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Abstract

It is often intended to merge two or more digital images into one
image, an example would be special effects in films or photomon-
tages. The process of assembling these images into one final image
is called digital compositing.

While the first intention might be to just overlay the images the
problem is far more complicated. Several techniques have been
introduced to increase the quality and the realism of the created
images. While the first steps were to fight aliasing by using the
so called alpha channel and looking in the problem of depth other
techniques concentrated on the realism of an image, caused by in-
teraction with the environment. For example a newly added object
in an image might throw a shadow or reflect the environment. These
techniques are called shadow and environment matting.

This article should be a review about history and applications of
digital compositing as well as providing an overview of the current
state of the art.
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1 Introduction

The problem of compositing of images is not limited to digital im-
ages. In fact the problem as well as some techniques already existed
for non-digital film so it was no suprise that when film and images
went digital, compositing did the same thing. The most common
way to do composition of images was to create one image which
is transparent where the second image should be visible, called a
matte. The first techniques of digital compositing were just digital
representations of existing techniques for non-digital film. How-
ever digital compositing offered more possibilities to improve the
quality and realism of images and it did not take long until new
techniques evolved.

The first and maybe one of the most important attemps to improve
the quality of composited images was to store more information
in a picture. The transparency-value of a pixel, the so called al-
pha channel, was introduced by Catmull and Smith in the late 70s
which extended the RGB (red green blue) to the RGBA (red, green,
blue, alpha) representation. By using the alpha channel the borders

between two pictures become smooth and the visible edges called
jaggies disappeared. Another attempt to store more information
was the RGBAZ representation which additionally stored the depth
value. Further techniques like shadow and environment matting fol-
lowed in the next years. Since in most cases object throw shadows a
picture must consider that the fact that shadows in one picture might
look different in another picture. Also the environment conditions
might be different, for example a reflecting plate will look different
in a blue than in a green background. All of these techniques will
be discussed in this article.

2 Compositing

In this section the basics of compositing images will be discussed.
The most common way to make composites of images is to use an
extra channel, called the alpha channel, which stores their trans-
parency value. By comparing this value a decision is made which
picture is visible at each pixel.

2.1 The Alpha Channel

The basic idea of an additional channel which contains the trans-
parency information, or short alpha, was first introduced by Cat-
mull and Smith in the late 70s. Really developed, however, it was
by Duff and Porter in 1984.

The main motivation was to combine two images. However if two
one image is just displayed over another you sharp borders will
occur on the edges of the top picture, this aliasing effects are called
jaggies. The effect can be reduced by using very high resolutions,
but this leads to other problems like memory intensive pictures and
does not really solve the problem of the aliasing effect, just makes
it less visible.

Another method to combine two images, without having the prob-
lems of visible silouhettes at the borders of the matte, was needed,
which leaded to the development of alpha. The main idea behind
alpha is not to decide whether a pixel is visible or transparent but
choose a degree of transparency. In other words a pixel is not only
0 or 100 percent transparent, but 0 to 100 percent. The transparency
value of a pixel can vary between 0, which means totally transpar-
ent, and 1 which would be full coverage. For example an alpha
value of 0.5 would mean that the pixel is half transparent. Consid-
ering this an example for a RGBA color representation would be
(1,0,0,0.5) for a red half transparent color. However in order to dis-
play the color the red would have to be multiplied with the alpha
value. And not only the red color, but the green and blue color too,
and this for every pixel in the picture, and this for all pictures and
this for every process. This problem leads to the idea of premulti-
plied alpha.

As described above the simple RGBA representation leads to many
multiplications which would have to be done for every pixel. How-
ever exactly the fact that is has to be done every time leads to the
idea of storing the already multiplied values for the red, green and
blue color channels. This RGBA representation is called premul-
tiplied alpha. Not the color values, but the color values multiplied
by the alpha value are stored in the color channels, and additionally
the alpha value is stored in the alpha channel.



To illustrate what is meant, imagine a red object which is half trans-
parent. The RGB representation of red would be (1,0,0) and the
alpha value of half transparent 0.5. So the RGBA representation
of the half transparent red object would be (0.5,0,0,0.5). Due to
the multiplication it is not possible that any of the color values is
different than zero if the object is transparent (alpha is 0).

