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ABSTRACT

This paper describes an accurate method to obtain the Tone
Reproduction Curve (TRC) of display devices without us-
ing a measurement device. It is an improvement of an ex-
isting technique based on human observation, solving its
problem of numerical instability and resulting in functions
in log–log scale which correspond better to the nature of
display devices. We demonstrate the effiency of our tech-
nique on different monitor technologies, comparing it with
direct measurements using a spectrophotometer.

Keywords: Display Measurement, Human Visual System,
Spatial Vision

1. INTRODUCTION

The colorimetric characterization of display devices is per-
formed in two steps. The first step is the definition of the
Tone Reproduction Curve (TRC) which describes the rela-
tionship between the input signal of the monitor and the
luminance produced on the screen. The second step con-
sists in the definition of a matrix that describes the additive
nature of the display device.

Several methods have been proposed to solve both steps
in the recent past, and of particular interest is how to de-
fine the TRC without the use of a spectrophotometer. These
methods use properties of human perception to achieve the
final goal. This paper introduces a method to solve the first
step without the necessity to use a spectrophotometer. It is
based on the work presented in a previous paper,1 solving
its problem of occasional numerical instability and unequal
weighting.

The paper is structured as follows. After overviewing
related work, we introduce our topic by explaining the prin-
ciple of a human comparison based measurement system.
Following human vision aspects are investigated as spatial
vision system and contrast sensitivity. Then mathematical

aspects of human comparison based measurements are de-
tailed with the frame of its application, also with setup of
single measurements with the next step and stop criterium,
respectively. The chapter about the core mathematical prob-
lem discusses 2 different methods: one is defined in a pre-
vious paper1 of the authors, describes a smoothness prob-
lem in a linear coordinate system. The other method trans-
forms the problem into a log–log scale. The latter method
has to face a numerical problem of the enormously differ-
ent coefficients of the minimum problem, due to the log–log
scaling. We show a two-pass method solving the numerical
problem and making the algorithm faster and more reliable
at the same time. The paper closes by discussion of the new
method and future work.

2. RELATED WORK

Several display characterization models with different char-
acteristics have been presented in the past. These models
can be classified into two basic categories: measuring de-
vice based and human vision based models.

Many works have been presented for the first category,2–7

trying to model the real Tone Reproduction Curve (TRC)
characteristic of a CRT display device. In many cases these
models are still not accurate enough to acquire the real
TRC, but just an approximation of it. In addition, even if
they reach sufficient accuracy for CRT displays, this accu-
racy is not achieved for LCD displays. In consequence, the
users are not able to gain the high precision required for
many applications. On the other hand a model for LCD
displays has been proposed8 which introduces a spline in-
terpolation in order to estimate the TRC.

In any case, these models require a spectrophotometer to
get the information necessary to describe the TRC.

The models of the second category are based on interac-
tion with the user and based on human vision and observa-
tion. One example is used in commercial software such as
Adobe GammaTM which comes with Adobe PhotoshopTM.



While in the first category acceptable quality can be
achieved, in the second one this goal has not been achieved
until now for two reasons. First, the current models are not
able to estimate or compute the real TRC, but only a simpli-
fication of the model used in the first category. Second, the
applied mathematical background in these models is typ-
ically restricted to describe a kind of simple exponential
gamma correction function. In order to solve this problem,
a more accurate characterization model of display devices
based only on human observation has been presented.1 In
this paper the human vision is used to compare a series of
dithered color patches against interactively changeable ho-
mogeneously colored display areas, obtaining the TRC of
display devices.

3. PRINCIPLE

Characterization of a display based only on human percep-
tion has advantages as well as disadvantages. The obvi-
ous disadvantage is implied by the adaptation mechanism of
human perception, making it impossible to define absolute
values: the result of human observation always depends on
the environmental circumstances. Only a direct comparison
of two adjacent regions can give a reliable result, especially
the detection of their identical appearance, which is used
also by our method.

We perceive an arbitrary pattern as a homogeneous field
if the spatial frequency is high enough, i.e., if the view an-
gle of dots in a pattern is below a certain threshold. We can
not distinguish luminance contrasts of two homogeneous
patches if luminance difference is below a given ratio of ab-
solute luminance, according to the Weber-Fechner law or to
the more accurate color appearance models. This ratio de-
pends on absolute luminance level (given in [cd/m2]) and
whether photopic or scotopic vision is used. Fortunately,
display devices are typically observed in the photopic range.
In this case the 1% difference of Weber-Fechner’s law9

roughly holds. The human visual system can perceive a
0.5% contrast at 100 cd/m2 average ambient luminance
level and at 8 cycles/degree spatial frequency. This ratio,
and also the error, will increase for the darkest regions.

