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Abstract
We present an online occlusion culling system which computes visibility in parallel to the rendering pipeline. We
show how to use point visibility algorithms to quickly calculate a tight potentially visible set (PVS ) which is
valid for several frames, by shrinking the occluders used in visibility calculations by an adequate amount. These
visibility calculations can be performed on a visibility server, possibly a distinct computer communicating with
the display host over a local network. The resulting system essentially combines the advantages of online visibility
processing and region-based visibility calculations, allowing asynchronous processing of visibility and display
operations. We analyze two different types of hardware-based point visibility algorithms and address the problem
of bounded calculation time which is the basis for true real-time behavior. Our results show reliable, sustained 60
Hz performance in a walkthrough with an urban environment of nearly 2 million polygons, and a terrain flyover.

1. Introduction

We are interested in real-time rendering applications such
as urban simulation (Fig. 1), flyovers and interactive scene
modeling. The scene complexity for these applications usu-
ally exceeds the rendering capacity of a single computer. To
reduce the load on the graphics hardware, visibility calcu-
lations can be used to quickly prune large portions of the
scene.

However, the visibility problem is inherently complex7.

Figure 1: A frame from an urban walkthrough. For true real-
time behaviour we aim at refresh rates of 60 Hz.

Point-based visibility algorithms, for example, calculate a
set of potentially visible objects (PVS ) for each viewpoint.
The general problem of point visibility algorithms is that
they have to be executed for each frame and the renderer can-
not proceed until a PVS is available. Their relatively long
computation time significantly reduces the time available to
render geometry, if not reducing the achievable frame rates
below limits acceptable for real-time rendering applications.

Precalculating visibility for a region of space8, 13, 19, 22

(view cell) reduces almost all runtime overhead. However,
current region visibility algorithms suffer from several draw-
backs. There is a tradeoff between the quality of the PVS
estimation on the one hand and memory consumption and
precalculation time on the other hand. Smaller view cells re-
duce the number of potentially visible objects and therefore
improve rendering time. However, smaller view cells also in-
crease the number of view cells that need to be precomputed,
which can result in prohibitively large storage requirements
and precalculation times for all PVS s. Another problem is
that many runtime modifications of the scene cannot be han-
dled, and even small offline changes to the model might en-
tail several hours of recomputation. This makes region visi-
bility a viable choice for certain models (as, for example, in a
computer game), but impractical for dynamic systems where
changes to the model occur frequently (as, for example, in an
urban modeling scenario).

In this paper we address the aforementioned problems. We
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show how to achieve a large improvement over previous sys-
tems by adding new hardware to the system in the form of an
additional machine in the network which is used as a visibil-
ity server. We calculate visibility at runtime, avoiding mem-
ory problems because the PVS need not be stored, but for a
region, allowing it to be calculated in parallel to the render-
ing pipeline so that it imposes virtually no overhead on the
rendering system. This results in Instant Visibility, a system
which calculates a tight PVS with very little preprocessing
and practically no runtime overhead on the graphics work-
station.

The remainder of the paper is organized as follows: after
reviewing some relevant work, section 3 gives an overview
of the system, and section 4 gives a detailed description of
the various algorithms involved. We discuss integration of
existing point visibility algorithms into our system in sec-
tion 5, and present results in section 6. Section 7 gives a
detailed discussion of some important aspects of the system.

2. Previous Work

The idea of efficient visibility culling algorithms for real-
time rendering is to calculate a conservative estimation of
those parts of the scene that are definitely invisible, leaving
final hidden surface removal to a z-buffer. The set of objects
remaining after visibility culling is usually called the poten-
tially visible set (PVS ).

One class of visibility algorithms calculates visibility
from a point. A simple and general example is view frustum
culling4, which is applicable to almost any model. To take
into account the large amount of occlusion present in many
scenes, image-space and geometric occlusion culling meth-
ods were proposed. Image space methods render occluders
into an occlusion map or a hierarchy of maps. Scene objects,
organized in a spatial data structure, are tested against the
map(s). Image-based methods have become popular in prac-
tice because of their robustness and ability to make use of
graphics hardware. Occlusion maps are calculated using ei-
ther perspective projection (e.g., the hierarchical z-buffer, or
HZB10, and the hierarchical occlusion map, or HOM23), or
orthographic projection (e.g., the cull map21). In geometric
methods6, 3, 12, scene objects are geometrically tested against
the shadow volume of selected occluders. The number of oc-
cluders that can be considered is limited due to the complex-
ity of geometric shadow computations. Unfortunately, cur-
rent point occlusion culling algorithms take up a substantial
amount of frame time, limiting their use for real-time ren-
dering applications.

