Eurographics Symposium on Point-Based Graphics (2006)
M. Botsch, B. Chen (Editors)

Instant Points: Fast Rendering of Unprocessed Point Clouds

Michael Wimmer! and Claus Scheiblauer

Vienna University of Technology, Austria

Abstract

We present an algorithm to display enormous unprocessed point clouds at interactive rates without requiring long
postprocessing. The novelty here is that we do not make any assumptions about sampling density or availability
of normal vectors for the points. This is very important because such information is available only after lengthy
postprocessing of scanned datasets, whereas users want to interact with the dataset immediately. Instant Points is
an out-of-core algorithm that makes use of nested octrees and an enhanced version of sequential point trees.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Display algorithms, View-

ing algorithms

1. Introduction

Point-based rendering has gained a lot of popularity due
to the availability of 3D range scanners. Recent long-range
laser scanners capture data up to 1000m, giving wildly vary-
ing sampling densities (Fig. 1). Practically all current point
rendering approaches rely on assumptions about sampling
densities, or the availability of normal vectors for each point.
In fact, most papers present models that have been gained by
point sampling a geometric mesh.

Unfortunately, post-processing a scanned point cloud to
obtain a mesh can take several person months. This is
because especially data acquired in the outdoors is not
amenable to automatic postprocessing methods. Such data is
characterized by holes in almost any surface, varying sam-
pling densities, and a mixture of surface and non-surface
structures (such as leaves), which is a problem for mesh-
ing approaches. There are several efficient methods to esti-
mate the normal vectors required for point rendering tech-
niques directly from the point cloud [TKDS05]. However,
normal estimation assumes that the points represent suffi-
ciently dense samples of an underlying surface, which can-
not be assumed for long range scans, where the data is sim-
ply too sparse in many regions. Thus, lengthy manual post-
processing is inevitable.

On the other hand, there is a real need for users to ex-

1 wimmer@cg.tuwien.ac.at

(© The Eurographics Association 2006.

plore and interact with the scanned data instantly. This is a
factor of both costs and opportunity: paying several months
for a qualified engineer to postprocess a scanned model
can be prohibitive for most potential users (e.g., archaeolo-
gists, architects et.) of 3D scanners. Furthermore, at the time
the post-processed model is available, the original research
question might have already been solved in another way, ren-
dering the model unnecessary.

This is where Instant Points come in: We present the first
point-rendering algorithm that does not require postprocess-

Figure 1: Example screenshot of an unprocessed point cloud
consisting of 262M points.

M. Wimmer & C. Scheiblauer / Instant Points

ing of point clouds and which at the same times renders enor-
mous amounts of unprocessed points at interactive rates with
negligible preprocessing. With unprocessed point clouds we
mean those which have not been interpreted in any way
(meshing, normal estimation etc.), i.e., each point is defined
only by a 3D position and—if available from the scanning
process—an RGB-color. The point cloud is converted into
an efficient out-of-core structure which is based on a com-
bination of nested octrees and memory optimized sequential
point trees, optimally exploiting current graphics hardware.

Unprocessed point clouds evidently cannot match post-
processed models in image quality. The main contribution of
this paper is to show how to trade this reduced image quality
against significantly increased visualization speed and im-
proved memory requirements. There is a definite need for
unprocessed point rendering, starting from quick onsite visu-
alizations during the scan campaign (which can help in scan
planning, scan verification etc.); visualization systems where
the general “feel” of a location is more important than the
exactness of every minute detail; experimental systems for
archaeologists, architects and regional planners, for which
such unprocessed point rendering would make range scan-
ning viable at all; visualization systems where access to the
original point cloud is needed; and many others.

2. Previous Work

Rendering point clouds has recently become a popular topic.
However, the huge majority of research has concentrated
on rendering datasets that have been postprocessed, if not
even sampled from an original geometric model. These
rendering approaches build on the pioneering Surfel ap-
proach [PZvBGO0O0], which basically defines a point as a
small ellipsoidal disk with normal vector. The trend is to-
wards ever higher-quality rendering methods for Surfels, as
presented by Botsch et al. [BHZKO05], who also give a very
good overview of previous high-quality point splatting meth-
ods.