In the visual comparisons used in our method, limits of
spatial vision in the perception of homogeneous regions will
be used, but we would like to work with the possible mini-
mal just noticeable luminance difference in order to ensure
the highest accuracy. We therefore have to use an optimal
balance of conflicting requirements for the sake of spatio-
chromatic features of observation.

Fortunately, observations of the apparent identity of two
neighbouring color patches will yield constant results for

widely changing environmental lighting conditions. It is ar-
guably the only accurate human observation, while chang-
ing circumstances can drastically change any absolute val-
ues. For example, a badly lit white table will still appear
white, in spite of its absolute color appearing dark gray.
The environmental lighting affects only the accuracy of the
observation of emissive color patches, i.e., in case of pure
emission the observation is more accurate than in case of
added ambient lighting comparable to the investigated self
emission.

Another point is that using inhomogeneous ambient il-
lumination on the area of the display itself, the increase
of illumination on the support area of the comparison re-
duces the accuracy of the comparison, but not its result,
since this variation modifies the perceived difference be-
tween the two small neighbouring areas only slightly. In ad-
dition, when the observer recognizes that the lighting is not
uniform, the comparison will be subject to a self-correction
rather than yield a bad result, and since the comparison does
not deal with separate border points, but the whole border-
line, equality will be perceived when all “trustworthy” bor-
der sections seem balanced. This means, the observer au-
tomatically ignores the parts of the border where the non-
uniform environmental illumination appears to be changing
too rapidly. Any difference in the remaining, “valid” part of
the display will be visible and noted by the observer.

Commercial graphics software sometimes includes ap-
plets which allow to find the gamma value of the display
based on the same principle, so our method can be seen as
an extension of them. All TRCs yielded by this method
can be seen only as relative, depending on the maximum
and minimum screen brightness values, so they need a few
additional measurements to complete them by these abso-
lute values. However, for many applications it is sufficient
to know the relative curves, so the real question is the ac-
curacy that can be reached with our method, compared to
an instrument-based method. Now, the advantage of this
method is that its accuracy corresponds to that of human
perception, which cannot be asserted for all the measur-
ing devices used for such purposes. In other words, we
can achieve just the required accuracy if the same environ-
ment is given during the measurement process and during
some correction operation depending on its results. In ad-
dition, it is easy to choose more appropriate circumstances
for the measurement process, e.g., a dark environment and
observation and judgement by more persons, which results
in more accurate curves.

Contrary to the above mentioned definition of a single
value (gamma) as the exponent of a power function, our
method uses several elementary measurements with differ-
ent parameters but with the same basic process for all three
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Figure 1: Dither patterns for the “chess board”

color channels.

Measurements are to be performed for the 3 color chan-
nels separately, so that series of observations will be per-
formed on dithered patches embedded in homogeneous
background color. During a single measurement, the user
tunes the background luminance level so that visual differ-
ence shall disappear between the central dithered area and
the homogeneous background. Such a measurement step is
completed when a background luminance level is accepted.
Note that human perception is most sensitive when the lu-
minance of the background colour is approximately equal to
the average luminance of the dithered patch, which is just
our case. It is similar to the crispening effect.10 A mea-
surement input can be defined as the triplet consisting of
the pattern used in the central area (see Fig. 1) and its bright
and dark luminance levels, and it results in a background lu-
minance level. Practically, only a ratio between the number
of bright and dark pixels is taken into consideration.

The “next triplet”, i.e., the “next measurement”, can be
defined depending on, or independent of, the results of the
already existing data. To complete the process, a data anal-
ysis and optimization step computes the curve in question,
which can be specified by combining certain criteria like the
minimization of the differences at each point or the overall
smoothness of the resulting curve.

The overall evaluation of the measurements as well as the
definition of their series can be controlled by different crite-
ria such as minimizing the number of measurements, having
a fixed procedure or gaining the most exact characterization
of the display possible.

4. HUMAN VISION ASPECTS

4.1. Spatial Vision

Based only on human observation, our method cannot de-
termine the absolute contrast, i.e., the ratio of max/min out-
put luminance levels, Lc(255)/Lc(0). With other “calibra-
tion applets” based on just-noticeable contrast using visu-
ally equidistant gray series, we can estimate a rough value
for this contrast, but this is not the topic of this paper. We
recommend a practical approach to calibrate this singular
free parameter after applying the mathematical model de-
scribed below. The practical range of the perceptual con-
trast of a typical monitor is 20. . . 100; for a high quality dis-
play under special conditions, it can be also be more than

1000, while in the worst case of common CRTs it can fall
also below 10 in case of a bright environment.