Multiprocessing has been explored as a means to speed
up visibility culling. In their interactive massive model ren-
dering system, Aliaga et al.1 combine image-space occlu-
sion culling and several other acceleration techniques into
a working system. Occlusion culling is calculated on a sep-
arate processor one frame in advance, which introduces a

latency of one frame and tightly couples occlusion culling to
the frame rate.

A second class of visibility algorithms breaks down the
view space into regions of space (typically called view
cells) and precomputes a PVS for each view cell. Af-
ter the whole scene has been processed, PVS data for all
view cells is stored on disk and retrieved on demand dur-
ing an interactive walkthrough. Some algorithms require ob-
jects to be occluded by a single occluder to be considered
invisible5, 18. Other algorithms exploit a priori knowledge
about the scene structure: indoor scenes (e.g., architectural
walkthroughs)16, 20) can be partitioned into portals and cells
to compute inter-cell visibility, and outdoor scenes can be
handled by a 2.5D approach13, 22. Algorithms for general 3D
scenes have been proposed by Schaufler et al.19 and Durand
et al.8.

3. Overview

We introduce a new visibility system that allows calculat-
ing visibility in parallel to the traditional rendering pipeline.
The idea is to calculate a visibility solution (PVS ) which
is valid for several frames, depending on a maximum ob-
server movement speed. This is achieved by using a standard
point visibility algorithm and shrinking the occluders so as
to make the resulting visibility solution valid for a certain
ε-neighborhood around the viewpoint from which the visi-
bility solution is calculated.

The algorithm consists of a short preprocessing phase and
an online phase. The following parameters have to be deter-
mined in advance:

• Choose a point visibility algorithm.
• Decide on how much time to allot for the visibility solu-

tion.
• Set a maximum observer movement speed.

In the preprocessing phase, occluders are generated for
the scene and shrunk by an amount determined through the
maximum movement speed and the time allotted for the
visibility solution. For the online phase, two computing re-
sources are needed:

• one resource to render and display frames with the current
PVS

• a second resource to calculate the PVS for the next set of
frames

4. Instant Visibility

4.1. The traditional pipeline

The traditional rendering pipeline consists of several steps,
where each step depends on the outcome of the previ-
ous step. Roughly, we identify two important steps of the
pipeline for our discussion:
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Figure 2: Parallelization in the traditional pipeline intro-
duces latency and limits the time available for visibility. The
figure shows where additional latency is introduced.

• Vis(P ) determines which objects are visible from an ob-
server position P .

• Draw(P ) draws (traverses, transforms, rasterizes) the ob-
jects identified as visible as seen from the observer at po-
sition P .

These two steps communicate via the

• PVS(P ), potentially visible set, i.e., the set of objects
determined to be potentially visible for a position P .

Efforts to parallelize Vis(P ) and Draw(P ) (for exam-
ple, in a manner consistent with the multiprocessing mode
of a popular rendering toolkit11) suffer from latency, since
Draw(P ) requires the result of Vis(P ) to be able to oper-
ate (see Fig. 2).

4.2. Extending PVS validity

Wonka et al. 22 showed that the result of any point visibility
algorithm can be made valid for an ε-neighborhood around
the viewpoint by occluder shrinking. If all occluders in the
scene are shrunk by an amount of ε, the pipeline step Vis(P )
actually computes

PVS ε(P )

the set of objects potentially visible from either the point
P or any point Q with ‖P −Q‖ < ε. PVS ε(P ) can also be
characterized by

PVS(P ) ⊆ PVS ε(P ) ∀Q : ‖P − Q‖ < ε

We observe that the result of Vis(P0) is still valid during
the computation of Vis(P1), as long as the observer does
not leave an ε-neighborhood around P0.