However, high-quality input models are not often avail-
able, and methods dealing with unprocessed point clouds are
rare. Xu and Chen were the first to realize the extreme diffi-
culty of displaying models acquired from long range outdoor
scanners. Instead of trying to postprocess the data, they pro-
pose to use non-photorealistic rendering techniques in order
to change the viewers’ expectations on the realism of the
viewed model [XCO04]. While their system produces stun-
ning results in many cases, it is limited to smaller datasets
due to its computational complexity.

Sequential point trees (SPT) by Dachsacher et
al. [DVSO03] is one of the fasted algorithm for render-
ing small to medium point clouds because it makes good use
of graphics hardware. They realize that maximum through-
put can only be achieved if large batches of primitives are
stored in graphics hardware buffer objects. For unprocessed

point clouds, however, the representation incurs significant
memory and performance overhead as will be shown in
Section 4.

The first system that was able to render large point sam-
pled models that do not fit in main memory was QS-
plat [RLOO], which builds a hierarchy that allows per-node
level-of-detail (LOD) selection. However, the selection has
to be done on the CPU. A similar approach is taken by
Duguet and Drettakis [DD04], who also use an LOD repre-
sentation of a model that is processed per node. They target
the special hardware of PDAs, which do not have dedicated
graphics processors. The layered point cloud (LPC) [GMO04]
system uses block LODs for point sampled models and
achieves rendering rates that are an order of magnitude
higher compared to QSplat by making efficient use of graph-
ics hardware. The system assumes a uniform sampling den-
sity of the input data. Our nested octrees are similar in spirit
to layered point clouds, but our algorithm works on arbi-
trary data which is not necessarily sampled uniformly. XS-
plat [PSLO5] is another system for out-of-core rendering of
huge point clouds. Similar to our Instant Points system, XS-
plat is based on SPTs and uses a two-level hierarchy. The
main difference is that XSplat is aimed at rendering high-
quality models, whereas Instant Points offers significant op-
timizations for unprocessed point clouds. Out-of-core meth-
ods have also been extensively studied for triangle rendering,
where two-level hierarchies are used as well [YSGMO05], but
in addition, connectivity has to be taken into account.

Some systems approximate (parts of) the point cloud with
textured [WGKOS] or normal-mapped [BDSO05] polygons
without extracting the topology. While these approaches can
provide extremely fast frame rates for large point clouds, we
opted for a system where the original scanned points can be
shown at the finest level. A promising alternative to out-of-
core rendering is to compress the point cloud so that it fits
into graphics card memory and can be decoded directly on
the GPU [KSWO5].

3. The Instant Points Rendering System

Unprocessed point clouds do not contain any connectivity
or density information, making it difficult to devise a suit-
able rendering representation. The main idea of the Instant
Points system is to circumvent this fact by interpreting point
samples through the effect they have on rendering in a frame
buffer. This means that if more than one point projects to
one pixel, only one actual representative point is needed to
fill that pixel. More concretely, we deal with the problem of
viewing a dense point cloud, which can be solved through
subsampling the point cloud. Without additional informa-
tion, we can not solve the interpolation problem that arises
when point clouds are viewed from too near a distance. In
this case, we give the user a choice of using a fixed world-
space extent for point samples, or a multiple of the sample
distance which is derived from the depth of the hierarchy.

(© The Eurographics Association 2006.

M. Wimmer & C. Scheiblauer / Instant Points

The Instant Points system consists of two main elements:

e Memory optimized sequential point trees (MOSPT), a
version of SPTs improved for unprocessed point clouds.

e Nested octrees, a structure that allows out-of-core render-
ing, and contains MOSPTs as elements.

MOSPTS can be used alone for smaller point clouds to
remove the 125% of memory overhead caused on average
by SPTs for unprocessed point clouds, and increase the ren-
dering speed by not having to render the 50% of additional
interior nodes in the hierarchy, and to simplify the rendering
process. However, we will mainly use them as parts of the
nested octrees described later.

