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Figure 1: Autumn forest, (Neumann, L., Valley of Szalajka, Hungary, 1980, 6x6cm slide) (a) before and (b) after color style
transfer using the style image Fig.10.

Abstract
We present new methods which transfer the color style of a source image into an arbitrary given target image
having a different3D color distribution. The color transfer has a high importance ensuring a wide area of appli-
cations from artistic transformation of the color atmosphere of images until different scientific visualizations using
special gamut mappings.
Our technique use a permissive, or optionally strict,3D histogram matching, similarly to the sampling of mul-
tivariable functions applying a sequential chain of conditional probability density functions. We work by order
of hue, hue dependent lightness and from both dependent saturation histograms of source and target images, re-
spectively. We apply different histogram transformations, like smoothing orcontrast limitation, in order to avoid
some unexpected high gradients and other artifacts. Furthermore, we use dominance suppression optionally, by
applying sub-linear functions for the histograms in order to get well balanced color distributions, or an overall
appearance reflecting the memory color distribution better. Forward andinverse operations on the corresponding
cumulative histograms ensure a continuous mapping of perceptual attributes correlating to limited derivatives.
Sampling an appropriate fraction of the pixels and using perceptually accurate and continuous histograms with
minimal size as well as other gems make this method robust and fast.
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1. Introduction

1.1. Image Style Transfer

It is a mathematically and aesthetically interesting problem,
how to transform a color image into a specified color style,
defined by the color world of a given source or ’style’ image.
This problem addresses two important related fields, namely
style trans f erapproaches, andhistogram matching. Latter
is also called histogram specification depending on the ap-
plication area.

In the introduction, we give first a short survey of the ex-
isting style transfer techniques, next we review the histogram
matching method and his application areas, and finally we
write about our new method.

Style modification methods, based on sample images, are
introduced in a general form in the Image Analogies meth-
ods [HJO∗01], [Hut04]. These methods are applied not only
to colors, but also to color textures. These methods result
in very impressive pictures by a given brush-style, follow-
ing arbitrary textures and in other applications. It applies an
image pair(A,A′), describing the analogy rule for the tar-
get imageB, instead of using one single style-imageA as
our approach does. Wide application possibilities of analogy
methods include also the color transfer, although this direc-
tion has not been studied yet. Difficulty of this approach is
to have or create appropriate(A,A′) analogy pairs.

A simple and fast image re-coloring method is given by
Greenfield et al [GH03], by using palette color associations.
The first considerably fast and robust color transfer solu-
tion has been introduced by Reinhard et al [RAGS01]. This
method applies the logarithmiclαβ color space introduced
by Ruderman et al [RCC98]. It has three opponent, highly
decorrelated color channels. Reinhard’s method [RAGS01]
fits average values and variances separately for each orthog-
onal color channel. Calibration of the parameters can be il-
lustrated by stretching or compressing of shifted ellipsoids
having axis in the 3 color channel directions. In this way
we can not approximate an arbitrary shaped gamut, espe-
cially if it contains discontinuities. This method can intro-
duce different new hues in different diagonal directions by
additive mixture of opponent color channels. However, the
basic ideas and some nice results of this simple method have
inspired us to search an alternative approach. This paper has
inspired some gray scale colorizing methods too, using the
advantages of thelαβ space [WAM02] [VVD∗03].

1.2. Histogram Specification and Equalization

The other pillar of our paper, beyond the style transfer ap-
proaches are the histogram matching techniques, called also
histogram specification in the special literature. There is a
source histogram given by an image or by just a curve in the
case of gray scale images. The problem is as follows: pix-
els of an arbitrary given image are to be transformed into
another one, which has exactly the specified histogram. A
special case is the prescribed constant histogram distribu-
tion, which results in the well known histogram equalization.
This problem as well as the optimal histogram matching by
a monotone gray level transformation, with a really correct
solution, can be a deep mathematical problem even in 1D
case [CW78].

There are different approaches for color images in the lit-
erature of histogram equalization. 1D histogram equaliza-
tion can be also applied for color images in a global or
a local adaptive way only for the luminance channel, like
hue preserving methods do it by using an adaptive neighbor-
hood [BCRV01]. Equalization of saturation is used to exceed
realizableRGB intensities [WHM95]. A similar goal is the
extension of used gamut with ’histogram explosion’ [PJ94],
which preserves hue using nearly the fullRGBextent, with-
out causing clipping for multispectral images. Other his-
togram equalization approach for multispectral images is
given by a pro-channel equalization and graph theory based
segmentation [CCI01]. The nearest approach to our goal
in the equalization literature of 3D case, or case of arbi-
trary N dimensions, gives a nice extension of 1D histogram
equalization [PNS03], using appropriate deformation of a
3D Voronoi diagram.