Why do we speak about perceptual difference? Accord-
ing to the color appearance models10 we have to take at least
the ambient luminance level into consideration for a CRT
or LCD screen in commonplace environmental settings (of-
fice, etc.). Also the rough gamma correction LUT ap-
proaches, using a simple gamma value have to be changed
for a dark, dim or average adaptation luminance level.
Namely, the real gamma value has to be divided approxi-
mately by 1.6. . . 1.7, 1.2 and 1, respectively. Thereby we
perceive linear contrast e.g. in darkness only as 60 instead
of 1000.

But this perceptual aspect of visible contrast influences
only the accuracy of measurement, not the original “pre-
perceptive” gamma curve itself, which is not depending on
ambient luminance level, only on the display. We will com-
pute objective emission values of a display for different in-
put signals and for the 3 basic colors. Of course, if we
use an arbitrarily measured or human vision based gamma
curve to generate color images, we have to take additionally
the influence of ambient light and its effect for the gamma
LUT into consideration. But this task would be already a
problem of correct color appearance or image reproduction.

The core of the comparison process is a single compar-
ison of an area uniformly filled by a single color against
another area, the “chess board”, filled by a repeating pixel
pattern. The pattern contains only two definite colors or
luminance levels (low and high), assembled according to a
simple, fixed ratio, e.g. 1/2 or some other rational number
with small denominator (Figure 1). The homogeneous area
encloses the chess-board, acting as background with lumi-
nance back.

To be usable, the patterns which are to be observed must
appear homogeneous, otherwise the inhomogenity disturbs
our observation of its equivalence with a homogeneous
area. The spatial vision models give us quantitative values
for the required viewing distance.

The contrast sensitivity function (Figure 2) and the ap-
propriate visible contrast threshold function (Figure 3) de-
scribe the spatial behavior of our vision.11–14 This figure
corresponds to the case of the highest luminance sensitivity.
Color vision models9 are working with the opposite color
channel models, using achromatic, red-green and yellow-
blue channels following the preprocessing in the retina. The
color channels are less sensitive, that means that we do not
see really sharp in particular in yellow-blue channels, we
have only a feeling of sharpness thanks to the achromatic
channel and the huge number of rods in the retina.



Figure 2: Contrast Sensitivity Function (CSF)

Figure 3: Visible Contrast Threshold

In order to avoid a complicated model and also to ensure
the highest accuracy we selected the curve of the highly sen-
sitive achromatic channel for all colors.

Image detail can be measured in cycles/degree(cpd). In
case of a sinusoidal luminance pattern it is one cycle of the
sinus function. At a discretized approach it is a pair of a
darker and a brighter pixel. We do not see details in images
with spatial resolution of more than approximately 60 cpd,
but a homogeneous field for arbitrary contrast. For oppo-
nent color channels we reach this visibility at 30 . . .40 cpd.

In our case the different “superpixel patters” of Figure 1
represent different cpd resolutions. The required view dis-
tance can be estimated with 5× 5 pixels representing the
largest patterns of Figure 1. 60 cpd of Figure 2 and a pattern
with 5×5 pixels will become invisible for distances farther
than about 5m. According to our experience, a distance of
3-4 m is always enough, and for low contrast patterns even
1 m is usually sufficient. Nevertheless, the widely used 40-
50 cm distance of gamma calibration tools is not enough for
large patterns.

Figure 4. Effect of ambient illumination of 1cd/m2 and 10cd/m2

vs. dark ambient on image value.

4.2. Displays and Contrast

As mentioned above, CRT, but also LCD have a maximum
contrast, which is the ratio of luminance values emitted by
the highest and the lowest video signal, e.g., 255 and 0, and
is finite instead of infinite, caused by the display technology
and also unwanted ambient effects.

A CRT always has unwanted electron backscattering.
Reflectivity or BRDF of the surface of a display is always
positive. Reflections can be represented, e.g., by addition
of a specular and a diffuse component. The specular com-
ponent is often a visible mirror image of the ambient room.

All of these unwanted effects reduce the contrast of a dis-
play to a certain finite value. The answer of a zero input
video signal will be a positive value at each color channel.
We have not mentioned cross effects of color channels as
another unwanted factor, e.g., the excitation of phosphors
by the “wrong” cathode ray.

Fig. 4 illustrates how the shape of the display response
curve changes depending on ambient luminance level.

Unwanted emission despite zero signals at the different
color channels decrease the displayable gamut. Contrasts
of color channels influenced by these unwanted emission
can be roughly estimated also by visual observation. Spe-
cial calibration test images can be used for this observation,
which contain equidistant gray, red, green and blue scales.
Linear contrast values of the color channels can be esti-
mated from the distinguishable dark patches of these scales.

