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Abstract
We present smooth formulations of common vortex detectors that allow a seamless integration into the concept of
interactive visual analysis of flow simulation data. We express the originally binary feature detectors as fuzzy-sets
that can be combined using the linking and brushing concepts of interactive visual analysis. Both interaction and
visualization gain from having multiple detectors concurrently available and from the ability to combine them. An
application study on automotive data reveals how these vortex detectors combine and perform in praxis.

1. Introduction

There is still no ultimate agreement on how to generally de-
fine and detect vortices, even though the concept of a vortex
is common in fluid dynamics and has proven useful to de-
scribe and model the behavior of fluids. It is widely agreed
that vortices belong to the most important coherent features
in flow fields. They influence the behavior of the flow on
all scales and are responsible for phenomena like hurricanes
and tornadoes, mixing of fluid materials, have influence on
the effectiveness of engines and machinery, and the drag on
moving objects.

Reportedly local vortex extraction methods fail to find all
vortices in real-world data [CBA05]. For example, if there
are two axes of swirl, many local detectors will indicate a
direction that is a combination of the two [RP98]. The rela-
tions between the different criteria have been investigated on
a formal basis [CQB99, CPC90, PC87], still the reasons for
their different performances are not fully understood. At the
moment, there is no answer to the question which detector
will perform best in a given situation in general. Especially
as long as there is no final answer to the question ’what ex-
actly is a vortex?’, we suggest to use a hybrid approach in
visual analysis that combines the strengths of more than one
criterion.

While most detectors are prone to find false posi-
tives [HK99], they do not share exactly the same numer-
ical delicacies. In this paper we discuss how the different
vortex extraction schemes can be mapped into a common

framework so that the user can analyze how they interact and
complement each other for a given problem. This requires to
extend the binary classifiers to generate fuzzy response val-
ues. To convey the uncertainty that results from vortex fea-
ture derivation we use transparency coding and direct vol-
ume rendering of the selected regions [DKLP01]. We show
how derived features integrate into the process of interactive
visual analysis. Until recently the rising computation power
has led mainly to rising complexities in the data generated.
We propose higher-order features for visual analysis as an
end to meet this challenge by incorporating complex auto-
mated feature detectors into the process of visual analysis.

SimVis [DGH03] is a relatively new technology designed for
the visual inspection of CFD datasets mainly in the context
of applied industrial research. It is build on the concepts of
smooth attribute selections and the combination of multiple
criteria for feature detection. Being able to detect vortices in
a reliable and robust manner is of interest since it will allow
to inspect the related sub-regions and understand their prop-
erties. In the SimVis framework it is useful to have a bouquet
of vortex detectors at hand to take advantage of their differ-
ent behaviors. Accordingly, we have implemented several of
the most important local feature detectors and can discuss
the results in the context of real-world data. The integration
of these feature detectors in our smooth brushing framework
of SimVis immediately resulted in very positive response of
one of our application partners.
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2. State of the art

In this section we briefly recapitulate the SimVis approach
to interactive visual analysis, especially also the concept of
smooth brushing and linking. Then we give an overview
of the most common vortex detectors that serves as a ba-
sis for their smooth counterparts, described right after-
wards. A more general overview was published by Post et
al. [PVH∗03].

Interactive extraction of information has been a hot research
topic in recent years focusing on interactive information
drill-down [Shn96], visual data mining [Kei02] and visual
analytics [TC06]. Important issues are advanced interaction
concepts and procedures and algorithms to gain access to
features and information in the data. The SimVis approach
aims at feature-based flow visualization for data exploration
and analysis. Advanced interaction mechanisms enable the
user to intuitively specify features in the flow data. Multi-
ple, linked views are used to concurrently show different
aspects of the flow data. In the visualization, the flow fea-
tures are visually discriminated from the rest of the data
in a focus+context visualization style which is consistent in
all views. SimVis supports smooth brushing to enable frac-
tional degree of interest values as well as the logical com-
bination of brushes for the specification of complex fea-
tures [DGH03]. Brushing means to select intervals of the
data values. The data elements that have attribute values in-
side these intervals, belong to the focus and are highlighted
consistently in all views.

