
Robust Shadow Maps for Large Environments

Daniel Scherzer∗

Institute of Computer Graphics
Vienna University of Technology

Austria

Abstract

One of the most demanding challenges for real-time
shadow algorithms is their application to large-scale,
polygon-rich and dynamic environments. In this paper,
we discuss the major problems encountered in applying
shadow maps to such an environment and provide prac-
tical and robust solutions to the appearing problems. We
tackle projection aliasing with the aid of an eye space blur.
We compare the major biasing methods to remove incor-
rect self-shadowing of polygons. Finally we are providing
some advancements to the recently published light space
perspective shadow mapping method to resolve projection
aliasing problems.

Keywords: shadow algorithm, real-time

1 Introduction

Shadows give important visual cues for perceiving the
geometric relationship between objects. This means a
shadow can help to clarify position, size and geometry of
the shadow casters and the geometry of the shadow re-
ceiver as well as the distance to the light source (see Fig-
ure 1).

Figure 1: The same image is shown once with and once without
a shadow. With the shadow attached the objects interrelationship
is far easier to understand.

Consider a tree: Without a shadow, the tree just floats
above the ground, missing the firm connection to the ter-
rain in reality provided by his shadow. Additional shadows
help to create a certain atmosphere and add immensely to
the realism of a scene.

∗scherzer@cg.tuwien.ac.at

A point is said to be in shadow, when it cannot be seen
from the viewpoint of the light source. The object that is
the cause for not seeing this point is called the shadow
caster, occluder or blocker, which blocks the light rays
from reaching the point. The object on which the point
in shadow lies is called the shadow receiver.

1.1 The Problem

Why is the shadowing of a large-scale, polygon-rich and
dynamic environment so demanding for shadow algo-
rithms? Let’s take a look at each of the three properties
of the environment and the demands that these properties
place on any shadow algorithm:

A dynamicenvironment is a scene that may vary from
frame to frame. For example some objects move or the
position or direction of the light changes. This makes it
necessary to regenerate the shadow each frame because of
the possible changes in shadow casters or lighting condi-
tions that affect the resulting shadow. This demands an
algorithm that can calculate a new shadow each frame in a
matter of milliseconds.

A polygon-richenvironment, in our context and at this
point of hardware speed, is a scene that contains roughly
100,000 or more visible triangles. This makes the use of
classical geometry-based shadow algorithms, for example
the classical shadow volume algorithm [7], difficult. The
shadow-volume algorithm needs a silhouette search and
consumes fill-rate proportional to the number of silhou-
ette edges. Approaches to use simpler geometry for the
shadow generation are possible, but may result in incor-
rect shadows. Additionally the generation of the simpler
geometry is a non-trivial task. There simply is no robust
and universal algorithm currently known that handles all
configurations correctly.

A large-scaleenvironment is a scene that contains near
as well as far off objects, in arbitrary positions and sizes.
In these environments, point, spot and directional lights
are common. Especially directional lights, used to sim-
ulate the sun for instance, often cover large parts of the
terrain. This setup means no additional problems for the
shadow-volume approach because the geometrical nature
of the algorithm makes it independent of the scales that
occur in the scene. However we had to rule this ap-
proach out because of its performance deficit in polygon-
rich scenes. The image space approaches, namely shadow



mapping, have problems with such constellations. Solu-
tions to these problems exist. We will use light space per-
spective shadow maps [20] to overcome these problems.

The rest of the paper is structured as follows: Section 2
gives an overview of the basics of shadow generation. Sec-
tion 3 discusses related work on shadow mapping with an
emphasis on common problems of shadow maps. Sec-
tion 4 describes practical solutions we used for solving the
problem of shadowing large-scale, polygon-rich and dy-
namic environments. Section 5 describes the results we
found on implementing various approaches and Section 6
finally gives a summary and states open problems for fu-
ture research.

2 The Basics

Shadow generation was and is a hot research field in com-
puter graphics. Two main algorithms, shadow volumes
by Crow [7] and shadow mapping by Williams [20] can
handle scenes with general sets of shadow casters and re-
ceivers, including self-shadowing, in real time.

Figure 2: The shadowed eye view (left). The light depth view
(shadow map) (right).