These contrast values can complete results of gamma
functions obtained also by human observation. Although
contrast estimation is less accurate than the gamma func-
tion, fortunately it is sufficient for tone mapping, because
the visual quality of displayed images match the accuracy
of measurements based on human observation.



5. SETUP OF MEASUREMENTS

5.1. Relative measurement by human observation

Our method deals with isolated color channels, therefore
the computation is applied only on one-dimensional prob-
lems, independent from each other. We ignore cross ef-
fects between the r, g and b color channels. In fact, for
CRTs the cross effect is 1-3%. In lack of other colorimetric
information we assume that the CIE xy chromaticity val-
ues are according to the sRGB recommendation, the ITU-
R BT.709 standard: r = (0.64,0.33), g = (0.30,0.60) and
b = (0.15,0.06), and white point D65 = (0.3127,0.3290).
As mentioned in the previous section, only visual compar-
isons are used as relative inputs, so the result is also a rela-
tive function which describes the relative luminance values
of the independent channels, from 0 to 255. The relative lu-
minance values lr, lg, lb can be converted to absolute values
Lr,Lg,Lb by

Lc(val) = Lc(0)+
Lc(255)−Lc(0)

lc(255)− lc(0)
· lc(val) (1)

where c = r,g,b and val = 0 . . .255. For the sake of simplic-
ity we will work with lc(0) = 0 and lc(255) = 1, so equa-
tion (1) is simplified to

Lc(val) = Lc(0)+(Lc(255)−Lc(0)) · lc(val) (2)

The measured and computed values lc(val) are independent
of the values Lc(0) and Lc(255). However, these absolute
values and their ratio defining the absolute contrast range
of the display device in question can be interesting for the
overall appearance, but finding them is outside the scope of
this method.

Showing a dither pattern realized by luminances low and
high, the observer is requested to tune the third, homoge-
neous luminance level (back) until the luminance difference
disappears. Now we have 3 values (low, high, back), and a
ratio of the number of the low luminance level pixels within
the pattern, ratio = Nlow

Nlow+Nhigh
. The following approximation

can be written for the absolute luminance values

Lc(back) ≈ Lc(low) · ratio+Lc(high) · (1− ratio) (3)

for channels c = r,g,b. Using equation (1):

Lc(0)+Q · lc(back) ≈

≈ (Lc(0)+Q · lc(low)) · ratio

+(Lc(0)+Q · lc(high)) · (1− ratio)
(4)

with Q = Lc(255)−Lc(0)
lc(255)−lc(0) , and reordering

lc(back) ≈ lc(low) · ratio+ lc(high) · (1− ratio) (5)

shows the independence of the measurements from values
of Lc(0) and Lc(255) and also that lc(0) and lc(255) can be
predefined arbitrarily:

lc(0) = 0 and lc(255) = 1 (6)

A single measurement gives a single back value for the mea-
surement input triplet (low,high,ratio); back, low and high
are bytes, and ratio is a simple rational number. The goal is
to define the function f = lc, that is, 256 separate values for
inputs 0. . . 255.

We now face a practical and two mathematical problems

1. Conditions of the measurements have to be defined

2. Having a list of measurements, a curve is to be defined

3. Having a list of measurements and perhaps a prelimi-
nary curve defined by them, either define the next mea-
surement’s setup, and/or recommend to stop the pro-
cess

The first question belongs to the setup problem, while the
last is concerning partly also to the setup or preparation and
partly to a special control problem. So first these two points
will be explained in detail, then the mathematical core of
the method will be presented in section 6.

5.2. The stop criterium

The measurement shall be accurate and at the same time
the number of the measurements should be minimized to
achieve good results with low effort for the user. These re-
quirements lead to another optimization problem: defining
the next measurement step in an optimal way, and notifying
the user when reliability has reached a certain limit.

The main problem for generating the input for the next
measurement is that the expected effect of a next measure-
ment on the reliability of the function should be evaluated
depending on the behavior of the still unknown function it-
self. How could this function behave between the points
(byte values of colors) where we already have some in-
formation, and how can we rely on the previous measure-
ments? These questions are connected to the principles of
the optimization method. We use some heuristics relying
on experiments, in order to get a compromise between sim-
plicity and accuracy, where the observer can overrule the
recommendation to stop.

A measurement means a definition of a value by the user,
where the low and high values used in the pattern are given
as well as their mixing ratio, represented by the pattern.
Then the low, high and also the resulting colour value would
be taken as support points. The method restricts the possible



low and high points for the new measurement only on the
set of already used support points. The central players of the
process are the Reliability and its opposite and reciprocal,
the Uncertainty. The simple rule is that the Reliabilities can
be added, its meaning and usability is of course depending
on the definition of the Reliability, which is following here
on.