From experiments and from literature inspection we have
found a series of flow attributes to be useful for understand-
ing the properties of vortices:

• a point x ∈ R3 and an attribute value a(x)
• the data set D and data elements in a r-neigborhood of a

point Pr(x) = {y ∈ D, |x−y|2 < r2}
• linear scaling of attribute values a(x) to the interval

[0,1] of a subset of data elements x ∈ S ⊆ D with min-
imum min = min{a(x)|x ∈ S} and maximum max =
max{a(x)|x ∈ S} as scaleS(a(x) = a(x)−min

max−min
• the velocity field v
• curl (or vorticity) ω =∇×v
• the velocity gradient tensor J =∇v is the Jacobian of v
• the rate-of-strain tensor S = 1

2 (J+JT )
• the rate-of-rotation tensor Ω = 1

2 (J−JT )
• there are several criteria working on the parameters of a

local curvilinear coordinate system such that J becomes

∇v = [vrvcrvci]




λr
λcr λci
−λci λcr


 [vrvcrvci]

−1

With vr, vcr and vci being eigenvectors of J, λr the real
eigenvalue and λcr ± iλci the conjugated complex eigen-
value pair. This differs from the eigenvalues of a symmet-
ric matrix that has three real eigenvalues λ1 ≤ λ2 ≤ λ3.

Levy et al. propose the use of normalized helicity and curl
and search for regions where v||ω [LDS90]. Even though
this may not always correspond to the actual vortex core
line, the authors used this feature in combination with color
coding successfully on meteorological data.
Hunt’s Q criterion compares S and Ω, with the additional
requirement of a local pressure minimum [HWM88].
λ2 introduced by Jeong and Hussain [JH95] is one of the
most popular vortex detectors and has been studied exten-
sively over the years. The criterion involves computing the
symmetric matrix S2 +Ω2 and its eigenvalues λ1 ≥ λ2 ≥ λ3.
A vortex is the connected region where λ2 is negative.
Kinematic Vorticity Number Nk is a local measure
that gives the quality of rotation independent of vorticity
magnitude. It was introduced by Truesdell [Tru54] as
Nk = ||Ω||/||S||. A value of Nk = ∞ corresponds to solid
body rotation and Nk = 0 to irrotational motion.
Chong’s criterion is based on critical point theory and the
eigenvalues and eigenvectors of the Jacobian. A material
particle is considered to show spiralling motion if J has two
complex eigenvectors [CPC90].
Complex eigenvalue related methods can be considered
as extensions of the approach of Chong. The swirling
strength parameter of Berdahl [BT93] and related meth-
ods [ZBA99, CBA05] derive values measuring swirl from
the imaginary and real parts of the eigenvalues pair.

3. Contribution

The basic insight that led to the development of the new
interactive feature extraction framework is that both auto-
mated and interactive approaches have their limits that we
can deal with that by combining both approaches. On the
one hand, interactive extraction and data analysis is limited
in terms of feature complexity. It is simply not possible for
the user to find features that have too many dependencies
or involve elaborate computations. On the other hand, hu-
man users are very good in dealing with incoherent infor-
mation, uncertainty, and fuzzy concepts. In fact a user will
very often know what he was looking for when he has found
it [War02]. Automated feature extraction algorithms (in par-
ticular vortex detectors) have received intense attention and
it is reported that they are all able to detect vortices under
the right circumstances in a fast and robust manner.

The detectors currently available may fail to detect non-
standard features or features that do not share the same frame
of reference as the detector. Furthermore, many feature de-
tection algorithms still need a considerable amount of pa-
rameter tuning (e.g. iso-surface values) to get good results.
Chakraborty et al. [CBA05], for example, stress the impor-
tance of using appropriate thresholds when trying to find vor-
tices with specific properties like compactness along the axis
or vortex strength. When multiple features are present there
may be no single threshold parameter to detect all flow fea-
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Figure 1: The combination of smooth feature detectors and interactive visual analysis: (a) The histogram shows that only few
data items trigger strong response of the λ2 feature detector, (b) a scatterplot of temperature against velocity shows differences
between the detected vortices, (c) a scatterplot of turbulent energy against relative pressure shows differences between the
vortices near the outlet and the inlet (d) a derived distance to surface measure removes occluding elements located at the
boundary. (e) This weak vortex in an early time step of the simulation would have broken into several parts using iso-value
based visualization; (f) in the 3D overview of the situation we can see how the vortices differ in rotation speed and direction.

tures at once. Therefore our main motivation to combine vi-
sual analysis and algorithmically derived features is to add
the monitoring and reasoning capabilities of the user to the
exactness and computation power of the computer. See Table
1 for an overview.