1.3. Color Histogram Matching

Our goal is, of course, to specify 3D color histograms by a
given style image. A 3D histogram is a finite approach of
the continuous color distribution of the gamut. Color his-
togram matching can be used for quite different applica-
tion areas, like e.g. fast image retrieval, where images, being
similar to a given input image, are searched in a large set
of images. Perceptually weighted histograms are used for
color-based retrieval [LP98] or a low-dimensional distance
measure between color distributions [HSE∗95]. Histogram
matching and distances of color distributions are often ap-
plied efficiently in pattern recognition problems too. 3D his-
togram matching is an important technique also in the field
of gamut mapping techniques [SM01].

The best existing solutions of color histogram match-
ing [MSS02], [MS03] ensure an exact source histogram af-
ter transformation. These approaches, beyond 3D histogram
matching in the space ofCIECAM2002 color appearance
model, try to preserve the original colors or minimize their
changes. The price of this requirement is a slow iterative
method, using the minimal earth mover’s distance (EMD)
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Figure 2: Colorful target image. (Kitaj, R.B, The Oak Tree,
1991, Oil on canvas)

Figure 3: A style image in the yellow-red hue interval. (Nem-
csics, A., Europe, 2003, Oil on canvas)

technique, which needs a preliminary color clustering before
the iteration. It needs a color quantization, clustering and an
EMD histogram difference metric for providing a transfor-
mationLUT between original and target histograms.

Since the applied different color bins have different sizes,
a color can quickly change to the color of the next bin, result-

Figure 4: This is transformed image of Figure2 using the
color style of Figure3. Color matching is not quite ’strict’,
thereby some hues occur, like some bluish areas, which are
missing from the style image. However, total appearance
is basically preserved. ’Permissive’ matching works with
smoothed histograms, resulting in somewhat wider gamut,
in order to avoid gradient artifacts.

ing in undesired artifacts. In order to avoid this phenomenon,
a randomization is introduced, which is similar to a dither-
ing. This technique could be realized by a quasi-random ap-
proach as well, like in some dithering techniques, e.g. by us-
ing a threshold matrix. But, all of these randomizations can
not be considered as a perceptual solution, only as a good
compromise, which fulfils the mathematical requirements.
In order to improve the results, as well as to decrease the un-
expected and unpredictable high-gradient effects, Morovic
at al [MS03] applies a local Fourier filtering technique after
the above described histogram matching.

1.4. Our method

Our motivation was to introduce a simple and fast technique
to ’cloning’ the color world of a given picture. We wanted
to avoid the coloristic artifacts of very simple approaches,
which approximate the gamut only by some parameters. On
the other hand, we wanted to find a way, which is able to
reproduce exactly the source gamut, but has some options to
easily manipulate the source and/or target gamuts to ensure
special effects. We apply the basic perceptual attributes: hue,
lightness and saturation, instead using opponent color chan-
nels.

The introduced method is similar to the random sampling
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of multivariable functions. Namely, it is a sequential chain
of sampling by the variables, using conditional probability
density functions, corresponding to some pre-tabulated cu-
mulative distribution functions. The order of color coordi-
nates, or perceptual attributes influences the style transfer,
except in deterministicstrict case with a very high resolu-
tion 3D histogram. Other important fact is that the hue is a
circular or angularly periodic variable, while other channels,
like lightness, saturation, or the coordinates of the opponent
channels are not circular variables.

We can use arbitrary color spaces. However, nearly uni-
form spaces save memory by reducing the sufficient size of
the histogram. There can not be greater steps than the per-
ceptually noticeable ones, in case of ’strict’ or exact match-
ing. Using the original 24bpp non gamma correctedRGB
images in the non-perceptual approach, an array of size 224

i.e. at about 17million data would be required, which is not
an issue nowadays. But, instead ofRGBchannels, we can
use theCIE Luv or the different generations ofCIE Lab
systems, orCIECAM02 system [MS03], which is used in
the color appearance literature, and his orthogonal version
with the Jab coordinates. These systems require some mil-
lions data for describing the 3D histogram.