The use of shadow mapping has gone a long way since
its introduction by Williams [19] and its fully hardware-
accelerated use today. His basic idea was to render the
scene from the light’s point of view into a z-buffer and
save the so gathered depth values in the so called shadow
map. For a point light, these depth values give us the dis-
tance each point visible to the light has to the light source.
Upon rendering the scene from the eye point, each pixel
is transformed into light space and its depth compared to
the depth stored in the shadow map. If the stored depth
is nearer to the light, the pixel must be in shadow and the
lighting of the pixel can be altered to reflect this (see Fig-
ure 2).

One important benefit of shadow mapping is that it is in-
dependent of the scene geometry, which makes it suitable
for highly tesselated scenes. This independence comes
from the fact that shadow mapping is an image space tech-
nique.

With the use of projective texture mapping as described
by Segal [15], shadow mapping can be easily matched to
hardware, with one additional render pass to create the
light view depth image, theshadow map.

An excellent overview of shadow algorithms can
be found in M̈oller and Haines’ Real-Time Rendering
book [12].

3 Problems of shadow mapping

Shadow mapping, when used with the z-buffer, suffers
from undersampling, which causes various types of alias-
ing artefacts (see Table 1), because of the finite and regular
structure of the z-buffer. This basic form of the technique
will be called standard shadow mapping (SSM) in the rest
of the paper. Numerous solutions to these problems exists.
Johnson [9] proposes the use of an irregular z-buffer that
can eliminate this problems. A similar approach was cho-
sen by Aila in [1]. Another solution is to use a hierarchical
grid as a shadow map structure [8]. These solutions don’t
map well to current hardware and software implementa-
tions are not competitive to todays hardware methods in
terms of speed.

Error Type Cause
insufficient resolution
on polygons almost
parallel to the light di-
rection

local Projection aliasing
(undersampling)

insufficient resolution
near the observer

global Perspective aliasing
(undersampling)

moiré-patterns local Self-(un)shadowing
(resampling; depth
precision)

Table 1: The different errors of shadow mapping. Global er-
rors affect easily predictable or all parts of the scene, while local
errors appear on parts of the scene that are more complex to iden-
tify and are therefore harder to countermeasure in real-time.

3.1 Self-(un) shadowing

One shadow map problem originates in the transformation
of the regularly spaced pixels from eye to light space. In
light space these transformed pixels may fall between the
regular sample values the shadow map provides. Together
with the finite precision of depth values, this can lead to
self-shadowing artefacts and depth quantization. Without
biasing, moiŕe patterns are visible (see Figure 6). Self
shadowing artefacts are local effects because they depend
on the orientation of the concerned polygons relative to the
light direction (see Table 1). A workaround for this prob-
lem exists in using a manually defined depth bias. A depth
bias is a small increment added to the shadow maps depth
values to move them further away in order to avoid an in-
correct shadowing of the corresponding shadow casters.
This needs user intervention and provides no automatic so-
lution for an arbitrary scene. An additional problem of the
bias is that the shadow is moved in light spacez-direction.
This can lead to noticeably incorrect shadows.



Second-depth shadow mapping, as proposed by Wang
and Molnar [17], is a solution that can handle most con-
figurations well. The idea is to assume solid shadow cast-
ers. With this assumption, the depth test can be transfered
from the nearest surface as seen from the light source to
the second nearest surface. Later Weiskopf and Ertl, influ-
enced by this idea and by work of Woo [21] (the midpoint
shadow maps) proposed dual shadow maps [18]. The first
shadow map contains the depth of the first surface visible
form the light source, as any normal shadow map does.
The second shadow map contains the depth of the sec-
ond surface, the surface you would encounter, if you had
stripped away the surfaces stored in the first depth map.
These two depths can be combined to get a robust bias.

For large-scale environments with thousands of objects,
an automatic method seems indispensable. One offset
value rarely suffices to solve the biasing problems of the
whole scene, and manually choosing offset values would
be too time consuming. Dual shadow maps are problem-
atic to use because the generation of the shadow map per
se is already expensive. A lot of objects are visible for
the common directional lights and have to be rasterized.
The second shadow map we would need to generate would
nearly double the costs of this step.

Another solution which influences the depth biasing, but
is mainly a solution to the resampling problem was pro-
posed by Reeves, Salesin and Cook [14]. The paper de-
scribes a new filtering technique called percentage closer
filtering. An additional benefit of this filtering approach is
that it provides smooth shadow boundaries, which lessens
the jagged effect of the borders of undersampled shadows.
A simplified version of this technique is incorporated into
today’s consumer level hardware.