4. Memory Optimized Sequential Point Trees
4.1. Sequential Point Trees Revisited

Sequential Point Trees (SPTs) [DVS03] are a hierarchical
point representation that allows rendering through a sequen-
tial processing by the GPU, while the CPU is available for
other tasks. Each node of the hierarchy is associated with
an error e. The recursive traversal checks whether the pro-
jected error e/r < €, where r is the view distance. This can
be simplified by storing a minimum distance r,;; = e/€ with
the node, so that the test becomes r > ry,i,. In addition, each
node also stores a distance ruqx, in the simplest case the 7,
of the node’s ancestor. This allows a non-recursive test for
each node by checking whether r € [ryn, Fmax]. This test can
easily be carried out by a vertex program on the GPU. Ad-
ditionally, by sorting the vertex list by rmax and calculating
a lower bound min(r) via the bounding sphere of the object,
the GPU need only process a prefix of the vertex list with
rmax < min(r). Processing only this prefix is the main rea-
son why SPTs are so efficient.

The error e in the original SPT algorithm assumes that the
points are actually splats (or surfels) with a splat size d and
a normal vector n. Inner nodes have splat sizes that encom-
pass the child nodes. This allows levels of detail where larger
splats approximate flat surface areas, and smaller splats are
used in curved areas.

4.2. Screen Splat Error Metric

A point in an unprocessed point cloud does not represent
a surfel (i.e., a splat with normal and radius), but a point
sample that is rasterized by graphics hardware as a screen-
space splat. For a given point hierarchy, a node should be
rendered when further recursive traversal would not change
the points that are rasterized. This is the case if the projected
size of the node is smaller than a pixel.

In order to achieve this semantics for SPTs, we define the
error e of a node as the diameter d of the node geometry.
Therefore, i, = d /€, where € needs to be adjusted depend-
ing on the camera parameters and the desired splat size. This
allows unprocessed point clouds to be rendered using SPTs.

(© The Eurographics Association 2006.

level 4

level 3
level 2
level 1

level 0

Figure 2: Linearized MOSPT hierarchy. Higher-level nodes
form part of lower levels of the hierarchy.

4.3. SPT overhead

Each hierarchical data structure has a certain overhead de-
pending on the average branching factor o. The memory
overhead M, i.e., the number of interior nodes relative to
the leaf nodes, of a hierarchical structure can be calculated
as [DD04]:

1
Ta—1
For an octree storing 2D surface data, oo = 4, resulting in
an overhead of 33%. However, our experiments have shown
that data coming from range scanners have lower branching
factors. For several different datasets, the observed branch-
ing factor was o = 3, resulting in an overhead of M = 50%.

Note that this causes not only an increase in the mem-
ory required to store an SPT in graphics hardware, but it
also directly reduces rendering performance, since the in-
terior nodes are additional points that have to be processed
by the vertex processor. Especially for viewpoints near the
model, where ryuax > min(r) for all nodes and the whole ver-
tex list has to be processed by the GPU, rendering time is
increased by M = 50% on average in comparison to render-
ing the original points only.

Furthermore, nodes need to store 7, and rmax, taking 4
bytes (1 float) each. Assuming that for scanned datasets, only
a point position (12 bytes) and a color (4 bytes) is stored nor-
mally, this would result in a structural overhead S = 50%. In
total, for unprocessed point clouds, the combined overhead
M and S caused by SPTs is 125% on average, depending on
the branching factor of the specific model.

4.4. Memory optimization

In order to overcome the significant memory and rendering
overhead caused by SPTs for unprocessed point clouds, we
make use of the following observation, which follows di-
rectly from the definition of the screen splat error metric:

Any child node of an interior node that is selected for ren-
dering will lead to the same pixel on screen being rasterized
as the interior node.

Therefore, instead of creating a new point to represent an

M. Wimmer & C. Scheiblauer / Instant Points

distance

part of a hierarchy resulting SPT

distance to
viewpoint

distance

distance to
viewpoint

level level

resulting MOSPT

Figure 3: A hierarchy (left) created for an SPT (middle) consists of original and additionally created points. The SPT contains
inner and leaf nodes mixed in one level of the hierarchy. A hierarchy for an MOSPT (right) consists only of original points.

interior node, we use an existing child node as a represen-
tative point for the ancestor. This is similar in spirit to ver-
tex clustering algorithms [LE97, RB93], where all vertices
in a hierarchy node are replaced by one representative vertex
taken from the input vertices. For an uncolored unprocessed
point cloud, the choice of representative is completely arbi-
trary. However, most interesting point clouds have color in-
formation. In this case, we select the color that has the small-
est color distance to the average color of the child nodes.