It looks to be a better solution to use a cylindrical system
of the perceptual attributes of theHue, the Lightness, and
theChroma. Using this approach, we can construct a kind
of hue-preserving histogram matching, where equal hues re-
main equal after the transformation. However, this method is
somewhat more memory consuming, because the cylindrical
arrangement uses unnecessarily small hue steps near to the
neutral axis in order to ensure an acceptable maximal step at
the highest radius representing the most saturated colors.

Preserving original hues, which is a quite different prob-
lem, is also used in the gamut mapping. We ensure another
kind of hue preservation, which is a kind of invariance.
Nearly all of the original hues will be more or less changed
after our style transformation, but all of the colors, having
the same hue on the original image, will have the same hue
after the matchingstep too. An optimal angular rotation in
the cylindrical system, i.e. the best hue matching can be an
additional first automatic or interactive optimization step be-
fore the real 3D matching.

Luminance has a special importance in the human vision
and recognition. E.g. the pseudo-colorized gray-scale im-
ages look significantly better acceptable or more realistic,
if the original luminance is preserved. Other perceptually
important attributes are the local color changes, simultane-
ous contrast effects, which are characterized by the image
gradient values at different spatial frequencies according to
the spatial vision models. We can ensure a monotone and
contrast limited mapping of luminance during the histogram
matching, and thereby a limited change of gradients, but we
can not control and preserve deeper structure of 3D gradi-
ent field by using only pixel-wise histogram matching ap-

proaches. An interesting solution is to use multiscale his-
tograms [BD04]. Another promising generalization of the
method is applying histogram matching to the gradient fields
of luminance and/or saturation.

2. One Dimensional Histogram Matching

2.1. Principle of Matching

This simple case is ideal to demonstrate the basic techniques
and problems. Let us be given two grayscale images with the
same size. Pixels can be characterized by single scalar lumi-
nance values; therefore we have 2 images, described by 2 se-
ries of luminance values. The first image is to be modified,
while the second image defines thestyleby its luminance
distribution.

The core of thestrict version of histogram matching cor-
responds to a substitution of the values of the first ordered lu-
minance series by the second ordered ones. Of course their
luminance values will not be explicitly represented in the
arrays, since histograms are used just as auxiliary struc-
tures with certain resolutions, i.e. realizing some simplifi-
cations. Transformations use cumulated histograms, i.e. in-
tegrals, where the simplified histograms form non-negative
grade function, therefore their integrals consist of monotone
non-decreasing linear intervals. Fig.5 (a) with Fig 5 (b) il-
lustrate such cumulated histogram functions.

(a) (b)

Figure 5: (a) Matching the domain of the histogram function
of the original image to [0,1] by its normalized cumulated
histogram function. (b) Matching the interval [0,1] to the
domain of the histogram function of the style image by its
normalized cumulated histogram function.

Fig 5 (left) illustrates matching the domain of the his-
togram of the original image with the dependent variable,
which is identical to the[0,1] interval due to a normalization,
and fig5 (right) illustrates matching[0,1] with the domain
of histogram of thestyle image, i.e. which defines a new
style for the original image. Finally, the original histogram
on fig 5 (left) will became identical to the histogram of Fig
5 (right).

This simple replacement ensures that the transformation
is defined everywhere as well as monotony of matchingT,
i.e. if i ≥ j, thenT(i) ≥ T( j). In case of the second function
is the identity function, matching realizes histogram equal-
ization. It corresponds to the case, when luminance series

c© The Eurographics Association 2005.



Neumann Brothers / Color Style Transfer

of the style image form a constant histogram, i.e. the style
image has an equalized histogram.

This T transformation corresponds to a function from the
original histogram domain to the other

x→ T(x) = (2)F−1((1)F(x)) (1)

Where(2)F denotes the cumulated histogram function of the
style image, and(2)F−1 is its inverse function, while(1)F
belongs to the original one.

However, (2)F has no inverse in some practical cases,
when its histogram has 0 value within an interval, which
can occur in non simplified theoretical infinite case too. This
case is illustrated also on fig5 (right). Considering this case,
the following general form can be used in any case:

x→ T(x) = min
t

( (1)F(t) ≥ (2)F(x)
)

(2)

This T transformation can be applied not only for the orig-
inal image, but alsofor any images. It corresponds to the
earlier mentionedimage analogy, where aT transformation,
bringingI1 to I2, is applied forI3, i.e.T(I1) = I2, andT(I3) is
wanted. Note, that we can extend our 3D histogram match-
ing method in the same way too.