3.2 Projection aliasing

Figure 3: The projection aliasing artefacts, the black stripes, in
the eye view (left) are caused by too few samples of the cubes
sides as seen from the light view (right).

Following Stamminger and Drettakis [16], we further
divide the aliasing artifacts into projection and perspec-
tive aliasing. Projection aliasing is a local phenomenon
(see Table 1). This phenomenon is primarily caused by
surfaces almost parallel to the light direction. These sur-
faces are therefore very sparsely sampled because little of
the area of the surface is visible from the point of view of
the light source (see Figure 3). A solution to this prob-

lem cannot be found with a simple method that operates
on the whole scene, but requires a detailed analysis of
the scene geometry. Projective aliasing remains an open
problem for any real-time shadow mapping approach. For
large-scale environments, this problem is especially com-
plicated. The usual count of objects in such scenes is very
high, and therefore some objects will probably have poly-
gons that are almost parallel to the light direction. Hier-
archical shadow maps [8] or an irregular z-buffer [9] [1]
can solve this problem, but these methods are not compet-
itive in terms of speed to real-time methods. At this point,
only a careful design of the scene or clever application of
a blur filter on the shadows can alleviate this problem. See
Section 4.2 for details.

3.3 Perspective aliasing

Figure 4: Insufficient shadow map resolution for shadows near
the view point caused by perspective aliasing.

Fast approaches exist that mainly handle perspective
aliasing. Perspective aliasing is common with standard
shadow maps for a perspective eye view. A perspective
view shows nearby objects larger than distant objects. The
light space in which the standard shadow map is calcu-
lated does not incorporate this information. So an object
is stored with a fixed resolution in the shadow map, regard-
less of the distance to the eye. The outcome is a shadow
resolution that is too low for nearby objects and too high
for distant objects in eye space (see Figure 4). A sim-
ple solution is to use multiple shadow maps. For example
one for the near objects and one for the far objects. This
means a partitioning of the view frustum into subsets and
each subset is rendered into its own shadow map. Another
idea, common to most of the fast approaches, is to redis-
tribute the resolution of the shadow map in a better way.
Perspective aliasing is aggravated for large scale environ-
ments. The shadow map resolution must be used for the
shadowing of the whole visible scene, therefore the resolu-
tion with which a single object is saved to the shadow map
decreases with the increase of the area to cover with the
shadow map. This makes perspective aliasing the number
one problem for this type of environment.

The first completely hardware implemented technique
that used the redistribution approach was perspective



shadow mapping (PSM) [16]. The main idea is to con-
struct the light space in the post perspective space of
the eye. This should create an even distribution of the
depth map samples in the eye space. Unfortunately in
real world scenarios, serious robustness and quality issues
emerge [20]: Various special cases have to be considered,
which complicates implementation. The shadow quality
is hard to predict and usually bad for scenes with very
near and far off objects. Shadow quality changes rapidly
from frame to frame on view-point changes, which leads
to flickering shadows when animating the scene.

Recently various methods to cure the remaining prob-
lems of perspective shadow mapping were published.
Chong’s senior thesis [6] presented a reparameterization
of PSM into a more general frame-work and provided a
thorough analysis of the 2D case. Based on this Chong and
Gortler presented in [5] a shadow algorithm that can calcu-
late a shadow map that gives optimal results for a chosen
plane of interest. After this more theoretical approaches,
Kozlov [10] investigated practical advancements of PSM
to solve the problems of PSM. Trapezoidal shadow maps
(TSM) [11] and light space perspective shadow maps
(LispSM) [20] are concurrent approaches to use the main
advantages of PSM, but not its weaknesses. The shadow
quality of both approaches is similar. The first one uses
a new space, the trapezoidal space, and 2D transforma-
tions. This is used together with an iterative process that
determines a perspective transformation that should mini-
mize projection aliasing. The paper additionally describes
the use of a linearz-depth distribution to minimize self-
shadowing artefacts. The second approach uses an addi-
tional perspective transformation that is applied after the
light space is determined. The free parameter of this trans-
formation determines the strength of the perspective warp.
This parameter is calculated with a formula, derived from
a perspective aliasing error analysis. The small overhead
for calculating the additional perspective warp, the ease
of tweaking the shadow quality and the simplicity of im-
plementation, makes LispSM an ideal algorithm for our
desiredlarge-scale, polygon-rich and dynamicenviron-
ments.