With the problem of representing colors and alpha solved and the
idea premultiplied alpha introduced the next step ist to combine two
images, or in other words determine what the final picture looks
like. The whole process is called blending and due to alpha, alpha
blending. In the paper of Porter and Duff from 1984 a list of binary
operators for computing two images are introduced. They are based operation | quadruple | diagram F, Fp
on the idea that if the alpha value of image A is oy, (1-ay) of the
background image is seen through, or in another way a4 (1 — ap),
with op being the alpha value of the second image, is being blocked
by alpha.

clear (0,0,0,0) 0 0

This leads to the representation in subpixel areas. Imagine two pic- A (0,A,0,A)
tures A and B which divide a pixel in 4 subpixel areas, depending
which areas of the pixel are covered by each of the two pictures.
Table 1 illustrates what is meant in detail. B (0,0,B,B)

A | B | name | description | choices

Aover B | (0,AB,A)

0 ANB 0

A ANB 0, A
B ANB 0,B Bover A | (0,A,BB)
AB ANB 0,A,B

—o = O
—_—— O O

Table 1: Possible situations and handling. Ain B (0,0,0,A)

These four subpixel areas can be represented by a quadruple
(0,A,B,AB) which is affected by the way the two pictures are com- Bin A (0,0,0,B)
puted. As an example let us assume that picture A lies over picture
B, which means that in the area where both pictures could be cho-
sen we will now choose A. This leads to the quadruple (0,A,B,A). Aout B (0,A,0,0)
Figure 1 shows other binary operations. e

These operators show how specific situations are treated. The over
operator represents the foreground-background relation, the in op- Bout A (0,0,B,0)
erator defines which picture is dominant where, and only where,
both picture could be seen, while A out B refers only to the part of
A which lies outside of B. The use of the stop and xor operators are A atop B | (0,0,B,A)
very limited and are only introduced for completeness.

The most important operator is the over operator. A over B can
be interpreted as A being the foreground object over a background
object B. This is the main operation used when doing compositing,
since usally one picture is considered foreground and the other the
background picture. The colums F4 and Fp indicated the fraction Axor B (0,A,B,0)
of the original picture covered by it in the output picture. As you
can see in the example A over B, Fp is now reduced by ay.

Batop A | (0,A,0,B)

These fractions are relevant in order to composite two images. For
each output pixel we want to compute the contribution of the input
pixels. If we consider that each input picture contributes to the
output by its alpha value in relation to the fraction covered we can
derive that the total area covered can be computed by adding o4
times Fy4 to ap times Fp.

Figure 1: Binary compositing operations from [PorterDuff84].

We can now compute the color of the composited picture by calcu-
lating each color channel (red, green and blue) separately by using
the following formula

Co = caFp +cpFp (1



Figure 2: Output picture composed by 19 input pictures from [Por-
terDuff84].

with Cg being the output color and c4 and cp being the input colors.
The fractions F4 and Fp can be looked up in the table above.

This example will help illustrating what is meant. Let us imagine a
kind of purple color which is partly transparent (0.5,0,1,0.75) which
we lay over a white, totally opaque background (1,1,1,1). Since this
is an A over B operation we can look up F4 as 1 and Fp as (1-ot4)
which leads to the formula

C0=CA+CB(17(XA) 2)

for the colors and

ap = o4 +op(l—oy) 3)

for the transparency of the output color, with ¢ty being the alpha of
the output color. Doing these calculations will provide the RGBA
color representation of the pixel as (0.625,0.25,1,1).

In addition to these binary operators also some unary were intro-
duced. The first operator is named darken, although it can also be
used to brighten the elements. When darkening (or brightening)
the red, green and blue are just multiplicated by and ¢ ; 1, while 1
means no change, while 0 would be complete black. If ¢ is chosen
bigger than 1 the elements appear brighter than before.

The second unary operator is called dissolve. When dissolving the
whole RGBA representation is multiplied by an & which is the fac-
tor with which the element is fading.

The last unary operator is called opaque. Here only the alpha com-
ponent is changed by an @ between 0 and 1. Since alpha indicates
the transparency value the element of course gets more and more
transparent as the @ gets closer to zero.

The last operator which was introduced by Porter and Duff is the
plus operator. Here both components are simply added in the area
covered by both pictures. By dissolving the participation of the
input pictures can be controlled.

By using only these operators the first digital compositing was
done. The results are pictures which look as if they are one pic-
ture, not composited, since the object boundaries can not be seen
and therefore the picture appears natural. Figure 2 for example was
composed of 19 pictures.

2.2 Including Depth

Figure 2 shows that with the operations from the last section it is al-
ready possible to achieve natural looking pictures when composit-
ing many images into one composite. However since every part of
the picture (the fence, the plants, the smaller plants, etc.) was an
input picture of its own it is easy to assume that the picture would
look different if the pictures were composed in a different order. In
other words, to get a correctly composited picture the front-to-back
order of the pictures must be known.