2.2. Lack of Spatial Coherences

This histogram matching method ignores any spatial co-
herences, gradients, neighborhoods and other, topological
characteristics. Although, global structure, edges and a lot
of other image descriptors will be saved automatically, but
magnitude of changes can not be regulated or predicted per-
fectly at this kind of transformation. This disadvantage fol-
lows just from the poor control of spatial correlations.

A contrast limited histogram equalization or smoothing
of histograms can be applied in order to limit some too large
gradients, but as an indirect consequence, some details dis-
appear in some parts of the image. However, these simple
tricks help often. Our solution uses similar gems as well.

2.3. Complicated Exact Solution of Optimal Matching

1D problem looks very simple. However, in a typical case,
having two different sizes of pictures withN1 andN2 pix-
els, an exact solution would be complicated even though.
Problem is as follows. There is a given target picture and
a style image, a transformed image has to be found so that
the sum of absolute errors between histogram of the trans-
formed image and that of the style image is minimal. This
problem is equivalent to placing N1 linearly ordered objects
of different sizes one by one into N2 linearly ordered boxes
of assorted sizes, such that the accumulated error of space
underpacked or overpacked in the boxes is minimized; the
placement function is monotonic, which ensures a polyno-
mial time solution to this problem. A tree search algorithm
for optimal histogram matching is presented by Shi-Kuo at al

[CW78], which has time complexity ofO(N1×N2). Further-
more, if the monotone property is dropped, then the problem
becomes NP-complete, even if it is restricted toN2 = 2.

The aforementioned algorithm demonstrates the mathe-
matical deepness of this problem. Nonetheless, our method
yields a fast and practical solution for it.

3. 3D Histogram Matching

3.1. The 3D Histogram

After selecting a 3D color space, an image generates a 3D
histogram in the same way as it happens at the grayscale
images’ 1D histograms:

f (x) = | {pixel : value(pixel) ∈ I} | if x∈ I (3)

whereI denotes a′bin′ of the histogram, which might mean
also just a point of the domain, but practicallyI forms an
interval. Thereforef is an interval wise constant function. In
3D case,I corresponds to abrick, i.e. a direct product of 1D
intervals. In 1D casep probability density function (pd f)
with its F cumulated distribution function (cd f) are defined
as

p(x) =
f (x)

R

t f (t)dt
and F(x) =

Z

t≤x
p(t)dt (4)

The same definition can be applied in a 3D space, remarked
that any integral concerns to the 3D space, andt ∈ x means
ti ∈ xi at each dimension(i = 1,2,3). F is monotone too, i.e.
monotone at any axis aligned lines of the domain.

The problem in 3D case is similar to the 1D one: which
T transformation of the original pixels’ color shall be used,
that the histogram of the transformed image shall be exactly
or approximately identical to thestyleimage’s one. 3D his-
togram equalization is a special case of this problem.

Despite of the simple domain of the 1D grayscale, which
forms always an interval, shape of a 3D gamut can alter from
a brick. For the sake of a simpler handling but not restricting
its generality, we can complete the domain of the histogram
to a brick, defining f for 0 at the new points. In principle,
final result of our method will stay within the real gamut,
i.e. it stays interpretable, while the occasional approximation
errors, depending on the accuracy of the finite histogram, can
be treated by some usual clipping method.

Our approach is essentially different from the existing
other approaches: it is not a pixel-wise reordering of the style
image and also not an analytical 3D histogram stretching, but
it aims a correct 3D histogram matching, also with possibil-
ities of its simplification and correction. Therefore we can
obtain a fast, robust, flexible and simple algorithms, solving
even such problems as matching an image containing just a
couple of colors with a color rich one.

c© The Eurographics Association 2005.
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3.2. Sequential Sampling in the 3D space

Unfortunately, inversion in formula (1) or (2) cannot be ap-
plied for multidimensional functions. In this paper we de-
duce the problem of matching multidimensional cdfs to a
sequence of matching 1dimensional ones, as it has been de-
fined in formula (1) or (2). It is similar to the sequential sam-
pling technique, but its purpose is slightly different.

