinement, then the predictor returns refine. Otherwise, since the
node itself doesn’t have a cached bias value, we approximate bias;_, for the
node by taking the average cached bias from all children. If the resulting
VMSSE® is above the threshold, the predictor returns refine. Otherwise
the predictor returns delay.

5 Results and discussion

We implemented the proposed algorithm using C++ and OpenGL under Linux.
The HLODs use an octree with a single discrete LOD per node consisting of
about 2000 triangles. We used the quadric error metric [8,5] to construct the
HLODs and to derive the model space errors. For efficient caching of the geom-
etry on the GPU ", we employed vertex buffer objects. The measurements were
performed on two scenes with different depth complexities. For all tests we used
a resolution of 640*480 pixels and the error threshold 7 = 1. The tests were
evaluated on a PC with Intel-Core 2 Duo (2.4GHz) and nVidia GeForce 8800
GTX.

8 J. P. Charalambos, J. Bittner, M. Wimmer, and E. Romero

if —(node.lastVisited=frameID-1) V node.visible=false then
| return Delay;

if —node.stopRefinement then
candidateToShiftUp « true;
forall child € node.children do

if —child.stopRefinement V' —(child.bias*CalcSSE(child) < 7) then
| candidateToShiftUp « false;

if candidateToShiftUp then

if AvgBias(node.children)*CalcSSE(node) < T then
| return Delay;

else if node.bias*CalcSSFE(node) < 7 then
| return Stop;

return Refine;

Fig. 3. Function PredictRe finement(node)

5.1 Tests

We have used two scenes with middle and high depth complexities, respectively
named as scene 1 and scene 2 (see Figure 5). For each scene we have designed
a session representing typical inspection tasks. Depending on the traversal algo-
rithm and the metric used to refine the hierarchy, we have evaluated the following
scenarios:

— Bool: the hierarchy was traversed with the coherent culling algorithm version
of Gobetti et al., [6] (see Section 2). For this method we used the SSE metric
for HLOD refinement, i.e., HOQs were used as if their result were boolean.
Note that this configuration gives the ideal image quality for our tests.

— SW(B): the hierarchy was traversed with the hierarchical stop-and-wait
method referenced in Bittner et al. [3], using VMSSE to refine the hier-
archy. (B) stands for using the B, ;(p) bias to compute VMSSE. Note that
this configuration gives the ideal number of nodes to be drawn when using
VMSSEs.

— Simp(B): the hierarchy was traversed with the coherent HLOD culling al-
gorithm proposed in [12] using VMSSE to refine the hierarchy.

— Coh(B): the hierarchy was traversed with our new coherent HLOD culling
algorithm (see Section 4) using VMSSE to refine the hierarchy.

5.2 Speedup

Figure 4 shows the whole sequence of drawn nodes together with the frame rates
for the two scenes. All scene statistics have been summarized in Table 1.

It can be seen that our new prediction algorithm significantly reduces the
number of drawn nodes compared to both Bool and Simp(B), which also trans-
lates directly into higher framerates. The main reason for the reduction of drawn

Lecture Notes in Computer Science 9

300 : : : : : : 550
280 2 500
260 450
240 400
220 350 Lo
200 ;
180 800 -
160 250 1
140 it 200
120 - 150
100 100

0

drawn nodes
drawn nodes

100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
frame number frame number
350 T 250 T T T T
c Scene 1 c Scene 2
oh(B) i M oh(B)
300 Bool 200 | s B T
— — imp(B) --------
2 25 B) 1 & \ / \ SVI\%B;
! L 150 [;

200

150 100 ot

100

1/frame time (
1/frame time (;

50 [+

50

L L L L L 0 L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
frame number frame number

Fig. 4. Drawn nodes and frame rates for the test scenes

nodes with respect to Bool was the use of VMSSE instead of SSE within refine-
ment conditions. The speedup obtained by using the VMSSE is clearer perceived
in scenes with higher depth complexity in which the savings in number of drawn
nodes are greater. The reduction of number of drawn nodes with respect to
Simp(B) follows from the tighter approximation of the ideal number of nodes
to be drawn, which relies on the method to approximate the VMSSE bias. The
comparison to SW(B) shows that our new approach is within 1% from the ideal
number of nodes to be drawn, whereas the Simp(B) method draws up to 25%
more nodes. It is also worth noting that the precision of Simp(B) depends on
the scene depth complexity: it behaves poorly in scenes with higher depth com-