The process defining the next measurement consists of
three successive steps, using functions f1, f2 and f3 balanc-
ing the process properly:

1. Two kinds or layers of Reliabilities are defined. First
the reliabilities of existing support points are defined as
the sum of all the Reliabilities coming from the mea-
surements in which these points appear (as low, high,
or result point). Obviously, the points 0 and 255 are
assigned absolute Reliabilities (i.e., zero Uncertainty).

An individual measurement’s Uncertainty is equal to
the error of its condition (10) to be minimized, multi-
plied by the effect of the pattern’s non-homogenity and
the contrast sensitivity belonging to the luminance to
be set.

Uncsupp( j) = |M( j)|

× f1
(

nonhomogenity(pattern( j))
)

× f2
(

contrastsensitivity(luminance( j))
)

2. Then, each point is assigned the other kind of Relia-
bility as a sum of the ‘effects’ of the support points on
the regular point in question. These ‘effects’ are also
some sort of Reliabilities, but Uncertainties are di-
rectly computed by adding the Uncertainty of the sup-
port point in question and another Uncertainty which
is a square function of the distance between the two
points. This value characterizes an exisiting set of
measurements, so when their compound value, actu-
ally their maximum, reaches a certain threshold, the
process is suggested to be terminated.

Uncreg(i) =
1

∑ j∈M ,i@M j
1

Uncrel (i, j)

(7)

where Uncrel(i, j) = Uncsupp( j)+ f3((i− j)2).

In Eq. (7), i@M j means no j′ ∈ M lies between i and
j. Of course there cannot be more than 2 such j indices
for any given i.

3. Finally all the possible triplets (low, high, ratio) are
evaluated so that the estimated effect of the triplet is
added to the Reliabilities of the ordinary points and
then their maximum values are compared in order to
select the best triplet. In order to estimate the effect of

an incomplete measurement series on a regular point,
which is embodied in an additional Reliability, its cor-
respondent Uncertainty is computed as a product of
the potential q quality of the measurement, and a sum
of the Uncertainties of the given low and high points
and a distance dependent component. q quality factor
is estimated from the pattern and the luminance levels
playing taking part in it.

Effectestim(i, j1, j2,ratio) =

q( j1, j2,ratio)×

(

f3
(

(i− j3)
2)+ f3

(

(i− jx)
2)

+
1

Uncsupp( j1)
+

1
Uncsupp( j2)

)

(8)

In Eq. (8) j3 is the estimated result of the new mea-
surement following the current solution, neighbours of
i in M are j1 and j2, that is i@M j1 and i@M j2, so
i@M∪( j3) j3 shall be fulfilled anyway. x is identical to 1
or 2 depending on the position of i, which lies between
j3 and jx, or by other words i@M∪( j3) jx is satisfied.

The main idea of the process is that the estimated effect of
a tentative measurement is computed as sum of changes of
Reliabilities of regular points as in Eq. (7), and their esti-
mated Uncertainties are computed also as in Eq. (7). Their
expected uncertainties are preestimated in such way, and
then the overall change as their sum, which drives selection
of the new triplet needed to minimize the predicted overall
uncertainties.

6. THE MATHEMATICAL PROBLEM

Given a list of measurements with input controlled by a pre-
defined or automatically derived series, a function is to be
defined corresponding to them.

First of all properties have to be defined which the func-
tion has to fulfill. A set of approximations as in eq. (5) is
obviously not enough to give a definition of the function,
simply because of the degree of its freedom. In order to
reduce it, the resulting function should fulfill certain ad-
ditional conditions, defining its general behaviour. These
conditions can restrict the set of the possible functions to
a certain class and/or give additional criteria corresponding
to the likely nature of the result.

We worked out two different approaches in this paper,
both of them assume the function being smooth or, more ex-
actly, having a small second derivative. The first approach



works in the original coordinate system while the second
one translates its axes, so the problem is defined in another
coordinate system.

6.1. Problem in linear coordinate system

First, we restrict the domain of the function only to the pos-
sible inputs, i.e., integers from 0 to 255. The second deriva-
tive on a domain consisting of a discrete set of points can
be written in the form of finite differences:

S(i) = f (i+1)+ f (i−1)−2 f (i) (i = 1 . . .254) (9)

We transform the approximations (5) for the N measure-
ments ( j = 1 . . .N):

M( j) = f (low j) · ratio j

+ f (high j) · (1− ratio j)

− f (back j)

(10)

Now we have two separate sets of conditions which im-
pact the shape of the desired function: the smoothness con-
ditions S(i) and the measurement conditions M( j). The lat-
ter can be used also by two different modes. One is to take
them as hard constraints, i.e., M( j) = 0, the other is to min-
imize them together with the other conditions.