The resulting hierarchy can be stored in an extremely ef-
ficient way as an SPT. The nodes are still sorted by rimax,
but instead of storing all nodes for each level in the vertex
list, we omit for each level those nodes that were chosen
as representative point in the previous (upper) level, and are
therefore already stored in the vertex list. This new, mem-
ory optimized SPT (MOSPT), does not require more mem-
ory than the original point cloud. In fact, the hierarchical
SPT structure is achieved by cleverly reordering the original
point cloud (see Figure 2).

4.5. Rendering MOSPTs

The screen splat error metric leads to several simplifications
in the rendering of MOSPTSs in comparison to SPTs.

e The screen splat error metric d is constant for each level
of the MOSPT hierarchy, since all nodes at the same hi-
erarchy level have the same diameter. Therefore, a cut of
the hierarchy with r = const gives exactly one level of the
hierarchy, instead of multiple levels as in SPTs (see Fig-
ure 4).

e SPTs evaluate the view distance r for each node in a vertex
program to allow culling nodes depending on their actual
distance. For example, nodes further away could be ren-
dered with a coarser level of detail. While this would also
be possible for MOSPTs, there is no benefit in doing so,
since culling a vertex in the vertex shader does not reduce
its rendering time. Therefore, we just let the GPU process
all nodes with rax < min(r) (see Figure 4).

e There is no need to cull any node with r,;, > r (ie.,
interior nodes), since these nodes also form part of the

Figure 4: Left: In an SPT, r = const selects different levels of
the hierarchy. Furthermore, nodes above and below r need
to be culled. Right: In an MOSPT, r = const selects exactly
one level in a hierarchy from an MOSPT due to the screen
splat error metric. All nodes above r = min(r) are rendered.

more refined nodes and should therefore be rendered in
any case.

e Again due to the constant d for each MOSPT level, it is
not necessary to save rmuqy for each node in the hierarchy
on the CPU. Instead, it is sufficient to store in an index
array for each hierarchy level the number of points con-
tained in this and all preceding hierarchy levels. The rax
values for each hierarchy level can easily be recomputed
on the fly.

These consequences of using MOSPTs lead to a very sim-
ple rendering algorithm:

1. For each frame, the CPU calculates min(r) from the
bounding sphere of the model as in SPTs.

2. This is successively compared to rpuqy, = d;/€ for each
hierarchy level i until rpqy; > min(r).

3. The number p of points to render is looked up in the index
array at position i.

4. The GPU is instructed to render the first p points of the
MOSPT.

Note that no vertex program is necessary to render an
MOSPT. The difference between a linearized hierarchy used
for an SPT and a linearized hierarchy created for an MOSPT

(© The Eurographics Association 2006.

M. Wimmer & C. Scheiblauer / Instant Points

can be seen in Figure 3. The SPT hierarchy contains addi-
tionally created points for the inner nodes. For the SPT, all
points from the root node down to nodes that are just visi-
ble from the current viewpoint are sent to the GPU, and the
inner points of the three upper levels will be culled. For the
MOSPT, the same points are sent to the GPU, but all points
will also be rendered, because they are part of the model at
any level of detail.

4.6. MOSPT Creation

The hierarchy chosen for MOSPTSs is an octree with a user-
specified maximum recursion level. In a first step, an oc-
tree with empty interior nodes is created. Points are inserted
into the octree consecutively and filtered down the hierarchy.
There are three possibilities when a point reaches a leaf cell:

1. The leaf cell is empty, and the point is stored there.

2. The leaf already contains a point. Then the leaf is split,
and both points are filtered further down the hierarchy.

3. The leaf is at the maximum recursion level and already
contains a point. There are two leaf node strategies:

a. Simply add the point to the node.
b. Reject the new point, as it does not add any new infor-
mation to the hierarchy.

In relation to nested octrees (see Section 5), the first leaf
node strategy will be used for inner nodes where the number
of input points is below a certain threshold. This guarantees
that all input points are stored in the MOSPT. The second
leaf node strategy will be used for other inner nodes, with
the result that each leaf node stores exactly one point.

In a second step, representatives for the inner nodes are
chosen in a bottom-up fashion. For each inner node, we
choose the node whose color has the least distance to the
average color of the child nodes. The chosen child node is
then deleted. Finally, the octree nodes are sorted by 7max and
stored in a sequential array.