An approach made by Duff in [Duff85] was to combine the RGBA
representation, only containing the color with the alpha value, with
a Z-buffer. A Z-buffer decides which color is seen in a composited
image by computing the z value.

rgbe = (if zy < zp then rgby else rghy) 4)

Here rgb,, rgb s and rgb;, mean the composited, the foreground and
the background color and z¢ and z;, are the depth values of the pix-
els of the foreground and the background picture. An interpretation
of this would be an operator zmin which computes two pictures at
each pixel. This operator is associative and commutative. The over
operator of the previous section unfortunately is not commutative.
Of course it does not matter whether two elements are composited
front-to-back or back-to-front, but they must be adjacent in depth
when they are combined.

The rgbaz algorithm developed by Duff now introduces a comp op-
erator which combines the actions of zmin and over. All pixels of
a picture contain the rgb values for the color, the alpha values for
transparency and a z value for depth at each corner of the pixel. If
a corner is not covered its z value is set to infinity, leaving it larger
than any legitimate z value.

If two pictures f and b are computed, in formula f comp b, the z
values at the four corners of every pixel are compared. There are
16 possible outcomes of this comparison, but only two of them will
have the same outcome at all four corners of the pixel. In the other
14 cases, if at some corners of the picture the z values of f are
smaller (or bigger) than the ones of b while at some this is not the
case, we call the pixel confused. If this is the case the z values are
linearly interpolated to find the point at which they are equal at each
of the four edges of the pixel. Figure 3 shows the 16 cases.

This leads to the following formula for the rgba values

rgbo. = B(f over b)+ (1 —B)(b over f) 5)

with f3 being the fraction of f which is in front of b. The new z value
is the minimum of the both z values.

zc = min(zf,zp) (6)

The comp operator is commutative, because if f and b are inter-
changed so is B and (1-f ). The operation is only associative for un-
confused pixels, since then only f over b, or b over f, is done. Since
linearly separable objects are free of confused pixels the comp op-
erator performs just as the over operator here. However small er-
rors can occur if comp is applied in a completely arbitrary order.
These errors can be eliminated if the elements are sorted by z co-
ordinates before the comp operation is done. Another problem are
small objects that fall between pixels, as they might be lost during
the process.
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Figure 3: The 16 possible cases for the comparison of two pictures
fandb.

Figure 4 shows an example picture created the comp algorithm. A
terrain is created, a flying saucer was placed in the picture and fog
was added.

However due to the fact that using A over B over C and so on was
often more convenient than storing the additional z value this ap-
proach is not used in praxis in the area of digital compositing, al-
though it had an impact in other areas. There are cameras which
also store the depth values which use this approach, however this
will not be discussed in this article.

3 Matting

So far we discussed how to do the compositing part. However, to
do compositing at least a background and a foreground image is
needed. While the background part is quite trivial, the foreground
must be extracted from a picture first. The problem of separating
the foreground image, is called the matting problem. This means
the separation of a usally non-rectangular foreground form a back-
ground image.

3.1 Bluescreen Matting

In this section bluescreen matting will be discussed. In this case the
background is just a constant color, for example blue, which gives
the matting process the name bluescreen matting. This technique
is widely used by film and video. An everyday seen application of
blue screen matting is for example the weather forecast.

Now let us discuss the problem in a more formal way. The color C,
with its RGB« representation, at each pixel of the image we want
to composite a function of the color C; for the foreground picture
and the color C;, of the newly applied background. All colors C;
consist of the RGBA« representation [ R; G; B; o ].

The foreground element Cy can be interpreted as a composite of
a constant colored background C; and a foreground C,. C, rep-
resents the object which is intended to be isolated form any back-
ground. Itis often referred to as the uncomposited foreground color.

Figure 4: Flying saucer in a terrain behind fog.

Figure 5: A scene from the tv series My name is earl: A blue shirt
in weather forecast.



The Matting Problem

Given Cyand C, at corresponding points, and Cy a known backing
color, and assuming Cy= C, + (1 — ,)C;, determine C, which
then gives composite color C = C, + (1 — ¢,)C; at the corre-
sponding point, for all points that Crand Cj, share in common.

Figure 6: The matting problem as stated in Blue screen matting by
Smith and Blinn.

In other words Cy is the composite f of C,, Cy. Let us assume that
f is the over function introduced before. We can now formalize the
matting problem.