It can be argued that there is no exact measurement, at
least because setting their values should give an exact real
number, but the measurements can be choosen only from
a discrete set of numbers actually. On the other hand, the
user can introduce errors by his/her estimation as well, so
in addition there can even be more or less contradictional
conditions. The problem is solved as compound minimum
problem of the smoothness and measurement conditions,
and their importances are accounted for by weight factors
si and m j. The optimal result would have all of the expres-
sions S(i) and M( j) equal to zero (i = 1 . . .254, j = 1 . . .N),
so we have to minimize the expression

F =
254

∑
i=1

si ·S(i)2 +
N

∑
j=1

m j ·M( j)2, (11)

where by (6) f (0) and f (1) are constant, and F is a 254-
variable function. As a result we get a smooth function con-
forming well to the measurements, as expected. All in all
there are 256−2+N minimum criteria and 2 constraints de-
spite the original 256 variables. These obviously cannot be
made zero at the same time, so the solution will be a com-
promise depending on the weights si,m j and the content of
M( j).

There are several efficient methods to solve the quadratic
minimum problem, two of which are mentioned here. One

is solving F using a system of 254 linear equations with a
sparse matrix. The other is directly solving the minimum
problem by an appropriate descent method.15

We have choosen a conjugate gradient method, which is
a modification of the steepest descent method, and is in our
case faster by one magnitude than the ordinary steepest de-
scent (gradient) method. An optimization needs 20–50 ele-
mentary steps, each of them consisting of an evaluation of
F and its derivative.

A problem not yet mentioned is the definition of the
weights si and m j. Considering the equal importance of
the different smoothness conditions and the different mea-
surement conditions respectively, we assume all si = s and
m j = m. Multiplying the whole problem by a constant we
can set s = 1, so it is enough to define m.

To define this value, let us consider the overall behaviour
of the solution. Optimizing the total smoothness leads
to spline-like curves, where the magnitude of the average
value of the second derivative is 1/2552, and its overall
sum is 1/255. Minimizing its distribution, we get a slowly
changing second derivative, i.e., a curve behaving locally
similar to a polynome of about 3rd degree. A sudden jump
causes an O(1) constant anomaly, so if the magnitude of m
is between 1 and 1/255, we have a locally and also globally
well behaving function. Of course this value can be modi-
fied or tuned further by demand.1 describes this method in
more details.

6.2. Solution in log-log coordinate system

Considering that the optimization introduced above tries to
reach maximal smoothness which leads to functions behav-
ing locally like 3rd order polynoms, and also considering
that the display characteristics used to be approximately
a power function which differs from this one, another ap-
proach was investigated.

We transform the coordinate system, the domain as well
as the range, to a log-log scale so that

logy = g(log(x/255)) where y = f (x) (12)

Linear functions of this coordinate system are correspond-
ing to c · xp power functions in the original system, and the
minimum problem results in the possibly smoothest func-
tions, that is, the functions most similar to linear functions,
so this transformation looks like the appropriate way to get
power-like functions in the original coordinate system.

6.2.1. Problem statement

Taking the new variables, the coefficients si of the smooth-
ness conditions S(i) will change, and also the measurement
conditions M( j) shall be rewritten with the exp functions



of the new variables, since the formula is applicable to the
original values. All in all another minimum problem is to
be solved by the conditions:

S(i) = si,i+1 · f (log(i+1))

+ si,i−1 · f (log(i−1))

+ si,i · f (log i)

(13)

with (i = 2 . . .254), where, from the finite difference formu-
las,

si,i+1 =
2

(

log(i+1)− log i
)

·
(

log(i+1)− log(i−1)
)

si,i−1 =
2

(

log i− log(i−1)
)

·
(

log(i+1)− log(i−1)
)

si,i =
2

(

log(i+1)− log i
)

·
(

log i− log(i−1)
)

S(1) has been omitted, since the variable y0 = −∞ is
omitted anyway, which means that no smoothness condi-
tion could be defined using this variable. It is neither a real
problem in this coordinate system, nor in its retransformed
linear version. Behind this little but strange point can be
found the characteristics of the power-like functions. All in
all the problem is simpler by one variable, which gives one
more degree of freedom. This additional freedom lies be-
hind the phenomenon that an arbitrary power function can
be defined by one measurement, as it can be done by e.g.
the simple gamma applets.

The measurement conditions change into

M( j) = exp( f (log(low j))) · ratio j

+ exp( f (log(high j))) · (1− ratio j)

− exp( f (log(back j)))

(14)

where ( j = 1 . . .N).