5. Nested Octrees
5.1. Motivation and Definition

MOSPTs are an efficient data structure for rendering a large
number of points. However, they face three major problems:

1. There is no way to do view-frustum culling, e.g. for inside
views of the model.

2. Only one level of detail can be selected for the whole
model.

3. It is not possible to render models that do not fit into the
available memory.

It is well known that the first two problems can be solved
by a straight-forward combination of octrees and SPTs,
where only the lower levels of the octree are sequential-
ized, and the upper levels are used for culling and index-
ing. This would, however, require most of the SPTs to reside

(© The Eurographics Association 2006.

Figure 5: 2D example: a nested quadtree of three levels.
Inner quadtrees are in color and limited to a depth of two.

in graphics card memory, since it is unlikely that a whole
SPT projects to less than a pixel. A non-sequentialized, clas-
sical octree on the other hand would be too slow because
of the inadequate use of the graphics API. Therefore, we
need a data structure that organizes chunks of points that are
large enough so that they can be efficiently processed by the
graphics hardware and streamed into memory by a single
disk access, and small enough that they allow fine-grained
view-frustum culling and memory control.

For this, we introduce nested octrees, a data structure that
consists of an outer octree and nested inner octrees. The
outer octree allows view-frustum culling and out-of-core
rendering with incremental refinement, while MOSPTs are
used as inner octrees for highly efficient rendering and API
use. The main novelty in our nested octree approach is that
the inner octrees overlap in the space they occupy. This over-
lap provides an efficient LOD representation at each level
of the outer octree, so that more detailed MOSPTs are only
loaded from external memory when required: refining a level
in the outer octree only adds one additional level of points to
the representation. Each node of the outer octree holds ex-
actly one inner octree, which in turn holds the actual points.
Each inner octree has a maximum user-specified depth, as
does the outer octree. The result is a layered structure similar
to layered point clouds [GMO04], but which does not depend
on a uniform sampling density due to the different construc-
tion process.

Figure 5 shows the 2D case, a nested quadtree. The outer
quadtree is represented by the boxes, and is used as traversal
hierarchy to reach the inner quadtrees. The overlapping inner
quadtrees are limited to depth 2. Figure 6 shows the 1D case,
a nested binary tree, with inner binary trees with a depth of
3 (the complete outer tree is not shown).

5.2. Hierarchy Creation

As input data for creating nested octrees we take an arbi-
trary point cloud possibly with color information. The depth
for the inner octrees should be set neither too small (to avoid
a too large number of inner octrees) nor too large (as view-
frustum culling would becomes less efficient). We perform

M. Wimmer & C. Scheiblauer / Instant Points

colored ones are
inner bintrees

KN KN

Figure 6: 1D example: a nested bintree of 5 levels. The inner
bintrees (in color) are limited to depth 3.

outer bintrees,

several sequential passes over the input, keeping a good
working set in main memory during each pass. In a prelimi-
nary pass, each input file is scanned to build the bounding
box of the whole point cloud from the point coordinates.
This bounding box is then inflated to a cube and forms the
root node R of the nested octree. R is set to be the current
node, and the original point cloud set to be the current input
file.

Each subsequent pass performs the following steps until
all points are filled into the nested octree:

1. Create a new empty MOSPT for the current node.

2. Set its leaf node strategy to “reject” (see Section 4.6).

3. Create a “rejection file” for each child node of the
outer octree, named using a unique node identifier (e.g.,
“R0O57”).

4. Scan the current input file and insert all points into the
new MOSPT. Write each rejected point into one of the 8
rejection files, depending on its position.

5. If the number of points in any of the rejection files is
smaller than a threshold:

a. Set the leaf node strategy to “add,” so that points are
added to instead of rejected from the MOSPT.

b. Add the points from the small rejection file to the cur-
rent MOSPT.

6. Write the current MOSPT to disk.

7. Select a non-processed rejection file, set the current node
from the filename and start another pass with this rejec-
tion file as input.

Finally, the outer octree, which stores for each node just
the filename of the associated MOSPT, is written to disk. As
an optimization, the above algorithm can be extended to fill
several levels of the outer octree simultaneously. In this case,
instead of writing rejected points to a rejection file, they are
inserted immediately into an appropriate MOSPT. Although
the hierarchy creation theoretically requires O(logn) passes,
this number is very low in practice. For the 262M points
cathedral model shown in Section 6, we used 18 total octree
levels with a MOSPT depth of 7, resulting in 11 outer octree
levels. On our 1GB machine, we were able to compute 3
levels simultaneously per pass, so that only 4 passes were
needed.