C, is considered a solution of the matting problem. This uncom-
posited foreground object is sometimes called an image sprite or
just sprite. However the color C, consists of red, green, blue and
alpha values. This leads to four equations. The alpha equation is
trivial, which leaves only three equations (for red, green and blue)
but four unknowns.

Rf=Ro+(1— o) Ry %)
Gf = Ga+ (1 - ao) Gk (8)
By =B,+(1—0,)By (&)

This fact leaves the matting problem with an intrinsic difficulty.
Due to this the matting problem theoretically got an infinite number
of solutions, while 3 of them will be discussed here.

3.1.1 Solution 1: No Blue

The first solution is called the no blue solution. Assuming that ¢,
contains no blue color, ¢, = [R, G, 0], and the background c; con-
tains only blue ¢, = [ 0 0 By ] a new formula for ¢ can be found.

Cf:Co+(1_ao)Ck:[Ro G, (1_ao)Bk] (10)

Solving the equitation for ¢, results in

Co=[R; Gy 0 1—(By/By)] (11)

However eliminating the blue color from the foreground object re-
duces the number of available hues by about two-thirds, since all
hue which require blue are no longer available.

3.1.2 Solution 2: Gray or Flesh

The second solution which is discussed here is called gray or flesh.
Here the assumption is made that c,, is grey, or in other words if the
red part R, or the green part G, equals the blue color B,. So there is
a exists a solution for the matting problem if R, or G, = aB, + b,
and if ¢ is pure blue with aBy + b # 0. These conditions rewritten
in color primary coordinates:

cy=[Ro, aB,+b0y B,+(1—0,)By] (12)

Eliminating B, from the expressions for G and By leads to a solu-
tion for .

C(,:[Rf Gf Bp + 0,By, (Gf—(,lBA)/(aBk-i-b” (13)

With Cp = Cy - C; a very useful definition has been introduced.
The special case C, gray satifies the solution witha=1and b =0
for both R, and G,,. Therefore science fiction space movies use the
blue screen process since the foreground objects in these movies
are usally neutrally colored spacecrafts.

Another important foreground element in film and video is flesh,
which is usally represented by a color [d 0.5d 0.5d]. This is a non-
gray example satisfying the solution.

3.1.3 Solution 3: Triangulation

The last solution discussed here is called triangulation. In differ-
ence to the last two solutions for triangulation two different shades
of backing color are required and it is assumed that c, is known
against these. Then a complete solution exists which does not re-
quire any special information about c,.

The two shades of the backing color are named By and By,, with
By = cBy and By, = dB;, and c,d lying in the interval [0,1]. Since

we assume that ¢, is known against the two shades c¢,By; and By,
we can form the following.

cst=[Ro Go Bo+(1—0a)By ] (14)
CfZZ[RO G, Bo+(1_a0)Bk2} (15)

By combining the expressions for By| and By, we can eliminate
the B, to show that

0o =1—(Bs1 —By2)/(Br1 —Br2) (16)

and since the two backing colors are different the denominator is
never 0. The following equitations complete the solution.

Ro=Ryp1 =Rp> )
Go=Gr1=Gp (18)
B, = (Bs2Bi1 — By1Bia)/(Bri — Bia) (19)

As mentioned before triangulation requires the foreground object to
be shot against two different backgrounds. For nonuniform backing
even four passes are required to get a solution. Figure 7 shows steps
of triangulation and example pictures.

Another matting approach exists which can handle known, but not
constant background. Since this approach demands that the fore-
ground is photographed against a known background there is a dif-
ference in the those pixels of the picture where the foreground is,
in other words where the o of the foreground is not 0. So know-
ing where the pixels are different allows the algorithm to determine
which pixels belong to the foreground and which are background.
Since it is the difference which allows this approach to do the mat-
ting, this approach is called difference matting. However this ap-
proach leads to sharp edges, resulting in aliasing and as mentioned
above demands knowledge of the background.



Figure 7: A figure showing practical triangulation matting from
Blue screen matting by Smith and Blinn. (a-b) Two different back-
ings. (c-d) Objects against the backings. (e) Pulled. (f) New com-
posite. (g-i) and (j-1) Same triangulation process applied to two
other objects (backing shots not shown). (1) Object composited over
another.

3.2 Natural Image Matting

The blue screen matting described above is only able to retrieve
foreground elements if the background consists of a known color
only. However it is not always possible or at least not reasonable
to get the desired foreground element in a scene with such a back-
ground. This leads to the problem of how to extract the desired
foreground element from a natural image. This problem is called
natural image matting.