The minimum problem (11) can be written with the ex-
pressions above in order to obtain the form of the directly
transformed measurement conditions, but in this case we
face two new problems. One is the convexity of the mea-
surement conditions, corresponding to (14). The square
of these expressions will not be convex, which leads to
some algorithmical difficulties, especially by considering
the original dimensionality of the problem, which has 256
variables.

The other problem is much more crucial. Conditions in
(13) can be weighted arbitrarily, their weights expressing
their individual importance. If different weights are used,
they could distort the overall smoothness depending how
unbalanced they are, that is, the function would be smoother
in one part and less smooth in another. In a drastical case

it destroys the original expectation, that is, the function will
not behave like a power function, which was the argument
to apply the axis transformation in the first place. Unfortu-
nately, if the weights are equal, the magnitudes of the coef-
ficients will be enormously different, their maximum value
will be

s2,2/s254,254 =
(log255− log 254) · (log 254− log 253)

(log3− log 2) · (log 2− log 1)

≈
1/254.5 ·1/253.5

1/2.5 ·1/1.5

≈ 2−14

which leads to unsolvable numerical instabilities when min-
imizing them, especially by taking their squares the magni-
tude will be squared as well (2−28). So it is obvious that
the log-log transformation with the form of the minimum
problem cannot work because of numerical reasons.

6.2.2. A two pass solution for the log-log problem

There are two sets of points on the transformed independent
axis, which play a special role in our problems. S consists
of all points playing any role in the smoothness conditions
(13). The other, set M , is a subset of the 256-element set
S . M consists of all points playing any role in the mea-
surement conditions (14). Let us consider the next smooth-
ness conditions written for the triplets of the sparser set M .

SM (k) = sM k, j · f (log j)

+ sM k,k · f (logk)

+ sM k,l · f (log l)

(15)

where (log j, logk, log l) is a succesive triplet of M , and
from the finite difference formulas

sM k, j =
2

(logk− log j) · (log l − log j)

sM k,k =
2

(log l− logk) · (logk− log j)

sM k,l =
2

(log l− logk) · (log l − log j)

It can be seen that solving the minimum problem of the
smoothness criteria (13) over S , and taking its values only
over its subset M , this restricted solution can be taken as a
good quasi minimum for the problem of the smoothness cri-
teria (15) defined directly over M . And vice versa, solving
the problem just over M and fixing its results, then solv-
ing the previous problem by these constraints, the obtained
overall solution will also be a good quasi minimum for the
non-constrained original problem.

It can be seen as well that the situation is similar if other,
new conditions are added to the original problem. As its



main example, the measurement conditions (14) can be
added to both versions of the smoothness problem above,
that is, to the original condition system (13), and also to its
extension by (15) over M . their solutions will approximate
each other well.

Let us suppose that the minimum problem of this ex-
tended condition system has already been solved. Now,
let f (log j) values be fixed for each log j from M , and the
minimum problem be solved again with this additional con-
straints. Let us recognise that the solution of this second
problem cannot differ from the non-constrained one, since
this solution could be a better solution also for the first prob-
lem, contradicting its minimality! Therefore the same solu-
tion must be obtained for both of them.

After this recognition let us consider the series of prob-
lems:

A Smoothness condition (13) over S

Measurement condition (14) over M

no constraints
B Smoothness condition (13) over S

Smoothness condition (15) over M

Measurement condition (14) over M

no constraints
C Smoothness condition (15) over M

Measurement condition (14) over M

no constraints
D Smoothness condition (13) over S

Smoothness condition (15) over M

Measurement condition (14) over M

constraints of solution C over M

E Smoothness condition (13) over S

constraints of solution C over M

A is the original problem, it gives an equivalent solution
with B, and B gives also an equivalent solution over M

with C. D gives also an equivalent solution with C, so that
they are equivalent over M . Finally, as proven above, the
solution of E is identical to the solution of D.

It implies a two pass method resulting in a well-
approximating solution of the original minimum problem.
First, problem C shall be solved which is a minimum prob-
lem in few variables, containing also slightly non-convex
components, but its technical problems can be overcome by
a moderate effort.

Second, problem E shall be solved, which includes all the
numerical instabilities, but in this form it is a pure smooth-
ness problem at the same time. This problem is identical
with defining a spline across a finite set of given points. In-
dependently from the number of given points, it leads to a
2-dimensional optimum problem defining interval-wise 3rd
order polynomials. These polynomials are defined by their

coefficients instead of a set of points of the domain that
would promise numerical difficulties.

For the last step a reconversion shall be performed, trans-
forming the logyi = f (log i) that is logyi = fi values back
to yi = exp fi. The obtained curve is a piecewise transition
of power-like base functions, so it coalesces the behaviour
of the power function and changes one power function to
another in the smoothest way in sense of the log-log coor-
dinate system.