3.1. Smooth vortex detectors

To investigate the flow data using focus+context visualiza-
tion we need to adapt the criteria in a way that they express a
notion of "vortexness" as fuzzy-logic attributes. There are
some requirements for properties of our fuzzy sets: they
should extend the binary classifiers (i.e. they are 0 where
the binary classifier outputs no vortex and 1 where a vor-
tex would be detected with full certainty). We don’t force a
measure to be extensive when it is in general also used for
other purposes and the user expects different behavior. Oth-
erwise we can often guarantee extensiveness by scaling the
output to the [0,1] interval accordingly. We do not expect
sharp feature boundaries at the scale of typical flow simula-
tions. It is sensible to expect the classifiers to be continuous.
To balance these two criteria we model the range of values
where the detector only partially detects a vortex. Further-
more, the classifier should be monotonic, since this allows
for good intuitive combination behavior using the classical
fuzzy norms to model the boolean ’and’ and ’or’ operations
using the ’min’ and ’max’ functions [KMP00].

• We define a fuzzy local extremum around a point x
with numerical attribute a(x) with minimum min =
min{a(x)|x ∈ Pr} and maximum max{a(x)|x ∈ Pr} in a

neighborhood as

extremumFuzzy(a(x)) =
{

0.5 : max = min
scalePr (a(x)) : otherwise

This is, the relative position of the attribute value inside
the interval of the minimal and maximal attribute values
in the neighborhood of x. Of course a local attribute ex-
tremum defined like this is dependent on the extent of the
neighborhood that defines localness. This attribute was
added because in many typical flow situations it is pos-
sible to find the central regions of a vortex by restricting
the detected region further using the additional condition
of locally minimal pressure.

• The straightforward way to look for vortices is to search
for regions of high vorticity magnitude. The actual classi-
fier is ’large vorticity’ and has reportedly been fairly suc-
cessful in free shear flows [JH95], but there is no prede-
fined value from which on vorticity is considered large,
therefore the SimVis approach allows the user to select
which values he or she considers as ’large’.

ωFuzzy = scaleD(ω)

• Levy et al. [LDS90] introduced normalized helicity Hn. In
the limiting case v is parallel to ω we have Hn = ±1 and
we do not scale this measure since this is the expected
behavior

Hn(x) =
v(x) ·ω(x)
|v(x)||ω(x)|

• The characteristic equation for JJ is given by

λ3 +Pλ2 +Qλ+R = 0
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Method Properties Benefits in combined application
Vorticity
magnitude

fast computation can be used for preselection of relevant cells in large
data sets using a relaxed threshold

Nk independent of vorticity magnitude can be used to cross-check regions selected using
vorticity magnitude

Normalized
helicity

signed, gives direction of rotation combination with other detectors helps to dis-
tinguish between connected regions of counter-
rotating vortices

Hunt’s Q no computation of eigenvalues necessary, in many
cases equivalent to λ2

numerically more stable for noisy data, comparison
with λ2 for confidence

λ2 based on eigenvalues of a symmetric matrix, does
not distinguish between connected vortices

very good performance, reliability affirmed in many
publications

Eigenvalue
related
methods

detailed insight into vortex properties, need eigen-
values and eigenvectors of the rotation matrix, may
introduce numerical issues, more costly

can restrict detected vortex regions to portions of
fast/slow spiraling motion, give information on ax-
ial stretching and orbital compactness

Table 1: Comparison of detector properties.

where P, Q and R are the three invariants of J, defined as
P =−tr(J), Q =− 1

2 (P2− tr(JJ)) and R =−det(J). The
invariants map both to topological critical point features
and tell about physical properties of the flow (e.g. P =
0 holds for incompressible flows). Therefore they give a
useful complement to the other views. Since plots of P,
Q and R are not traditionally vortex extraction criteria we
do not scale or transform them in any way but map them
directly to scatterplots.

• Hunt et al. suggest regions of positive Q as vortical re-
gions [HWM88] where the magnitude of the rate-of-
rotation tensor Ω exceeds the magnitude of the rate-of-
strain tensor S. The larger the difference between Ω and S
the higher the certainty that we have found a vortex:

QFuzzy(x) =
{

0 : Q(x)≤ 0
scaleD(||Ω||2−||S||2) : otherwise

• Complex Eigenvalues: Critical point theory [CPC90] tells
us that a particle will show rotation motion if J has two
complex eigenvalues. In the related regions vorticity is
sufficiently strong to cause the rate-of-strain tensor to
be dominated by the rate-of-rotation tensor. This can be
tested by checking the characteristic polynomial of J for a
positive discriminant as we know from Cardan’s solution
for cubic polynomials. Berdahl and Thompson [BT93]
used the fact that in a locally curvilinear coordinate sys-
tem spanned by the eigenvectors of J the eigenvalues give
insight into the behavior of a fluid particle: If the eigenval-
ues are complex, then one plane will contain a focus and
solution trajectories will wrap around the one real eigen-
vector. In terms of the eigenvalues the criterion of Chong
reads as λci > 0. This criterion was reportedly success-
fully combined with others [CPC90, ZBA99, RP98].