Firstly, we take an order of the dimensions. Then, consid-
ering a certain value of a given dimension, the higher order
dimensions have to be fixed, whilest the values of the lower
order dimensions are to be integrated. In this way the follow-
ing functions are defined by the original 3-variable function
f , i.e. the histogram function:

f 1(x) =
RR

z,y f (x,y,z) dzdy

f 2
x (y) =

R

z f (x,y,z) dz

f 3
x,y(z) = f (x,y,z) (5)

f 1 with f 2
x look like a comb with its bars, as well asf 2

x
with f 3

x,y at each given value ofx. Now, each afore defined
function is 1 dimensional, therefore 1D versions of formulae
(3) and (4) can be applied for them, obtainingp1, p2

x andp3
x,y

pd fs, andF1, F2
x andF3

x,y cd fs.

As we have mentioned, 3D version of formula (3) results
in p andF 3D functions, since our goal is to make a match-
ing on F 3D cd fs belonging to theoriginal and thestyle
images. 3D function p is a normalized histogram, showing
probabilities of selection from its domain. However there is
an interesting connection between thep pd f and the afore
introducedp1, p2

x andp3
x,y pd fs. Let us recognize that

p1(a) = Pp(x = a)

p2
a(b) = Pp(y = b | x = a)

p3
a,b(c) = Pp(z= c | y = b & x = a) (6)

WherePp denotes probability, relying on the probabilities
of ’lying into a certain bin’, defined bypd f p, and at the
right side of the second and third rows conditional probabili-
ties are written. Considering connection between conditional
probabilities, we get

p1(a) · p2
a(b) · p3

a,b(c) =

Pp(x = a) ·Pp(y = b | x = a) ·Pp(z= c | y = b & x = a)

= Pp(x = a & y = b & z= c)

= p(a,b,c) (7)

p1(a) · p2
a(b) · p3

a,b(c) = p(a,b,c) makes meaning ofpi and

use ofF i better understandable. Let us consider now the
family of (1)F1, (1)F2

x , (1)F3
x,y, functions belonging to the

original image, and(2)F1, (2)F2
x , (2)F3

x,y, are belonging to
the style image, as it has been in the 1D case too. Transfor-
mationT with (x′,y′,z′) = T(x,y,z) is defined by applying

equation (2) sequentially:

x′ = min
t

( (1)F1(t) ≥ (2)F1(x)
)

y′ = min
t

( (1)F2
x′(t) ≥ (2)F2

x (y)
)

z′ = min
t

( (1)F3
x′,y′(t) ≥ (2)F3

x,y(z)
)

(8)

This sequential definition results in an appropriate matching
transformation. It corresponds to the sequence of conditional
probabilities in eq. (7), and it works dimension wise in a 1D
way.

As it can be seen this method is simple and easily modi-
fiable, does not need human interactions, even though con-
trollable by introducing parameters, as it will be presented in
this section. Its simplicity is relying on its deduction to the
1D matching problem.

3.3. Finite Histogram Resolution

The above explained method can be applied in its original
form, namedstrict version, which results in a theoretical
matching of two 3D functions. Note, that even this version
gives a solution for the problem of very different histograms,
since transformationT always exists and it is unambiguous.

The algorithm must work practically with finite arrays
and some interpolation between the selected values of the
domain, which is realized in our case by integrating func-
tions, therefore it is realized bytrilinear approximations.
This means direct approximation on the first function fam-
ily, and an indirect approximation on the second one. In ad-
dition to this practical simplification, it also realizes a simple
smoothing, which is useful in case of very different shapes
of histograms.

The following problem can be controlled also by selecting
appropriate sizes. There can occur such values at the second,
i.e. inverted histogram, which are approximated occasionally
by such values, the subspace of which is empty, therefore
its subordinate function is even not defined. This problem
can be solved technically by introducing linear i.e. equal-
ized functions asde f ault f or these unde f ined cases, but the
under-represented subspaces mean still problem. This can be
controlled e.g. by properly selected sizes, realizing smooth-
ing as mentioned above.

We touched the problem of the size of histogram already
in the Introduction. We have also seen above, that a low res-
olution or small histogram is an implicitly realized filtering.
It also means astorage reduction.