4.3. Parallel execution

We exploit the above observation to remove Vis from the
pipeline and instead execute it in parallel to the pipeline (Fig.
3). Vis(P ) might even take longer than a typical frame to
execute - as long as the observer doesn’t move too far away
from P . More precisely, it is easy to show the following

Lemma 4.1 Assume a frametime of tframe . Assume also that
Vis(P ) takes at most a time of tvis to compute, where tvis
is a multiple of tframe , and Vis(P ) always starts at a frame
boundary. Then the time tε for which the visibility solution
PVS ε(P ) computed by Vis(P ) has to be valid so as to al-
low parallel execution of Vis and Draw can be calculated
as

tε = 2tvis − tframe

Proof Vis(Pi) takes tvis to calculate. The result has to
be valid till the result from Vis(Pi+1) is available, which
takes again tvis . But, the last frame where PVS ε(Pi) is
valid displays an image for a viewpoint at the start of the
frame. During the time period needed to render this last
frame, no visibility solution is actually needed. So, we have
tε = tvis + tvis − tframe .

Given a maximum observer speed vmax , the amount ε by
which to shrink occluders can now be readily calculated as

ε = tεvmax

If the visibility solution does not take longer to compute
than a typical frame (i.e., tvis = tframe ), this means that
tε = tframe and ε identifies the amount of space the observer
can cover in one frame.

The algorithm described here effectively allows near-
asynchronous execution of Vis and Draw . This makes it
possible to achieve high frame rates even if the used visi-
bility algorithm is not fast enough to complete in one frame
time. In a typical scenario, the point visibility algorithm can
provide results at a rate of at least 20 Hz, and the screen
update rate is 60 Hz. Then PVS ε has to be valid for the
distance ε the observer can go in 5 frames. Assuming a max-
imum observer speed of 130 km/h, ε would be 3 m.

4.4. Networking

Executing visibility in parallel to rendering requires an ad-
ditional computing resource. If the point visibility algorithm
does not need access to graphics hardware itself, it can run
on a separate processor. In case the point visibility algorithm
does need acces to graphics hardware, multichannel archi-
tectures allow the system to run on one machine.

The real strength of the method, however, lies in its inher-
ent networking ability. The low network latency of today’s
local area networks allows a second machine to be used as a
visibility server. At the start of a visibility frame, the current
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Figure 3: The new visibility pipeline. Vis can take several frame times, the arrows show for which frames the resulting PVS
is used.

viewpoint is passed to the visibility server. After visibility
calculations, the PVS is transmitted back to the graphics
workstation.

A PVS typically contains object identifiers of a spatial
scene data structure, so the size of a PVS depends on the
granularity of this data structure and the amount of occlu-
sion present. It should be noted that PVS -data is well com-
pressible, even standard entropy coding achieves a compres-
sion ratio of up to 3:1. To give a practical example, passing a
PVS containing 4000 32bit object identifiers on a 100MBit-
network takes about 1ms after compression.

Running the point visibility algorithm on a second ma-
chine also has the advantage that access to graphics hard-
ware is automatically available, provided the visibility server
is equipped with a good graphics card.

4.5. Synchronization

Running the visibility step in parallel to the rendering step
requires synchronizing the two. In particular, it is crucial to
deal with situations where visibility takes longer than tvis to
calculate, because the rendering step cannot continue with-
out a potentially visible set. We list several ways to cope with
this problem and discuss their applicability.

The preferred strategy depends strongly on the point vis-
ibility algorithm chosen. Many such algorithms consist of
two steps: creating an occlusion data structure using a set of
occluders, and testing the scene against this occlusion data
structure. We assume that the number of occluders to draw
determines the running time of visibility, and that the time
necessary to test the scene against the occlusion data struc-
ture can be determined in advance.

guaranteed visbility Use a point visibility algorithm that
has an inherent bound on its running time.

abort visibility Draw only so many occluders that visibility
can execute in tvis .

predictive occluder scheduling Determine in advance
which occluders to draw so that visibility can execute in
tvis and best possible occlusion is achieved. If occluder
levels of detail are available, they can be incorporated in a
similar fashion to Funkhouser’s predictive level of detail
scheduling 9.