Complex1Fuzzy(x) = scaleD(λci(x))

A nice property of this criterion is also that λci directly
measures the strength of radial motion of a fluid element.
Chakraborty et al. [CBA05] suggest a combination of λci ≥ ε
and κ ≥ λcr/λci ≥ δ where ε, δ and κ are positive thresh-
olds, to include a notion of orbital compactness of the vor-
tex. From this results an extension to the complex eigenvalue
criterion:

Complex2Fuzzy(x) =

{
0 : λci(x) < ε

scaleD( λcr(x)
λci(x) ) : otherwise

We suggest to use the two criteria in combination.
• Jeong and Hussain [JH95] proposed the second eigenvector

λ2 of S2 + Ω2 as a criterion for finding vortex regions. A
vortex is found in regions where λ2 is smaller than zero. We
know that λ2 requires x ·Ω2x to be greater than x · S2x in
one eigenplane of S2 + Ω2. This is only critical if λ1 > 0
since we know that in case λ1 < 0 these two are balanced
in all directions anyhow. When λ1 > 0 the modulus of λ2
gives indication of the balance of x ·Ω2x and x ·S2x in one
eigenplane of S2 +Ω2.

λ2Fuzzy(x) =





0 : λ2(x)≥ 0
1 : λ1(x)≤ 0

scaleD(−λ2(x)) : otherwise

3.2. Integration in the interactive framework
The traditional way of integrating feature detectors in flow
visualization is to use iso-surfaces to represent the ex-
tracted structures. This is not really appropriate in the case
of a vortex. The notion of a continuous degree of interest
function tries to capture two important properties of fea-
tures: the first is that flow features are not sharply defined
and the second is the uncertainty that is inherent in feature
extraction. Very often we cannot be absolutely confident
that each data element we selected really is part of the
feature we are looking for. This partial inclusion is rep-
resented by rendering data elements with opacity values
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according to the degree of interest they obtained after all
brushes and attributes are summed up. The features are
visually represented with their inherent fuzzyness and the
user is not tempted to assume a sharp distinction between
laminar and turbulent flow.
SimVis suggests a layered work flow. The information
drill-down conceptually starts on the direct data access
level. The user can get an overview of the distribution of
attribute values like temperatures, pressures or flow ve-
locities in the simulation data. This allows us to gain an
intuition on the situation in a straight-forward manner.
The second level is analyzing relations between differ-
ent attributes and different sub-volumes of the simula-
tion. This involves using linked scatterplots of different
attributes, interactive brushing and linked views. Feature
complexity on this level is still limited to choosing inter-
vals of attribute values to be part of the feature. The selec-
tion of specific value ranges involves specifying a degree
of interest in parts of the data that exhibit the character-
istics selected. In fluid dynamics applications it is very
often the case that combinations of different attributes are
of interest. For example, we will see in the next section
that in the design of a cooling jacket very slow or fast
portions of the flow are of critical importance when they
have extremely high temperature. The linked aspect of the
scatterplots allows us to get an intuition for the relations
between multiple attributes.
The third level involves the computation of derived fea-
tures from one or multiple attributes. On this level general
properties of the data like correlation between attributes,
time-derivatives of attributes, or smoothing operations re-
sult in additional synthetic attributes. After derivation,
these synthetic attributes behave like the other attributes
and can be brushed, mapped to color, and serve as input
information for further derivations. In an iterative manner
the user can now use the operations of the higher levels of
inspection to gain an understanding of these attributes.
The fourth level tackles specialized feature extraction. Af-
ter the user has gained insight into the features of the flow
it is now possible to choose appropriate feature detectors
to extract where and when important events in the flow
occur. At this point the interactive aspect of feature de-
tection comes into play: since the interaction with the de-
rived fuzzy set is possible in real-time, one can configure
the sensitiveness and related thresholds of the detectors
interactively. After visual inspection and parameter tun-
ing these features are ready for access in the higher levels
of the work flow. They are ready to be inspected in detail
to understand their properties using the upper levels of the
SimVis work flow. The other way round the extracted fea-
tures may be useful for exclusion. An engineer looking for
properties of the laminar proportions of the flow can ex-
tract a measure of ’vortexness’ and brush only those parts
that possess low membership values for this fuzzy set.
The possibility to combine different features has the ben-
efit of being able to express complicated vortex crite-