In any cases, when an image contains only low satura-
tions, a given range of luminance or just an interval of hues,
we can found theminimal boxof these coordinates. It is
enough to build the histogram in the minimal boxes for
source as well as for the target image, which restriction is
proven memory saving or more accurate too.

c© The Eurographics Association 2005.



Neumann Brothers / Color Style Transfer

4. Generalizations of the Basic Method

4.1. Histogram Smoothing by Convolution

We introduce two completion of the original algorithm,
named also′strict method′, comparing it to its modified ver-
sions. The first basic modification is a filtering or smooth-
ing by an arbitrarily predefined filter profile, being used as a
convolution kernel. 3 one dimensional filters can be applied
sequentially, resulting in their Descartes product, or an arbi-
trary real 3D kernel can be defined as well, e.g. a Gaussian
one with an ellipsoid.

Computational cost of this operation is a multiplication of
the histogram size with the filter size, what needs a careful
selection of them. In fact this operation is combined with the
approximation filter, defined by the sizes of the histogram,
and there is no need to use a much exact approximation if
a large filter is applied afterwards. Therefore well balanced
sizes make this′smooth version′ of the method also efficient.

4.2. Histogram Suppression

The second modification aims to modify importance of
the size of the color patches on an image. It is called
′dominance suppression′, corresponding to importance of
sizes, since size and its importance are not equal. Smaller
colorful areas get often higher importance, while large un-
saturated areas get less importance. This modification is per-
formed on the normalized histogram function, instead of on
its cdfs, and its combination with the direct or indirect filter-
ing makes its effect more realistic by extending its modifica-
tion onto groups of nearby colors. It can be realized by a sim-
ple function, controlled by parameter, expressing its effect.
The function tends to the identity function at small values
and to a constant at great values. Increasing the parameter,
latter effect starts to be realized even for small values.

xnew=

{

1 − e−p·x if p 6= 0
x if p = 0

(9)

Dominance suppression can be realized also by any oper-
ation on thepd fs. One such an operation is limitation of
their maximum value, which corresponds to some contrast
limitation of the image. It is realized practically by a cutting
operation and a renormalization, or their successive itera-
tion in order to define its absolute maximum value. Apd f
is the derivative of its correspondingcd f, therefore limit of
the pd f means limit of derivative of thecd f, and results in
a more equalized histogram.

We have to mention that convolution and dominance sup-
pression operations can be executed by both orders, but their
results will be different.

4.3. Saving and Changing Perceptual Attributes

We cannot save the original hue or luminance in the 3D color
histogram matching. Our method preserves only thehue−
identity, and themonotony o f the luminance and chroma.

(a)

(b)

(c)

Figure 6: (a) Martian landscape with the rock ’Wopmay’.
Hue differences are hardly visible. (b) Martian landscape af-
ter a histomgram matching, which has not changed the origi-
nal luminance, but hues and chroma values. This is an exam-
ple of ’spectrum zooming’. Picture can be easier understood
and different minerals, materials can be easier distiguished.
(c) Style image ’Kristóf ’, having been applied to histogram
matching for target image (a).
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Ignoring this criteria, we can obtain interesting artistic
images. We can create e.g. a negative image using a nega-
tive luminance, or better said a constant minus the original
lightness. Similarly, complementary hues can be taken in-
stead of the original ones. A somewhat less trivial variable,
the relative lightness occurs in theTRIA mapping, which
preserves the overall appearance by changing the original
luminance [MR01]. For a CRT, colors are linearly mixed
in a triangle from the black, white and the most saturated
’limit-color’, which depends on the hue. Luminance of the
limit-color can strongly change depending on the hue, see
e.g. cases of yellow and blue colors. We can get colors out-
side of display or printer gamut by applying different his-
togram transformations. This problem will never occur us-
ing relative luminance, namely the relative position of color
is preserved in the new triangle of the new hue. There are a
lot of other and exotic possibilities using different transfer
functions of hue, luminance and chroma, or above described
ratios of white, black and limit-color.

A practical application is obtained by preserving the orig-
inal hue exactly, when problem is reduced to a 2D histogram
matching. Similarly, we can preserve the original luminance,
while the other two attributes will be matched. Luminance
is highly important in human vision. Its unchanged value
ensures a deep perceptual invariance, as it can be seen on
figures6 (a) and6 (b). The style image was fig6 (c). We
can fix 2 color coordinates as well, that reduces the problem
to a classical 1D histogram matching applying on a certain
perceptual attribute. We can enhance appearance and visibil-
ity of some details by applying e.g. luminance or saturation
matching, or equalization which is a special case of match-
ing.