6.2.3. Discussion of the methods

The original linear problem is a 256 variable, 256+N con-
dition minimum problem, with N � 256. It is solved prac-
tically by a steepest descent method which is a stable and
fast algorithm.

The behaviour of the approximation highly depends on
the balance between the smoothness conditions and mea-
surement conditions. The solution of a compound quadratic
optimum problem has been selected in order to compensate
for the possible errors of the measurements, which are ac-
tually human perception based, but errors would come into
account in any sort of measurements. In case of absolute
weights of measurements, that is, assuming their absolute
accuracy, a spline problem is implied, similar to the sec-
ond pass of the two pass method. This case shows the na-
ture of the obtained curve better, which is an interval-wise
3rd-order polynomial in a general case too. Interval-wise
3-order polynomials of a spline realize the smoothest tran-
sition between their supporting points or, in other words,
the smoothest transformation of linear segments in order to
link them together smoothly. This character is watermarked
also in a softer weighting similar to the weights given in the
linear coordinate system.

The second method using the log-log coordinate transfor-
mation also keeps the smoothness, since the transformation
of the coordinate system has been introduced just in order
to conform the preferred shapes to the displays. It is only a
practical question, but just because it is a practical question,
it can result in a better practical solution.

After the coordinate transformation, a two pass separa-
tion of the algorithm has been applied in order to overcome
the numerical instabilities. In fact this method could have
been applied also for the original lin-lin coordinate system,
and this could reveal that the solution is also a spline in
any case because of the equality of the solutions of the con-
strained and non-constrained problems as it has been proven
in the previous section. However, it is clear that the quasi-
equivalences of the previous section are not strict equiva-
lences, so this solution is not the theoretical optimum.



Nevertheless, applying this two-step process to our case
we have decreased the problem of the weights, which is ad-
dressed in both steps to the same M domain where they
are naturally commensurable. On the other hand the second
pass is also obvious, and both are fast. In addition one can
introduce additional freedom into the spline computation,
allowing the values over M not to be exact, but the func-
tion being smoother. This leads to a similar question as it
has appeared with the lin-lin method’s weighting, but in a
much simpler form and in a faster algorithm. All in all, it
means that the theoretical exactness has been sacrificed for
getting a faster, simpler result which is still extendable to a
similarly flexible solution.

In addition it can be seen that the applied methods and
forms are secondary compared to the original problem,
which is not exactly formalized, but a matter of decision.

7. RESULTS

To evaluate the ability of our method to capture the real
TRC curve of a monitor, we compare it with results from
direct measurements of the TRC curve using a GretagMac-
beth Spectrolino spectrophotometer. In order to demon-
strate the general usability of the method, the experiments
are performed on two different monitor technologies: Cath-
ode Ray Tube (CRT, Nokia 446Pro) and Liquid Crystal
Display (LCD, EIZO FlexScan L985EX). The Spectrolino
measured 52 color values per channel, with color values 0
to 255 increasing in equal steps of 5.

Figure 5 shows the results for the CRT Monitor in the
left half, for the LCD monitor in the right half, for all three
channels. In this figure the TRCs obtained as result of
the spectrophotometer measurements are taken as reference
(solid line). The TRCs obtained as result of our method
(dashed line) practically are able to reproduce the refer-
ence curve, or a close approximation. This is valid for both
monitors used in the experiments. Note the jaggyness in
the Spectrolino CRT curves, caused by the different colour
depth setting of 16-bit.

8. CONCLUSION AND FUTURE WORK

A significant improvement for our model for gamma dis-
play characterization1 has been presented in this paper
which is able to overcome the limitations of the previous
version, in particular, solving the problem of instability and
unequal weighting. This method is simplified and made
more reliable by changing the simple smoothness princi-
ple to a log-log scale based one. A trade-off between
the smoothness and observation conditions is analysed, im-
proving the reliability of the results of the method.

The flexibility of the model allows it to be used in many
applications without the necessity to use a spectrophotome-
ter. Also a fast and simple (re)characterization is possible,
just using an interactive process with the end user. The main
benefit of this approach is that it is a cheap and simple solu-
tion, either to define a relative TRC of a display or to verify
a given one.

There are a couple of open possibilities in the method.
On one hand its usability could be improved by taking in-
formation on the absolute values, that is, about the contrast
value and the smallest (or the largest) value of the absolute
luminance, either staying at the human perception based in-
put or using other methods.

On the other hand, it should be possible to solve the phe-
nomenon of the cross effect between the colour channels,
and the method may be extended for a multidisplay system
application.
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Figure 5: Comparison of TRC acquired with new method (dashed line) and Spectrolino measurements (solid line)
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