Figure 2: The major components of the flow through the
cooling jacket include a longitudinal component from inlet
to outlet and a transversal component in the upward-and-
over direction through the gaskets [HLD07].

ria using simple combinations. The vortex core extrac-
tion operator of Sujudi and Haimes [SH95], for exam-
ple, can be expressed as a combination of the parallel
vectors operator [PR99] and the discriminant criterion of
Chong [CPC90]. The vortex core extraction algorithm of
Miura and Kida [MK97] is a combination of local pres-
sure minima and parallel vectors. Furthermore combining
multiple detectors can help to compensate unwanted prop-
erties of one detector. The λ2 method for example does
not always distinguish nearby vortices. This can often be
compensated for by deriving a helicity attribute to differ-
entiate nearby vortices by means of rotational direction.
In Figure 1 we see an illustration of the discussed quali-
ties: in (a) a histogram of the λ2 values (high λ2 to the left
and low λ2 to the right) shows that only a small propor-
tion of cells in the data set exhibit high feature values but a
substantial fraction of the data is mapped to non zero vor-
tex membership values. (b) In the scatterplot – mapping
temperature against velocity – we can see that the cells be-
longing to vortices (points highlighted in red) cluster for
each vortex. (c) A scatterplot of turbulence against relative
pressure shows that there are two main pressure levels and
we can interactively check that pressure is lower near the
outlet.
The derived feature attributes also add value through the
linking functionality – selecting high feature values high-
lights these data elements in the other views. In part (e)
of the image we can see how the mapping to fuzzy val-
ues of featureness changes aspects of the visualization: the
horseshoe vortex is detected with high fuzzy values in the
front part where it is strongest. Near the two ends of the
horseshoe it is not very typical and the cells are assigned
values close to zero by the detector. In a visualization us-
ing iso-value surfaces this vortex would break into several
parts due to this effect, but it is conceivable as a whole
as a fuzzy-region. This histogram of distance to surface
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Figure 3: A feature-based, focus+context visualization showing regions of near stagnant, hot flow with medium to high levels
of the λ2 vortex detector. On the left we see the regions in focus. The zoomed view shows details, especially the extent of critical
(red) volume. A refined magnification reveals a vortex structure at this point.

measure (d) was used to remove obscuring boundary cells
from focus. In part (f) we see the features that were found
in a 3D view color mapped with helicity to display infor-
mation on the direction of rotation and its strength.

4. Application Evaluation – a Cooling Jacket
In the following we briefly sketch two examples of in-
teractive visual analysis and exploration of fluid flow
through a cooling jacket. Computational fluid dynam-
ics software is used to inspect and improve the de-
sign process and we know that engineers invest large
amounts of time to optimize the geometry of cool-
ing jackets. In this application evaluation we continue
work done by Hauser et al. [HLD07] and Laramee
et al. [LH05] where regions of turbulence were not
considered. For supplementary documentation and re-
sults to this case study, in particular video, high-
resolution images and other material, please refer to
www.vrvis.at/via/research/feature-simvis.
The cooling jacket in focus (see Figure 2) is used with
a four cylinder engine. The complex shape of the cool-
ing jacket is influenced by multiple factors including the
shape of the engine block and to optimal temperature for
the particular engine. The cooling jacket geometry con-
sists mainly of three components: the cylinder head on
top, the cylinder block on the bottom and a thin compo-
nent connecting the cylinder head and block, called the
gasket. The cylinder head is responsible for transferring
heat away from the intake and exhaust ports at the top
of the engine block. The cylinder block is responsible for
heat transfer from the engine cylinders and for even distri-
bution of flow to the head. Between the cylinder head and
block lies the cooling jacket gasket. It consists of a se-
ries of small holes that act as conduits between the block
and head. These ducts can be quite small relative to the

overall geometry but nonetheless are very important be-
cause they are used to govern the motion of fluid flow
through the cooling jacket. There are two main compo-
nents to the flow through a cooling jacket: a longitudinal
motion lengthwise along the geometry and a transversal
motion from cylinder block to head and form the intake to
the exhaust side. Important design goals for the mechani-
cal engineers are to obtain an even distribution of flow to
each engine cylinder and to avoid regions of stagnant flow
to ensure good overall heat transport.