5.3. Rendering

For rendering a nested octree, the user sets the maximum
number of points (the budger) to render for each frame to
guarantee interactive navigation. For example, a budget of
12M points will keep frame rates above 10fps on a graph-
ics hardware that processes 120M points/s. The goal of the
rendering process is to render the most important points as
efficiently as possible. These points are those that are: not
view-frustum culled; not contained in a node that falls be-
low a 1-pixel threshold; and are currently loaded into graph-
ics memory.

The outer octree is loaded completely into memory and
traversed with the help of a priority queue, with the size
of the projected node bounding box as priority. There is a
second render queue that collects MOSPTs that are to be
rendered. The MOSPTs are not rendered immediately from
the priority queue because the processing of child nodes can
change the rendered splat size of the parent node.

For each node that is popped from the priority queue, the
following steps happen:

1. Check whether rendering the current MOSPT would ex-
ceed the budget. If yes, stop traversal.

2. View-frustum cull the node. If not visible, skip node.

3. Check whether the projected bounding sphere of the low-
est level node of the associated MOSPT is below a thresh-
old (typically 1 pixel). If this is the case, skip the node.

4. Check whether the associated MOSPT is loaded into
graphics card memory.

e If yes, put the node on the render queue, and put its 8
children on the priority queue.

e If not, request the MOSPT from external memory and
skip it for this frame.

The splat size used to render MOSPTS is determined in
each outer octree node by the lowest level descendant (more
specifically, the smallest projected bounding box of its asso-
ciated MOSPT) that has all requested children loaded. This
prevents gaps caused by missing nodes. The splat size of
leaf nodes will coarsely depend on the sampling density us-
ing this construction. Alternatively, a fixed node size can be
used for rendering leaf nodes.

When the priority queue has been fully traversed, the ren-
dering queue is traversed and all contained nodes are ren-
dered using graphics hardware.

View-frustum culling is done in clip-coordinates. The
bounding boxes of the cells can be calculated during ren-
dering in a way that only requires additions, as described
in [DDO04].

Handling out-of-core requests for MOSPTs that are not in
graphics card memory happens in a separate thread so that
rendering can continue undisturbed. Each MOSPT is stored
in a file that can be loaded directly into a graphics card buffer
object without preprocessing. Even though there may be a

(© The Eurographics Association 2006.

M. Wimmer & C. Scheiblauer / Instant Points

large number of MOSPT files (about 30K files for a model
with 262M points), the operating system provides fast access
to the individual files (e.g., the NTFS file system uses B-
Trees for large directories). The MOSPTSs are managed in
two LRU caches, one in graphics card memory and one in
main memory.

6. Results

We demonstrate Instant Points on a point cloud of a large
cathedral, which consists of more than 262M points from
77 scan positions. The accompanying video shows an in-
teractive session where we set a minimum target frame rate
of 10 frames/s, which is met or exceeded during the whole
interaction. The video also shows that some areas are suc-
cessively refined as they are streamed in from hard disk.
The whole dataset for this animation requires 4GB on hard-
disk and was created automatically in about 2 hours. Instant
Points makes efficient use of current graphics hardware: we
achieve a throughput of 105-115M points/s during the whole
animation, which is near the maximum point throughput
(116M points/s) of our graphics card. Only when the view-
point is moving fast through the model, the throughput drops
to roughly 80M vertices/s. During rendering the cathedral,
a maximum of some 400 rendered cells is never exceeded
when using 7 levels for the inner octrees, which makes setup
times for the graphics card buffer objects during rendering
negligible.

These results were generated on an Intel Pentium4
3.2GHz computer with hyper-threading enabled, with
two 10,000RPM harddisks (set up as a RAID 0), and
IGB of RAM. The graphics card was an NVIDIA
GeForce 6800GTO with a maximum point primitive
throughput of 116M points/s according to NVIDIA (we were
able to confirm this maximum throughput in our own tests).
All scans used in our tests were obtained using a Riegl LMS
Z420i laser scanner with a range of up to 800m at an accu-
racy of the depth measurement of 1cm.