Table 1. Statistics for the test scenes. DN is the number of drawn nodes, RARN is the
number of nodes that once rendered in a given frame need further refinement within
the same frame and D is the number of nodes delayed for rendering. FPS is the number
of frames per second, and Speedup is the relative speedup of Coh(B) with respect to
the given method. All presented values are averages over all frames

scene 1 scene 2
Stats || full resolution model ~ 5M A’s || full resolution model ~ 12M A's
number of HLOD nodes ~ 12k || number of HLOD nodes ~ 21k

Scenario || DN |[RARN | D | FPS ‘ Speedup || DN |[RARN | D | FPS | Speedup
Bool 217 - - 169.9‘ 1.13 468.5 - - 1929 1.40
SW(B) ||181.4 - - 1473 4.04 302.1 - - | 68.2 1.91
Simp(B)|| 200 ‘ 5 - [173.6| 1.10 377.8| 4.3 - 1105.4 1.23
Coh(B) 183.3‘ 0.1 [4.7|191.6 - 303.9| 0.4]4.2{130.2 -

10 J. P. Charalambos, J. Bittner, M. Wimmer, and E. Romero

plexities (scene 2), whereas the new method handles this types of scenes very
well.

The only source for visual artifacts inherent in the traversal algorithm (as
opposed to the VMSSE calculation) is the case when there are some nodes that
need to be refined even though they have already been rendered in the same
frame (RARN). Fortunately, unlike for Simp(B), for Coh(B) we have found
this value to be always negligible. The reason is that our delay strategy for the
nodes where the stop refinement, condition is predicted to be shifted up effec-
tively minimizes RARN. Additionally, the RARN reduction is achieved without
hindering performance: the average number of nodes that are delayed for ren-
dering out of the total number of drawn nodes for the two scenes are only 2.56%
and 1.39%, respectively.

5.3 Image quality

We have measured the difference between the final ideal image obtained by Bool
and the one obtained by Coh(B) by randomly selecting 20 frames of each in-
spection sequence and computing the peak signal-to-noise ratio difference (psnr).
This measure has been traditionally used as an estimator of the distortion intro-
duced by compression algorithms [14] and corresponds to the ratio of the power
of a particular signal and the corrupting noise. The average and standard devi-
ation psnr values (luminance (I) and chrominance (Cj and C,.) components of
the colors, repectively) for the 20 frames are: [= 42.84+3.22, '}, = 67.04+3.68
and C, = 56.2 £+ 3.65 for scene 1; and [= 35.51 £ 1.4, C, = 59.34 + 1.55 and
C, = 48.69 + 1.58 for scene 2. The fact that psnr > 30 for all color components
indicates that the proposed method practically does not alter the final image
quality [14].

To emphasize the influence on image quality caused by Coh(B), for each node
in the front we have colored the geometry from blue to magenta to red according
to the severity level of the modulation introduced by the bias: blue represents
regions of the model where the modulation is weak, magenta represents regions
where the modulation is moderate and red represents regions where the modu-
lation is strong (see Figure 5). Note that the use of Coh(B) attenuates the bias,
i.e., the stronger the bias is, the less likely it is that the node is actually visible
(see the last column in Figure 5). On the other hand, whilst in Simp(B) the
appearance of visual artifacts is common, in C'oh(B) we practically eliminated
this problem (see the first two columns in Figure 5 and also the accompanying
video).

5.4 Summary of results

The results show that the proposed method is superior with respect to the previ-
ous state-of-the-art methods both in the framerate as well as in the image quality
obtained. In comparison to the method of Gobetti et al. [6] (Bool), the reference
solution for image quality measurements, we obtain a speedup of 1.13 — 1.4,

Lecture Notes in Computer Science 11

Modulated nodes in Coh(B)

Modulated nodes in Coh(B)

Fig. 5. Test scenes: selected frame of the visualization sequences when using Simp(B)
and Coh(B). The last column corresponds to a visualization (from the user viewpoint)
of the introduced modulation of the nodes selected to be drawn due to the VMSSE
bias (Bs,:(p)) in Coh(B). The small frames in the first two columns correspond to a
detail in the scenes to show the possible appearance of visual artifacts due to RARN.
Models courtesy of Standford Graphics Group.

which is significant, while the visual quality of our method does not incur a per-
ceivable penalty. In comparison to the method of Charalambos [7] (Simp(B)),
the speedup is about 1.1 — 1.2. However, that technique shows frequent visual
artifacts which might not be acceptable in walkthrough or inspection applica-
tions, and which the new method avoids. Therefore, the proposed solution is
qualitatively superior while still managing to be faster.