4 Solving the problem

In this section we will look at practical solutions to the
afore-mentioned problems of shadow mapping. In Sec-
tion 4.1 we will tackle the problem of focusing the light
space to the volume of space that can cast visible shad-
ows. Section 4.2 compares different methods of biasing
to avoid self-shadowing artefacts. Section 4.3 investigates
into blurring to hide projection aliasing and finally Sec-
tion 4.4 discusses various extensions to LispSM to make it
more robust in real-world scenarios.

4.1 Focusing the light space

To increase the amount of useful information that is stored
in the shadow map, we only want to consider the parts of
the light space for the shadow map that can cast a visible
shadow into the view frustum. Brabec [4] showed the im-
portance of focusing the shadow map to the visible parts
of the scene. This step seams obvious, but some intrica-
cies are involved. The geometrical solution is to calculate
the convex hull of the view frustum and the light position
(for directional lights this position is at infinity) and af-
terwards clip this body with the scene bounding volume
and the light frustum (see [16] for details). Clipping to the
scene bounding volume is necessary because today very
large view frusta are common and they frequently extend
outside the scene borders. We call the resulting body the
intersection bodyB (see Figure 5).

Figure 5: The view frustum is blue. The scene bounding box
is green.Left: The clipping of the view frustum with the scene
bounding box decreases it’s size considerable.Right: The final
intersection bodyB (violet) with a light direction from above
(orange arrows)

If we use a visibility algorithm, O’Rorke’s article [13]
gives various practical hints for using this visibility infor-
mation to decrease the volume we have to consider for the
shadow map generation.

4.2 Self-shadowing artefacts

The cause for self-shadowing artefacts is the resampling
that takes place when eye space pixel coordinates are
transformed into light space to get the respective shadow
map samples. The use of a bias is the common method
to resolve this problem. If we use a constant bias, all
depth values are moved the same amount into or out of
the screen. This leads to problems for polygons with dif-
ferent depth slopes. For a depth slope near zero hardly
any biasing is needed, while for a polygon that is al-
most parallel to the light direction (large depth slope) a
big bias is appropriate. The handling of this problem
is the purpose of slope-scale biasing. However, slope-
scale biasing has problems with the non-linear distribu-
tion of z-depth values of PSM, TSM and LispSM. This
non-linear distribution of depth values is generated by the
perspective transformation that involves an1/w term, gen-
erating a hyperbolic depth value distribution. Therefore
the false self-shadowing problem is increased for these
algorithms. For TSM, the biasing problem is so great



that the authors of the paper recommend omitting thez-
coordinate from the perspective transformation, actually
generating linearly distributed depth values. Kozlov [10]
proposes to use slope-scale biasing in world-space for
PSM and transforms the results into post-projective space.
LispSM has less problems with self-shadowing artefacts.
The methods [17] [21] [18] mentioned in Section 3.1 are
unsuited for real-time applications because of the perfor-
mance penalty introduced by the generation of the second
depth image needed by all of them.

Figure 6: Left: no biasing;Middle: constant biasing;Right:
slope-scale biasing;Top: hyperbolicz-distribution;Center: lin-
earz-distribution;Bottom:back-side rendering

We present extensive experiments with different biasing
methods for LispSM. We found that a simple slope-scale
biasing with the hyperbolicz-distribution of LispSM, as
for example provided by thepolygon offsetinterface of
Open GL, gives satisfying results for common configu-
rations. The needed bias can be much smaller than the
value needed for a constant bias. The resulting shadows
are therefore less shifted respectively more correctly posi-
tioned than with the bigger constant bias. For example in
our test scene, we could avoid most self-shadowing arte-
facts with a relatively small slope-scale bias of 2.0/4.0.
The use of a linearz-distribution as proposed in the TSM
paper is also easily incorporated into LispSM with the aid
of vertex shaders. The results with linearz biasing are bet-
ter as with the hyperbolicz-distribution, but come at the
cost of additional hardware requirements for the needed
vertex shaders. Another form of biasing that uses the back
sides of the scene geometry for the depth comparison was
tried too. This method removes most self-shadowing arte-
facts on the ground, but in all other cases the quality is
similar to normal slope-scale biasing. The following ma-
trix of images in Figure 6 shows the results with the var-

ious combinations of the afore-mentioned methods. The
performance of the different methods is equal, because of
the unnoticeable penalty in rendering time these methods
introduce. On most platforms no speed difference at all is
perceivable.

As can be seen the version with a linearz-distribution,
together with slope-scale biasing gives the best results.