4.1. Reduced heat transport due to turbulent motion
In order to find regions of the geometry that might need
refinement we search for regions where slow flow motion
and high temperatures come together. The resulting im-
age is still cluttered from very small regions (that pose
no problem to engine operability) and therefore difficult
to understand. A similar situation appears in the former
investigation of this property in a recent publication by
Laramee [LH05]. From background knowledge we know
that vortices may diminish heat transport. Figure 3 left
illustrates regions in focus after brushing temperatures
above the range of optimal conditions around 363◦ K in
combination with a derived vortex measure. The result is
a less cluttered image, showing larger undesirable regions,
where the cooling fluid is less effective in transporting
heat away. There is a large connected region of low heat
transport visible in the lower right part of the overview
picture. After zooming in and visual inspection of flow be-
havior we can conclude that the unwanted formation of a
vortex is probably the cause for this situation. Fortunately
we know from engineers that the region is small enough
and operation of the engine in this state remains safe.
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flow from gasket

Figure 4: (a) We have highlighted the turbulent region of interest. (b) From the top we can see that a large patch of the surface
contains high temperature values. (c) We additionally include the two regions of turbulence below the surface. The lower one
has smaller extent and not enough cooling fluid is transported to this point. (d) A magnified view of the lower turbulent structure.
(e) The turbulent structure caused by a gasket, viewed from the side.

4.2. A situation of improved heat transport due to
turbulent motion
Even though the vortex in the preceding paragraph caused
problems, there are cases when engineers intentionally in-
duce swirling motion when designing geometry. In Figure
4 we see a region of turbulent motion that was provoked
deliberately by choosing an appropriate gasket geometry.
Why is this so? The parts of the geometry close to the in-
ner boundary where the engine cylinders are located are
critical parts of the volume. Turbulent motion mixes the
fluid and transports the hot portions away from the bound-
ary replacing them with cooler elements of the fluid. The
large overview part of the image (a) tries to give a feel-
ing for the three dimensional geometry of such a region
of high turbulence behind a gasket. The next part of the
image (b) shows a zoomed view from above. The two
ring shaped parts of the geometry hold a cylinder, and we
can see that one side has mapped high temperature values
(red) while the other is not in the critical temperature in-
terval. Now we include the regions of turbulence caused
by two of the opposing gaskets into the view (c). It be-
comes clearly visible that the side with good temperature
values is well covered by the turbulent motion. On the
other side the situation is different: the hot parts are not
covered by the turbulent motion and receive not enough
cooling fluid. In (d) we see an enlarged view of the vor-
tical motion. Due to fuzzy-attribute mapping one can get
a good impression of the relative strength of turbulence.
The last part of the image (e) shows another view on the
region of turbulence from the side.

Technical considerations
SimVis has to handle data sets with up to 1000 time steps,
20–50 data attributes and up to several million cells in
unstructured grids. Therefore it is important to save re-

sources available when calculating derived features. In
this respect storing the feature information that was out-
put by the detector in a float channel is a very good so-
lution since the computations have to be done only once.
The additional amount of data is comparatively small and
the lazy loading capability of the SimVis prototype sup-
ports this approach. To achieve fast visualization of the
large amount of cells we use graphics hardware acceler-
ated rendering. To further speed up computationally inten-
sive processes, we use the SSE (Streaming SIMD Exten-
sions) instruction set to compute fuzzy logic operations.
SimVis runs interactively on a standard PC (AMD Athlon
64 Dual Core 2,2GHz with a NVidia GeForce 6800 graph-
ics card) for up to 10 million data items. To derive gradi-
ents on the unstructured grid data we used a plane fitting
technique [Mav03].

Summary and future work
We have shown that feature detection algorithms benefit
from smooth representations in the context of interactive
visual analysis – both with regard to effectiveness and ef-
ficiency. We have discussed how the criteria are fitted into
the SimVis framework and contribute to the overall use-
fulness of the system. Additionally, we have applied this
new approach successfully to data from the engineering
domain. Due to space-limitations it was not possible to go
into further detail on how the different detectors and mea-
sures are interrelated and contribute to each other. We plan
to investigate the interrelationships of the criteria from the
viewpoint of visualization in future work. An interesting
question to tackle will be how the interactive combina-
tion of several criteria can improve the understanding of
complicated vortices and other features of turbulent flow.
Furthermore there is the question on how to combine non
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local and topological methods with the local feature de-
tection criteria.
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