6 Conclusions

We have presented an algorithm to integrate HLOD and occlusion culling. The
main contribution is that the algorithm closely approaches the optimal set of
primitives to render while avoiding visual artifacts exhibited by previous meth-
ods. We demonstrate significantly improved performance when compared to pre-
vious approaches. The main idea is to exploit temporal coherence and make use
of the visibility information returned by hardware occlusion queries to deter-
mine the simplification degree of nodes. The method also has a straightforward
implementation.

12

J. P. Charalambos, J. Bittner, M. Wimmer, and E. Romero

Acknowledgments

This work has been supported by the following resources: an Ernst Mach grant
from the Austrian Exchange Service — Agency for International Cooperation
in Education and Research (OAD), Academic Cooperation and Mobility Unit
(ACM); the EU project no. IST-2-004363 (GameTools); and by the Ministry of
Education, Youth and Sports of the Czech Republic under the research program
LC-06008 (Center for Computer Graphics).

References

1.

2.

10.

11.

12.

13.

14.

Guthe, M., Borodin, P., Balazs, A., Klein, R.: Real-time appearance preserving
out-of-core rendering with shadows. In: Rendering Techniques. (2004) 69-80
Cohen-Or, D.; Chrysanthou, Y., Silva, C.T., Durand, F.: A survey of visibility
for walkthrough applications. IEEE Transaction on Visualization and Computer
Graphics (2002)

Bittner, J., Wimmer, M., Piringer, H., Purgathofer, W.: Coherent hierarchical
culling: Hardware occlusion queries made useful. Computer Graphics Forum 23
(2004) 615-624)

Guthe, M., Balazs, A.; Klein, R.: Near optimal hierarchical culling: Performance
driven use of hardware occlusion queries. In Akenine-Maller, T., Heidrich, W., eds.:
Eurographics Symp. on Rendering 2006, The Eurographics Association (2006)
Yoon, S.E., Salomon, B.; Gayle, R., Manocha, D.: Quick-vdr: Interactive view-
dependent rendering of massive models. In: VIS ’04: Conference Proc., Washington,
DC, USA, IEEE Computer Society (2004) 131-138

Gobbetti, E., Marton, F.: Far Voxels — a multiresolution framework for interactive
rendering of huge complex 3d models on commodity graphics platforms. ACM
Trans. on Graphics 24 (2005) 878-885 Proc. SIGGRAPH 2005.

Charalambos, J.P.: Virtual multiresolution screen space errors: Hierarchical level-
of-detail (hlod) refinement through hardware occlusion queries. In: GMAI, IEEE
Computer Society (2006) 221 227

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.:
Adaptive TetraPuzzles — efficient out-of-core construction and visualization of gi-
gantic polygonal models. ACM Trans. on Graphics 23 (2004) Proc. SIGGRAPH
2004.

Guthe, M., Borodin, P., Klein, R.: Efficient view-dependent out-of-core visualiza-
tion. In: The 4th International Conference on Virtual Reality and its Application
in Industry (VRAT2003). (2003)

Anddjar, C., Saona-Vazquez, C., Navazo, 1., Brunet, P.: Integrating occlusion
culling with levels of detail through hardly-visible sets. Computer Graphics Forum
(Proceedings of Eurographics ’00) (2000) 499 506

El-Sana, J., Sokolovsky, N., Silva, C.T.: Integrating occlusion culling with view-
dependent rendering. In: VIS ’01: Conference Proc. (2001) 371 — 378
Charalambos, J.P.: Coherent hierarchical level-of-detail (hlod) refinement through
hardware occlusion queries. In: STACG 2006 - Ibero-American Symp. on Computer
Graphics, Univ. Santiago de Compostela, Spain, Eurographics Association (2006)
Anonymous: A visibility information-based metric for performing the refinement
of a hlod-based system. Submitted to Computer Graphics Forum (2007)
Gonzalez, Woods: Digital Image Processing, 2nd edition. Prentice Hall (2001)