4.3 Projection aliasing

We experimented with an eye-space blur of the shadow
map to hide some of the remaining artefacts, especially
projection aliasing. The idea is to map the shadow map in
eye space onto unlit, unicoloured geometry, generating a
grey-scale (grey values originate from the pcf filtering at
the shadow borders) image of the mapped shadows (see
Figure 7). This image can be blurred repeatedly to gener-

Figure 7: The shadow map is applied to the unlit and unicoloured
geometry.

ate a 2D-texture that can be applied as a intensity lookup
texture for the lighting calculation in the final rendering.
As can be seen in Figure 8, projection aliasing can be re-
moved with a high enough blur at the cost of shadow de-
tails.

Figure 8: The same scene starting with no shadow map blur and
with 1x, 2x, 4x, 8x, and 16x blur iterations. Notice the regions
marked in red with projection aliasing artefacts and how the arte-
facts disappear with increasing blur.

The solution to the loss of shadow detail in the dis-
tance is to use a depth dependent blur. Near the viewer,
the shadow map is blurred more and with increasing depth
the shadows are less and less blurred, to preserve shadow



details in the distance. This is successfull because the pro-
jection aliasing artefacts in the distance are generally much
smaller (in terms of the pixel area) as the ones near the
view point.

4.4 Perspective aliasing

Recent papers have introduced practical solutions to this
problem. The trick is to redistribute the shadow map res-
olution. Give more shadow map space to the near objects
and less to the far objects. This trick makes shadow maps
view dependent because the distance relationship to each
object changes at each view change that includes a trans-
lation. Additionally the set of shadow casters to consider
may changes with every view point transformation. This
implicates a regeneration of the shadow map every single
frame. The calculation time for these algorithms therefore
has to be rather small because of the overhead this costs
each frame.

Perspective shadow mapping [16] and its successors use
a perspective transformation to do the redistribution of the
shadow map texels. The implementation is very hardware
friendly. The perspective transformation is done by the
hardware and only the setup-costs for the transformation
add to the rendering time. We focus on LispSM to resolve
the perspective aliasing. The additional perspective trans-
formation of LispSM is calculated in light space. This
means that first the transformation into light space takes
place. Normally this step involves a light view matrix and
a light projection matrix that are multiplied together. This
joined transformation gives us the transformation into light
space.

The frustumP of the additional perspective transforma-
tion of LispSM has near and far planes parallel to the light
direction and a view vectorV parallel to the shadow map.
It’s projection center is at the height of the eye position
(see Figure 9).

Figure 9: The view frustum is blue. The frustum defining the
light space perspective transformationP is red. The red sphere
is the projection centerC. The light rays are orange.Left: Both
frusta as seen from the point-of-view of the light.Right: A side
view of both frusta with the light-rays coming from above.

The use of a perspective transformation gives the best
results for perpendicular view and light directions because
in this case the perspective transform can influence the
whole depth range of the view frustum (see Figure 10).

Figure 10: For near perpendicular view and light directions
LispSM (left) gives the best results. Uniform shadow mapping
(right)has much more perspective aliasing.

This is also the case where the most perspective aliasing is
present. In the case of parallel light and view vectors, no
perspective aliasing is present and the perspective trans-
formation can only worsen the quality of the shadow map.
This is called the duelling frusta case (see Figure 11). A
solution exists that uses five shadow maps, which makes
it, however, expensive.

Figure 11: For near parallel view and light directions LispSM
(left) converges to uniform shadow mapping (right), making the
shadow borders blocky.

Recently a recipe for handling the duelling frust case
with an extension to TSM was published on the inter-
net [2]. This method uses a single shadow map and di-
vides it into four viewports that are used to render into
adaptively. An update of up to four light views is, how-
ever, unfeasible for our polygon rich scenes.

For LispSM, it is logical to decrease the perspective
warp strength when the angle between light and view di-
rection becomes smaller. In the extreme case of parallel
light and view directions, no perspective warp should be
present and standard shadow mapping should be reached.
In the case of LispSM, this is already incorporated into the
formula used to calculate the optimal warp strength pre-
sented in the paper, through the termsin(γ):

nopt =
zn +

√
zn(zn + ∆z)
sin(γ)

(1)

nopt is the near plane distance of the perspective transfor-
mationP . Changing this parameter controls the strength
of the warp.zn is the eye frustum near plane distance.∆z
is the depth extent of the intersection bodyB in light space
andγ is the angle between light and view direction.