Every histogram matching method, based on single pixel-
wise functions, will ignore spatial coherences, or just reduce
some artifacts applying histogram transformations. How-
ever, there are some possibilities to use variables contain-
ing spatial information too. We can match histograms of ab-
solute values of the gradient (GL) of luminance, while hue
(H) and chroma (C) are used in a classical way, and the di-
rection of the gradient vectors stays unchanged. After his-
togram matching, we get a gradient map, and the best ap-
proximate image can be reconstructed from it by different
techniques. An efficient numerical method is the multigrid
Poisson solver [MAW02]. This kind of style cloning is a
new approach, which grasps deeper and reflects better the to-
tal image appearance, than only single-pixel histogram tech-
niques.

Similarly chroma gradients (GC) can be cloned too. There
are some possible combinations:(H,GL,C) , (H,L,GC),
(H,GL,GC) or 2D matching by fixing hue in the previ-
ous cases. Luminance and chroma gradients, luminance and
color edges, only-luminance and only-color edges have a
high importance in automatic recognition of paintings and
photographs [LC03]. A painting contains several only-color

changes in a typical case. We can simulate some important
attributes of pictorial style or photographical style by using
the above described kind of matching in a different manner
to the image analogies. We have described here just the basic
ideas, problem of matching gradients and hybrid attributes
requires further investigations.

5. Special Applications

5.1. Histogram Equalization

We have studied two important special areas. The first one
is the histogram equalization. It is widely used in 1D con-
text. 3D histogram equalizationworks for any input image
in a similar way: the specified 3D histogram has uniform
distribution. Thereby we do not need an explicit source im-
age, but we can imagine a fictive one or also generate images
with the 3D uniform distribution. The result of the equaliza-
tion has often a strange appearance. The small differences of
basic perceptual attributes can appear as fully different col-
ors in hue, luminance and saturations. The technique works
often as a natural noise amplifier. However, it has useful ap-
plications [PNS03] too. We illustrate 3D histogram equal-
ization with figures7 and8. This technique is a useful tool
to analyze artworks, textiles and to find forgery or restored
parts. The equalized image looks more realistic when fixing
hues of the target image, which means a 2D equalization for
luminanceandchroma.

5.2. Spectrum Zooming

Another interesting application area is the
spectrum zooming, by our terminology. Original hues
are often undistinguishable, if an image contains colors only
in a small interval of hues or wavelengths of the visible
spectra. The Martian landscape (fig.6 (a)) as a good example
looks being nearly monochrome before the style transfer.
Spectrum zooming can be used e.g. in the undersea imaging,
where in deep water over some times ten meter distance
is only a small bluish ’window’ of visible spectra for
image capturing: 430nm− 490nm or even shorter interval.
However, multispectral photographs can be taken using
narrow band filters in this small spectral interval too. We
get visually quite similar bluish images after an absorption
correction using the depth map [NGFN04]. Even the least
and undistinguishable differences can be amplified by color
style cloning into the desired color style. We can recolorize
this ambient in this way, and different materials, minerals
can be easily recognized on the processed image. This is a
practical area of spectrum zooming.
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Figure 7: Test image for color histogram equalization. (Neu-
mann, L., Lake Baláta, Hungary, 1980, 6x6 cm slide)

6. Results and further investigations

We introduced new color style cloning methods based on
matching of 3D histograms of hue, luminance and satura-
tion. The new method is fast and robust. It hasstrict and a
different permissiveversions and a lot of special and practi-
cal options and application areas.

We developed before the histogram matching techniques
some extensions of Reinhard´s method. Figure9 (b) demon-
strates the result of original Reinhard’s [RAGS01] method
applied to the very colorful target image (fig9 (a)). The style
image is a forest image containing mostly greenish color
and somewhat yellow, furthermore a pastel and light bluish-
lilac foggy background (fig10). This testbed really shows
the possible problems because segmentation is not applied.
The referred method is equivalent with shifting and com-
pressing of the 3 orthogonal axes of an ’ellipsoid-gamut’.
We applied optimal stretching along the 6 half-axis direc-
tions in different ways, thereby there are less ’wrong’ colors
and also these ones have a lower saturation level on fig9 (c).
We have achieved a further improvement by applying exact
1D histogram matching on the 6 half-axis instead of simple
stretching on them (fig9 (d)). Colors are further improved by
this kind of method, but undesired gradient effects occurred
as well, in particular saturated blue colors on the boot. Rein-
hard et al [RAGS01] use image segmentation to obtain sat-
isfying results. Segmentation is a step which deeply exploits
spatial coherences of the image.