The next two possibilities are intended as fallback-
strategies rather than solutions of their own, in case the other
strategies fail, or small errors are not an issue and the chosen
visibility algorithm executes fast enough in the majority of
cases. They are implemented in Draw instead of Vis .

stall Stall movement to prevent the observer from leaving
the ε-neighborhood as long as there is no visibility solu-
tion available. This always guarantees correct images.

incomplete visibility Let the observer leave the ε-
neighborhood, but still use PVS ε(P ). Errors in visibility
might occur, but observer speed is continuous and
unhampered.

5. Integration with current occlusion culling algorithms

In this section we discuss important issues when integrating
a point occlusion algorithm into our system.

5.1. Choice of projection

Image-based occlusion culling algorithms rely on projecting
occluders and scene objects to a common projection plane.

For the application in urban environments, Wonka et al. 21
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Shadow
Projection

Occluder Shadow

Figure 4: An orthographic occlusion map. The shadow
cast by an occluder is projected orthographically into
the cullmap, which stores the depth values of the highest
shadow.

proposed rendering the shadows cast by occluders into an or-
thographic top-down view of the scene, the cull map (Fig. 4).
Although the approach is limited to 2.5D scenes, it has two
advantages:

• shrinking the occluders also guarantees conservative ras-
terization of occluder shadows into the cullmap 22.

• It is very easy to calculate occlusion for a whole 360◦

panorama.

Other common approaches like the hierarchical z-buffer
or the hierarchical occlusion maps are based on a perspec-
tive projection of the occluders and the scene into the current
viewing frustum (Fig. 5). The advantage is that arbitrary 3D
scenes can be processed. However, visibility is only calcu-
lated for the current viewing frustum. Therefore, the viewing
frustum (a pyramid) for occlusion culling has to be carefully
chosen so as to include all parts of the scene that could be
viewed within a time of tε.

Occluder

Shadow
Projection

Figure 5: A perspective occlusion map. Occluders are pro-
jected onto a plane defined by the current camera parame-
ters.

� - Neighbourhood

Projection
Plane

f1
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�

Figure 6: Adjusting the frustum for perspective projections.
The original frustum f1 is made wider by an angle of ϕ. The
resulting frustum f2 is then moved back to yield a frustum
f3 tight on the ε-neighborhood, to accomodate rotation and
movement during the time tε.

To make this at all possible, a maximum turning speed ωε

has to be imposed. The viewing pyramid is then made wider
at all sides by the angle ϕ the observer can turn in tε, given
by ϕ = tεωε. Finally, the pyramid is moved backwards until
it fits tightly on an ε-sphere centered on the viewpoint, to
account for backward and sideward movement (Fig. 6).

As a simple example, assume visibility and screen up-
date rates of 20 Hz and 60 Hz respectively as above. If
ωε = 180 ◦

s
(e.g., relatively fast head movement), the pyra-

mid would have to be made wider by 15◦ on each side. This
would enlarge a typical viewing frustum of 60◦ to 90◦.

5.2. Occluder selection policies

The running speed of most current occlusion culling algo-
rithms is mainly determined by the number of occluders they
consider. It is thus desirable not to render all occluders for
every view point. Typically, a heuristic based on the pro-
jected area is used to select a number of relevant occluders.
Note that since only visible occluders contribute to occlu-
sion, finding all relevant occluders boils down to solving the
visibility problem itself - it is therefore not possible to find
exactly all relevant occluders.

We present and discuss 3 different approaches to occluder
selection. In the discussion, an occlusion data structure is a
perspective or orthographic projection of occluders.

conservative Always render all occluders. Although slow,
this approach has the advantage that the time required for
calculating visibility can be estimated or even bounded,
which is important when determining the number of
frames to allot for visibility calculation.
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temporal coherence Use the set of occluders visible in the
previous visibility step. Since new important occluders
can appear even when moving only a small distance, oc-
clusion will not be perfect. This approach is useful in sce-
narios where visibility takes quite long to compute, but
the rendering step is not saturated - it essentially moves
load from Vis to Draw .