One possibility to tweak this formula is to use a∆z de-
rived from a visibility algorithm: A visibility algorithm
can easily calculate a more exact far plane distance. If
this far plane distance is smaller than the original far plane
distance, this can be used to increase the shadow quality
near the viewer. The new far plane distance can be used to
calculate∆z. This smaller∆z moves shadow map texels
from far away and invisible objects to nearer objects.

It is important to note that this new far plane distance
is not usable for the intersection body calculation because
it is possible that invisible objects inside the view frustum
cast a shadow inside the visible part of the view frustum
(see [13] for details). The shadows of these objects would
not be generated if we used this new far plane distance for
all calculations. We only propose to use the new far plane
distance for the calculation ofnopt. With this optimiza-
tion, we only give these invisible shadow caster objects
with visible shadows less space/resolution in the shadow
map.

With the aid ofnopt, the projection centerCP of the
perspective transformationP is given by:

CP = Ceye − (nopt − zn) ∗ VP (2)

whereCeye is the eye position.zn is the eye frustum near
plane distance andVP is the view vector of the frustum of
the perspective transformation.

VP should be pointing in the direction of the eye view
directionVeye because we want the perspective transfor-
mation to produce the closest match between the size ra-
tios of objects in eye space and the resolution ratios used
for the objects in the shadow map. This means we want
the parts of the view frustum that are close to the eye (the
near plane) in eye space to be close to the projection center
CP in light space. AdditionallyVP should be perpendic-
ular to the light directionVlight (see Figure 12). This can
be achieved by

VP = (Vlight ⊗ Veye)⊗ Vlight (3)

where⊗ is the normalized vector cross product.

Figure 12: The view direction is blue.VP is red. The light rays
are orange.Left: VP as seen from the point-of-view of the light.
Right: A side view ofVP with the light-rays coming from above.

We discovered that in real-world scenes this is not al-
ways optimal. The problem is that we want to focus on the
intersection bodyB, and this body can greatly differ from

the original view frustum. We propose to use the direction
from the eye position to the other end of the intersection
body B that is in the middle of the volume of the body.
We call this vector middle vector. It is clear that in certain
cases this vector differs from theVP we calculated above.

A very fast method is to treatB as a point cloud and
sum up all vectors emanating from the eye position to each
point. This method automatically gives more weight to
points that are far away from the eye position (intersection
points with the far plane), which is good because generally
these points influence the volume of the body much more
than the points near the view frustum near plane. Wrong
results are possible if the intersection bodyB had had parts
near the far plane intersection results with much more in-
tersections than on other parts of the far plane intersection
results. In this case, simple adding up gives wrong results.
In practice we found no robustness problems with this ap-
proach that would call for the usage of a more complex
method.

5 Results

We have implemented the described methods and im-
provements, based on the LiSPSM algorithm and used it
for a scene lit by one directional light source. The scene
is an outdoor environment that contains 10.000 tree-like
objects and uses Coherent Hierarchical Culling (CHC) [3]
for visibility determination. We implemented 2x2 percent-
age closer filtering with the OpenGL Shading Language
because not all hardware vendors supply us with automat-
ically applied pcf for shadow maps. Fogging was enabled.
Platform was a Pentium 4 2.4GHz with 1GB RAM and an
ATI Radeon 9600 with 265MB RAM. All pictures shown
in this paper where captured using a 512x512 pixel view-
port resolution and a 2048x2048 pixel shadow map reso-
lution. The field of view of the view frustum was60◦, near
plane distance was 0.1 and the far plane distance was 70.

We derived the∆z from the visibility algorithm and
used a slope-scale bias with linearz-distribution, when not
otherwise noted. We calculated the intersection bodyB
with the geometrical approach and used the intersection
bodyB middle vector asVP .

The case of our example scene shows that it is possible
to use shadow mapping as a robust solution for shadow
mapping of alarge-scale, polygon-richanddynamicenvi-
ronment.

6 Conclusion

In this paper we presented practical solutions to the prob-
lem of shadowinglarge-scale, polygon-richanddynamic
environments with the aid of LispSM. Our discussion was
centered on directional lights because such lights often
suffer, more than spot lights, from perspective aliasing.
We discussed intricacies when focusing the light space



and provided different approaches to get good results. We
stated the effects and problems of biasing to avoid self-
shadowing artifacts and compared several solutions. We
discussed perspective aliasing and introduced robust meth-
ods to implement LispSM. An open problem for future
work remains projection aliasing. As a local problem it
is difficult to find a fast method that can deal with it. The
use of blurring is possible, but our results show that often
shadow details have to be sacrificed to remove projection
aliasing with this method. It would be worthwhile to in-
vestigate into more advanced soft shadow techniques to
alleviate this problem.