The color histogram matching technique introduced in
this paper is a significantly different approach. It maps the

Figure 8: Color histogram equalized version of Figure7.
This example is just a test. Real application area is Image
Analysis, visualization of small color differences, like here
some vertical black lines can be seen, due to slight error of
slide scanner, which could not be visible without emphasis-
ing them.

arbitrary source gamut to the arbitrary target one, while col-
ors with same hues of target image will have the same hues
after the transformation. However, the ’strict’ version results
in some cases in unwanted gradient or noise effects. It re-
produces e.g. the original color histogram of the forest im-
age exactly (fig11), but the unexpected and undesired noise-
like parts occurs on this hard test image-pair ’perfectly’.
To avoid or reduce the unwanted gradient effects we intro-
duced thepermissive versionof histogram matching apply-
ing a convolution-like smoothing of the histograms or a con-
trast limitation of the cumulated distribution functions. The
method ofhistogram suppressionmanipulates the source
histogram to suppress some dominant but unwanted or bor-
ing colors filling large areas, or to emphasize important char-
acteristic, saturated, but under-represented colors. Fig.12
(c), Fig.12 (a), and Fig.12 (b) illustrate this technique.

The introduced technique has some really special applica-
tion areas. The color histogram equalization has rather sci-
entific than aesthetical importance. It is a color visualization
technique making the originally small color differences vis-
ible. It makes possible the detection of the restored parts of
images or forgeries. Other interesting application area is the
spectrum zooming for images with nearly monochromatic
appearance (fig.6 (a)). In fig. 6 (b) we show beyond this
technique the luminance preservation option. The real appli-
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(a) (b)

(c) (d)

Figure 9: (a) Target image ’ski’. This well known colorful
test image with the style image ’forest’ (Fig.10) is an ideal
testbed of histogram matching. (b) The ski-forest transfer by
the original method of Reinhard et al. [RAGS01]. Some yel-
low, blue, brown and lilac colors are evidently missing from
the source image, e.g. colors of boot or helmet. This transfer,
as well as the further ones, do not apply image segmenta-
tions. They are global transformations. (c) Ski-forest transfer
with 6 half axis compression. The result is somewhat better,
disturbing colors are less saturated, ’diagonal-color’ prob-
lem occurs less. (d) 1D histogram matching is applied on all
of 6 ellipsis half-axises. Disturbing ’new colors’ are quite
unsaturated. Boots looks nearly gray, they were bluish using
the two previous transfers. Unfortunately, they conserve the
blue color on a small area. It looks like an unexpected and
not predictable gradient effect. All of the half axis transfor-
mations can not overstep some limitations, which follows the
nature of this simple method.

Figure 10: Style image ’forest’ contains mostly greenish col-
ors, some yellow and brown areas, furthermore bright and
unsaturated bluish-lilac foggy background.

Figure 11: 3D histogram of this image and Fig.10 are ex-
actly the same, due to the strict version of the histogram
matching. Comparing with methods illustrated by Fig.9,
the color world has dramatically changed as it has been
expected. However, ignoring spatial coherences, the same
histogram in itself looks to be not enough for a true style
cloning. Problems are caused specially by unpredictable
noise and gradient effects. The result can be improved us-
ing image segmentation and 3-dimensional smoothing of the
color histogram.
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cation area of the spectrum zooming is the undersea imaging
or e.g. the near infrared (NIR) range.

Although we presented fast new methods with different
options, the real′image appearance trans f er′ is a percep-
tually deep and complex problem, a real challenge, which is
only partially solved. A common problem of each pixel-wise
matching method is the lack of spatial information, thereby
local changes, like gradient effects of the transformed tar-
get image can not be predicted. Different image styles, like
photographs and paintings, have characteristically different
luminance and chroma gradient histograms. One of the pos-
sible new approaches is the histogram matching of the gra-
dients. This approach is new and it needs further investiga-
tions, which will be reported in a joint paper.
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