2-pass In a first pass, create an occlusion data structure with
the occluders visible in the previous step as above. But
instead of the scene, test the occluders against this data
structure for visibility. Occluders found visible are used
to create a new occlusion data structure in a second pass.
The scene is then tested against this new occlusion data
structure for visibility.
Like the conservative approach, this approach computes
the correct PVS , and like the temporally coherent ap-
proach, it reduces the number of occluders to be used, at
the expense of having to build an occlusion data structure
twice. It is best used when rendering all occluders is ex-
pensive compared to testing objects against the occlusion
data structure.

5.3. Occluder Shrinking

Theoretically, Instant Visibility works with any point visibil-
ity algorithm. In practice, there are restrictions on the type
of occluders that can be used. In order to shrink occluders
in 3D, they must be of volumetric nature. Furthermore, typ-
ical occluding objects should be large enough to ensure that
shrunk occluders provide sufficient occlusion.

We propose several methods to actually shrink the occlud-
ers in a scene, applicable to different types of input scenes.

In urban environments, occluders will mainly consist of
buildings. A simple 2D algorithm can be used to shrink the
footprint of a building: triangulate the exterior of the foot-
print polygon, enlarge each triangle by ε, and intersect the
footprint polygon with the union of all enlarged triangles.
Code for union and intersection operations on polygons is
freely available on the internet.

If volumetric objects are given as polyhedra, the basic 2D
algorithm can easily be extended to 3D: triangulation is sub-
stituted by tetrahedalization, and polygonal union and inter-
section are replaced by their polyhedral counterparts. Poly-
hedral set operations have been explored for CSG by apply-
ing the operators directly14 or via BSP-subdivision2.

Purely geometrical approaches are sometimes prone to
numerical robustness and efficiency issues. In an alterna-
tive approach based on discretization, Schaufler et al.19 have
shown how to represent the opaque portion of a general
scene via an octree, provided the model is water-tight. The
advantage of using an octree to represent occluders is that
the set operations required for shrinking are trivial to imple-
ment. After shrinking the octree, it is converted to polyhedral

form. To speed up occluder rendering, it is advisable to sim-
plify the occluder mesh using a conservative level of detail
algorithm15.

5.4. Advanced Occluder Shrinking

Up to this point we have used a quite loose definition of oc-
cluder shrinking based on ε-neighborhoods. It stands to rea-
son, however, that the observer is usually limited more in
some directions than in others, and therefore an isotropic ε-
neighborhood is not flexible enough. In most walkthrough
applications, movement in the up/down-direction will occur
less frequently and with less speed than movement in the
plane.

We therefore introduce a more formal definition of oc-
cluder shrinking based on Minkovsky-operators which al-
lows handling anisotropic neighborhoods. The Minkovsky-
subtraction of two sets A and B is defined as

A � B :=
⋂

b∈B

{a + b|a ∈ A}

The erosion of a set A by a set B is defined as

E(A, B) := A � (−B)

Intuitively, erosion can be interpreted as flipping the shape
B around its origin and using this to carve out A, with the
origin of B following the surface of A. We make use of ero-
sion for occlusion via the following

Lemma 5.1 Let an occluder O be an arbitrary subset of R3,
and let V be the set of possible movement vectors from the
current viewpoint vp (a not necessarily bounded subset of
the vector space R3). Define a shrunk occluder O′ via O′ :=
E(O, V ). Then any point p occluded by O′ seen from vp is
also occluded by O when seen from any viewpoint vp′ ∈
VP (where VP := vp + v, v ∈ V ).

Proof Interpret occlusion as a shadow problem. Then the
space of possible viewpoints VP can be interpreted as a vol-
umetric light source. The question whether p is occluded as
seen from all points of VP translates to the question whether
p is in the umbra region of the light source VP . Erosion
has previously17 been shown to provide an answer to this
problem (the formulation in the previous paper is based on
Minkovsky addition, but can easily be shown to be equiva-
lent to erosion).

The practical implication of this formulation is that oc-
cluder shrinking can be adapted to anisotropic observer
movement. If, for example, movement is restricted to the
ground plane, then objects only have to be shrunk in the
two dimensions of the plane. An important optimization re-
sults for 2.5D environments: the region of possible observer
movements can be approximated by a cylinder with radius ε
and slightly elevated top. The elevation of the cylinder top is
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defined by how far the observer can move up and down in
the time tε.