References

[1] Timo Aila and Samuli Laine. Alias-free shadow
maps. InProceedings of Eurographics Symposium
on Rendering 2004, pages 161–166. Eurographics
Association, 2004.

[2] Graham Aldridge. Generalized trapezoidal
shadow mapping for infinite directional light-
ing. http://legion.gibbering.net/projectx/paper/
shadow%20mapping/, October 2004.

[3] Jiřı́ Bittner, Michael Wimmer, Harald Piringer, and
Werner Purgathofer. Coherent hierarchical culling:
Hardware occlusion queries made useful.Computer
Graphics Forum, 23(3):615–624, sep 2004. Proceed-
ings EUROGRAPHICS 2004.

[4] Stefan Brabec, Thomas Annen, and Hans-Peter Sei-
del. Practical shadow mapping.Journal of Graphics
Tools: JGT, 7(4):9–18, 2002.

[5] H. Chong and S. J. Gortler. A lixel for every pixel.
In Proceedings of Eurographics Symposium on Ren-
dering 2004, 2004.

[6] Hamilton Chong. Real-time perspective optimal
shadow maps. Senior thesis, Harvard College, Cam-
bridge, Massachusetts, April 2003.

[7] Franklin C. Crow. Shadow algorithms for computer
graphics. In James George, editor,Proceedings of
the 4th annual conference on Computer graphics and
interactive techniques, volume 11, pages 242–248.
ACM Press, July 1977.

[8] Randima Fernando, Sebastian Fernandez, Kavita
Bala, and Donald P. Greenberg. Adaptive shadow
maps. In Eugene Fiume, editor,SIGGRAPH 2001
Conference Proceedings, Annual Conference Series,
pages 387–390. ACM SIGGRAPH, Addison Wesley,
August 2001.

[9] Gregory S. Johnson, William R. Mark, and Christo-
pher A. Burns. The irregular z-buffer and its applica-
tion to shadow mapping. Research paper, The Uni-
versity of Texas at Austin, 2004.

[10] S. Kozlov. Perspective shadow maps - care and feed-
ing. GPU Gems, pages 217–244, 2004.

[11] Tobias Martin and Tiow-Seng Tan. Anti-aliasing and
continuity with trapezoidal shadow maps. InPro-
ceedings of Eurographics Symposium on Rendering
2004, pages 153–160, 2004.

[12] Tomas M̈oller and Eric Haines.Real-Time Render-
ing, Second Edition. A. K. Peters Limited, 2002.

[13] J. O’Rorke. Managing visibility for per-pixel light-
ing. GPU Gems, pages 245–257, 2004.

[14] William T. Reeves, David H. Salesin, and Robert L.
Cook. Rendering antialiased shadows with depth
maps. Computer Graphics (SIGGRAPH ’87 Pro-
ceedings), 21(4):283–291, July 1987.

[15] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim
Foran, and Paul Haeberli. Fast shadows and lighting
effects using texture mapping.Computer Graphics
(SIGGRAPH ’92 Proceedings), 26(2):249–252, July
1992.

[16] Marc Stamminger and George Drettakis. Perspective
shadow maps. InSiggraph 2002 Conference Pro-
ceedings, volume 21, 3, pages 557–562, July 2002.

[17] Yulan Wang and Steven Molnar. Second-depth
shadow mapping. Technical report, University of
North Carolina at Chapel Hill, 1994.

[18] D. Weiskopf and T. Ertl. Shadow Mapping Based on
Dual Depth Layers. InProcceedings of Eurographics
’03 Short Papers, pages 53–60, 2003.

[19] Lance Williams. Casting curved shadows on curved
surfaces.Computer Graphics (SIGGRAPH ’78 Pro-
ceedings), 12(3):270–274, Aug. 1978.

[20] Michael Wimmer, Daniel Scherzer, and Werner Pur-
gathofer. Light space perspective shadow maps. In
Proceedings of Eurographics Symposium on Render-
ing 2004, 2004.

[21] Andrew Woo. The shadow depth map revisited.
Graphics Gems III, pages 338–342, 1992.