To compare the efficiency of the original SPTs and MO-
SPTs on unprocessed point data, we used one single scan of
the cathedral. The original SPT contained 10,021,473 points,
requiring 243MB memory, whereas MOSPTs required only
6,609,305 points (i.e., the original ones), at 107MB, which
corresponds exactly to our projected total overhead of 125%.
Figure 7 shows two more scenes with very similar over-
heads, confirming the empirical branching factor of o0 = 3
for scanned datasets.

Hierarchy creation times ranged from 14 minutes for a
model of 26M points (8 scan positions, with 48,793 MO-
SPTs of depth 5), up to slightly over 2 hours for the whole
cathedral model (77 scan positions, with 33,887 MOSPTs
of depth 7). These creation times are still reasonable even
for usage in scanning campaigns, where day-to-day planning
has to take into account the already scanned positions, and
interaction with those positions is crucial.

(© The Eurographics Association 2006.

Figure 7: Single scans of and island location (M = 59%)
and of an archaeological excavation site (M = 53%).

The image quality of the rendering can naturally not
compete with fully postprocessed point cloud models. The
goal of this work is not to provide the highest quality
rendering—which is simply not possible with unprocessed
point clouds—but to provide quick interaction with huge
point clouds by exploiting the fact that unprocessed point
clouds are simpler in structure. In the case of a high point
density, the sub-sampling approach implemented by MO-
SPTs provides a reasonable approximation that has the ad-
vantage that no assumptions about the point cloud have to be
made. Figure 8 compares a full SPT calculated using aver-
aging with an MOSPT using subsampling. Another property
of the algorithm is that it does not take the direction from
where the sample was taken into account. It is therefore not
possible to distinguish between front- and backfacing geom-
etry, as is evident in the cathedral video. This is a topic for
future work.

The out-of-core process inherently also leads to popping
artifacts when new information is streamed into memory to
refine the model. However, these popping artifacts are only
temporary, and when the viewer remains stationary for a
short time, he will be able to observe the full quality model
when all the points are loaded. Note that not all available
points will be loaded by the system, but only the amount of
points that result in the desired target frame rate. Figure 9
shows screenshots from the walkthrough where the image
quality of the Instant Points algorithm can be observed.

7. Conclusions and Future Work

We have presented Instant Points, a system to render huge
unprocessed point clouds with only little preprocessing. The
algorithm does not rely on normal vector or splat size esti-
mation and can therefore render models with strongly vary-
ing densities and many undersampled areas, which occur of-
ten in 3D range scanner data. This is becoming a more and
more important topic, since interaction with such models is
often necessary already before lengthy postprocessing to fix
the model or even manual mesh creation can take place. The
system consists of an out-of-core data structure called nested
octrees, and utilizes an improved version of sequential point

M. Wimmer & C. Scheiblauer / Instant Points

trees called MOSPT, which take advantage of the restric-
tions of unprocessed point clouds and require less memory
and render faster than SPTs.

In terms of future work, we want to investigate more ad-
vanced methods to adapt the splat size when zooming into
the model, which is difficult in the absence of neighborhood
information. In the realm of triangle rendering, the random-
ized z-buffer approach [WFP*01] handles huge polygonal
scenes, and it would be interesting to compare their random-
ization techniques to ours. Another acceleration technique
commonly used in triangle rendering is occlusion culling.
While the scene structure even of huge scanned datasets like
the cathedral is not necessarily amenable to culling, inte-
grating the coherent hierarchical culling algorithm proposed
by Bittner et al. [BWPP04] into the render queue of nested
octrees seems straightforward. Finally, the memory savings
obtained by MOSPTSs need to be contrasted with dedicated
compression techniques, which can achieve much higher
compression rates at some additional cost (e.g., using quanti-
zation and delta-coding [KSWO05]). We will investigate how
these two complimentary approaches can be combined while
maintaining a high rendering speed.

Acknowledgements

This work was supported by the TUW-IIscan Centre of Com-
petence at the Vienna University of Technology.

References

[BDSO5] BOUBEKEUR T., DUGUET F., SCHLICK
C.: Rapid visualization of large point-based surfaces. In
Proceedings of VAST 2005 (2005), pp. 75-82.