Implementation of advanced occluder shrinking can pro-
ceed exactly as in section 5.3. The new formulation imme-
diately validates the 2D algorithm shown above for 2.5D ur-
ban environments, if occlusion is always calculated from the
highest possible observer point. For the more general 3D al-
gorithm, the only change is that exterior cells should be ex-
panded by the vectors present in −V instead of a constant ε
in all directions.

6. Implementation and Results

We implemented an Instant Visibility system and show its
applicability on two different test scenes.

The first scene (Fig. 7) demonstrates a walkthrough of an
urban environment (2 km x 2 km) consisting of about 1.9
million polygons. An orthographic projection was used for
the point visibility algorithm. 1483 occluders (Fig. 9) were
generated from the building footprints and shrunk with the
2D algorithm described above. Shrinking the occluder takes
not more than 4 seconds.

The second scene (Fig. 8) shows a flyover of a mountain
range (4 km x 4 km) populated with trees. The size of the
complete database is 872.000 polygons. Orthographic pro-
jection was used for point visibility, and 4470 occluders (Fig.
10) were generated from the terrain grid.

We recorded a path through each environment and com-
pared the frame times for rendering without occlusion, ren-
dering using region visibility, rendering using Instant Vis-
ibility and the pure visibility calculation times (Tab. 1).
For Instant Visibility, we set the rendering frame time to
16 ms and the visibility frame time to 32 ms (= two ren-
dering frames) for both experiments. Head rotation was
not restricted, so we calculated occlusion for a full 360◦

panorama. Viewer movement was restricted to 108 km/h for
the first scene (which gives ε = 1.5 m) and 720 km/h for the
second scene (which gives ε = 10 m).

We want to point out the following observations:

• Instant Visibility is slightly better than region visibility.
• The frame rate is always below 16 ms for Instant Visi-

bility. To give a real guarantee for the framerate, LOD
switching9 would have to be implemented. For our results,
we only used distance based LODs for the trees in the ter-
rain flyover.

• The times for visibility are well below 33 ms. Although
the standard deviation is very small, a real guarantee
would require a very careful analysis of the code. The
variation is mainly due to the code that tests the scene
against the occlusion map.

We additionally measured the latency and throughput of
our 100 MB/s network by sending PVS data from the server

urban walkthrough
method avg min max std dev.

VFC 207.3 57.6 733.4 131.9
region visibility 8.7 3.1 15.7 2.8
Instant Visibility 7.4 2.7 12.9 2.1
visibility time 19.0 17.6 20.9 0.4

terrain flyover
method avg min max std dev.

VFC 10.8 2.6 23.0 5.2
region visibility 6.2 1.0 14.2 3.3
Instant Visibility 5.5 1.0 13.6 3.3
visibility time 19.1 23.5 17.6 0.9

Table 1: The table shows the measured times in millisec-
onds for the two test scenes. We measured rendering times
for view frustum culling (VFC), region visibility and Instant
Visibility. The last row shows the time required for the visi-
bility calculations for Instant Visibility. Note that the render-
ing times for Instant Visibility always stay below 16 ms. This
is necessary for a 60 Hz simulation.

Figure 7: This figure shows an orthophoto of the urban en-
vironment. The area is located near the center of Vienna and
is about 2 km x 2 km wide.

to the client. We measured 0.741 ms on average for the la-
tency (min: 0.605 / max: 0.898) and 1.186 ms for a PVS of
8 KB (min: 0.946 / max: 1.694). For our examples we did
not need more than 4 KB of PVS data.

c© The Eurographics Association and Blackwell Publishers 2001.
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Figure 8: This figure shows an overview of the terrain. The
model covers 4 km x 4 km of the city of Klosterneuburg, a
smaller city in the north of Vienna.

Figure 9: The figure shows the building fronts that are used
as occluders in the urban walkthrough. The parks are shown
as green textured polygons and are not used as occluders.

7. Discussion

We have shown that the Instant Visibility system is able
to handle different types of scenes while maintaining high
frame rates. An important aspect of a walkthrough system is
to make reasonable assumptions about observer movement.
Although it might be true that walking speed is limited to
several km/h in the real world, it is doubtful that imposing
such speed limits would benefit the behaviour of a typical
user of a walkthrough system. Especially mouse navigation
allows the user to change location quickly and rapidly ex-
plore different sections of the environment. We have ob-
served peak speeds of about 300 km/h in the urban scene,
and up to 3000 km/h in the terrain scene. The actual lim-
its to be chosen depend strongly on the type of application

Figure 10: The occluders used for the terrain flyover are
shown in red.

Figure 11: The figure shows a frame of the urban walk-
through. Note that the geometric complexity is high, as all
windows are modeled as geometry.

(100 km/h might be a reasonable limit for an urban car sim-
ulation, for example) and user behavior.

Another point to note is that the Instant Visibility sys-
tem solves the visibility problem by providing a PVS
for each frame, but this PVS might still be too com-
plex to be rendered interactively on the graphics worksta-
tion. Level-of-detail approaches and image-based rendering
methods should be used to further reduce the rendering load.
Funkhouser’s predictive level-of-detail scheduling provides
a way to maintain the desired frame rate during a walk-
through (in this method, levels of detail are selected before a
frame is rendered so as to maximize the visual quality while
bounding the rendering cost). Terrain rendering should ben-
efit from a multiresolution algorithm.

We would also like to briefly skirt the problem of hard
real-time systems. Although the Instant Visibility system
tries to maintain a given frame rate, it is not a hard real-time
system. It is in general hard to give accurate running times
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Figure 12: A typical frame of the terrain flyover. Note that a
large portion of the scene is visible.

and upper bounds for any algorithm, and especially so for
rendering and visibility algorithms which depend on graph-
ics hardware and drivers. Therefore, the system can occa-
sionally miss a frame, which we deem reasonable in view of
the high costs involved in assuring hard real-time behavior.

The Instant Visibility system works very well if overall
smooth system behavior and high frame rates are desired.
The advantage over region visibility is that the time required
for preprocessing is negligible, so that it is even possible
to modify the scene during runtime. If occluders are shrunk
separately, rigid transformations do not require any recalcu-
lation at all, in all other cases, calculations remain local to
the area changed. This was one of the motivations that lead
to the creation of the Instant Visibility system - we found
that we rarely ever used region visibility because the needed
PVS dataset was never available, and if it was, the scene had
already changed, making the PVS unusable.

Another advantage over region visibility is that the view
cells defined by an ε-neighborhood are usually smaller than
typical view cells for region visibility, providing for better
occlusion.

However, if its significant storage overhead and precal-
culation time are acceptable, region visibility offers the ad-
vantage that difficult visibility situations can be treated with
special care. If the PVS is large, the visibility solution can
be refined, and alternative representations for objects can be
precalculated on a per-view cell basis. This is advantageous
for shipping systems where the scene is not going to change,
and which should not require more resources than a single
machine.

Finally, we discuss the issue of latency and synchroniza-

tion. The advantage of Instant Visibility over traditional
pipeline systems is near-asynchronous execution of visibil-
ity and rendering, which is tightly coupled with a reduction
in latency. In a traditional pipeline architecture1, 11, visibil-
ity and rendering have to be synchronized, so the rendering
frame rate is tied to the time required for visibility (Fig. 2).
The latency from user input to the display of an image on
the screen is therefore at least twice the time required for
visibility (an image is always displayed at the end of a frame
interval). In Instant Visibility, on the other hand, the time re-
quired for visibility only influences the maximum observer
speed. The graphics hardware can render at the highest pos-
sible frame rate, and the latency is always one frame interval.
At the same time, visibility can be calculated more accu-
rately, because there is more time available for visibility and
thus more occluders can be considered.

8. Conclusions

We have introduced Instant Visibility, a system to calculate
visibility in real-time rendering applications. Instant Visibil-
ity combines the advantages of point and region visibility,
in that it is based on a simple online visibility algorithm,
while producing a PVS that remains valid for a sufficiently
large region of space. We have demonstrated the behaviour
of the system in two real-time simulation applications with
sustained refresh rates of 60 Hz. We would strongly recom-
mend the use of Instant Visibility whenever a second com-
puter is available as visibility server or in a multiprocessor
system like the Onyx2.
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Figure 13: Frames of the urban walkthrough

Figure 14: A frame of the terrain flyover
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