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M.,
KOBBELT L.: High-quality surface splatting on today’s
gpus. In Eurographics Symposium on Point-Based Graph-
ics (2005), pp. 17-24.

[BWPP04] BITTNER J., WIMMER M., PIRINGER H.,
PURGATHOFER W.: Coherent hierarchical culling: Hard-
ware occlusion queries made useful. Computer Graphics
Forum 23, 3 (2004), 615-624.

[DD04] DUGUET F., DRETTAKIS G.: Flexible point-
based rendering on mobile devices. Computer Graphics
and Applications 24(4) (2004), 57-63.

[DVS03] DACHSBACHER C., VOGELGSANG C., STAM-
MINGER M.: Sequential point trees. ACM Trans. on
Graphics 22, 3 (2003), 657-662.

[GMO4] GOBBETTI E., MARTON F.: Layered point
clouds. In Eurographics Symposium on Point-Based
Graphics (2004), pp. 113-120.

[KSW05] KRUGER J., SCHNEIDER J., WESTERMANN
R.: Duodecim - a structure for point scan compression
and rendering. In Eurographics Symposium on Point-
Based Graphics (2005), pp. 99-107.

[LE97] LUEBKE D., ERIKSON C.: View-dependent sim-
plification of arbitrary polygonal environments. In Proc.
ACM SIGGRAPH 97 (1997), pp. 199-208.

[PSLO5] PAJAROLA R., SAINZ M., LARIO R.: Xsplat:
External memory multiresolution point visualization. In
Proceedings IASTED International Conference on Visual-
ization, Imaging and Image Processing (2005), pp. 628—
633.

[PZvBG0OO] PFISTER H., ZWICKER M., VAN BAAR J.,
GROSS M.: Surfels: Surface elements as rendering prim-
itives. In Proc. ACM SIGGRAPH 2000 (2000), pp. 335—
342.

[RB93] ROSSIGNAC J., BORREL P.: Multi-resolution 3D
approximations for rendering complex scenes. In 2nd
Conf. on Geometric Modelling in Computer Graphics
(1993), pp. 455-465.

[RLOO] RUSINKIEWICZ S., LEVOY M.: QSplat: A mul-
tiresolution point rendering system for large meshes. In
Proc. ACM SIGGRAPH 2000 (2000), pp. 343-352.

[TKDSO5] T. K. DEY G. L., SUN J.: Normal estima-
tion for point clouds : A comparison study for a voronoi
based method. In Eurographics Symposium on Point-
Based Graphics (2005), pp. 39-46.

[WFP*01] WAND M., FISCHER M., PETER I., AUF DER
HEIDE F. M., STRASSER W.: The randomized z-
buffer algorithm: interactive rendering of highly complex
scenes. In Proc. ACM SIGGRAPH 2001 (2001), pp. 361—
370.

[WGKO05] WAHL R., GUTHE M., KLEIN R.: Identifying
planes in point-clouds for efficient hybrid rendering. In
13th Pacific Conference on Computer Graphics and Ap-
plications (2005).

[XC04] Xu H., CHEN B.: Stylized rendering of 3d
scanned realworld environments. In Proc. Symposium
on Non-Photorealistic Animation and Rendering 2004
(2004), pp. 25-34.

[YSGMO5] YoonN S.-E., SALOMON B., GAYLE R.,
MANOCHA D.: Quick vdr: Out-of-core view-dependent
rendering of gigantic models. /EEE Trans. on Visualiza-
tion and Computer Graphics 11, 4 (2005), 369-382.

(© The Eurographics Association 2006.

M. Wimmer & C. Scheiblauer / Instant Points

Figure 8: Quality comparison of SPT (left) and MOSPT (middle) rendering. The colors for the SPT were obtained by averaging,
those in MOSPT come from selecting representative colors from child nodes. While the difference image (right) does show some
discrepancies, the order of magnitude of these differences is not higher than that of the noise contained in the original data.

Figure 9: Screenshots of the walkthrough in the cathedral model. The zoomed parts of the middle image show that the point
sizes are similar for the far away and for the nearby regions, proving that the LOD selection works well. The middle image
was rendered with 9,890,458 points in 308 cells, and loading was completed. In the right image, the magenta bounding boxes
indicate that some children of these cells were not rendered because the projected sizes of their bounding boxes were too small.

(© The Eurographics Association 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