A common approach is to separate the picture in three regions, the
one which is definately foreground, the one which is definately
background and a third region which is unknown and has yet to
be decided. With the picture divided in these three regions the task
to be done is to determine whether the pixels in the unknown region
are foreground or background. I will briefly introduce two older ap-
proaches to solve this problem and after that two more recent which
are called bayesian matting and poisson matting in detail.

3.2.1 Mishima Algorithm

First I want to briefly discuss the Mishima algorithm, which is not
really an approach for natural image matting. However the algo-
rithm uses samples to form a global distribution which might be
interesting since the following algorithms work in a more or less
similar way.

Mishima [Mishima] developed a blue screen matting technique
based on representative foreground and background samples. The
algorithm starts with two identical polyhedral approximations of a
sphere in RGB space which are centered at the average value of
the background samples. Then the vertices of one of the polyhedra
which is considered the background polyhedron are repositioned by
moving them along lines radiating from the center until the polyhe-
dron is the smallest possible which still contains all the background
samples. The vertices of the other polyhedron, which is considered
the foreground polyhedron are adjusted in a similar way to give a
polyhedron which is the largest that contains no foreground pixels
from the provided sample. Then a new composite color C is casted
via a ray from B through C which defines the intersections with the
background and foreground polyhedra which are B and F, respec-
tively. The position of C along the line between B and F is the a.
See figure 8(e) to make things clearer.

3.2.2 Knockout

The first approach for natural image matting discussed here is the
Knockout approach. Here, after the segmentation of the picture in
the three regions mentioned above, the next step is to extrapolate the
known foreground and background colors into the unknown region.
For a point in the unknown region of the picture the foreground
F is calculated as a weighted sum of the pixels on the perimeter
of the known foreground region. While the weight for the nearest
known pixel is set to 1, the weight is reduced linearly by distance
and is O for pixels which are twice as distant as the nearest known
pixel. To initially estimate the background B’ the same is done
with the nearby known background pixels. Figure 8(b) shows the
pixels contributing to the calculation of F and B’ for some unknown
pixel. B’, which is the estimated background color, then gives B
by establishing a plane through the estimated background color B’
with a normal parallel to the line B’F. After that the pixel color in
the unknown region is projected along the normal on that plane,
which represents B. After that & is calculated by
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The function f projects a color on an axes in rgb space. In figure
8(f) you can see how alpha is computed using the r and g axes.

3.2.3 Ruson and Tomasi

The second approach i want to discuss briefly was made by Ruzon
and Tomasi [RusonTomasi]. Again the picture is separated in three
regions, the foreground, the background and the unknown region.
The first step is to part the unknown region into sub-regions, not
only bordering both foreground and background but also including
some of them, see Figure 8(c). The foreground and background
pixels encompassed by these boxes are regarded as samples of dis-
tributions P(F) and P(B), in color space. Then the foreground pixels
are split into coherent clusters. These clusters are fitted with Gaus-
sians, which are axis-aligned in color space, with F being the mean
and a diagonal covariance matrix Y r. Then the foreground distri-
bution is treated as a sum of Gaussians. The same is done with the
background pixels yielding Gaussians, with B being the mean and
a diagonal covariance Y p. After that the foreground clusters are
paired with the background clusters. An example is shown in figure
8(g) for such a pairing. Many of the pairings are rejected based on
various intersection and angle criteria.

After these paired Gaussians are constructed, the algorithm indi-
cates that the color C comes from an intermediate distribution P(C),
which lies somewhere between the foreground and background dis-
tributions. Like for the foreground and background before this in-
termediate distriubtion is treated as a sum of Gaussians, which have
amean C which lies between, depending on the alpha, the mean val-
ues of the foreground and background cluster pairs. The covariance
Y ¢ is determined in a similar way, again see Figure 8(g). The op-
timum for the « is the one which causes the maximum probability.
After that the F and B, the means of the foreground and background
Gaussians, are computed as weighted sums of their cluster means
using the pairwise distribution probabilities as weights.

3.2.4 Bayesian Matting

The first approach I want to discuss in detail is the so called
bayesian matting. While Knockout and Ruzon-Tomasi already are
working algorithms for natural image matting they still fail in vari-
ous situations, for example if the constrast between foreground and
background image is weak. Although there is no perfect solution
for all situations the bayesian approach was developed to achieve
better solutions overall. Bayesian matting is similar to the Ruzon-
Tomasi approach, but differs in some key aspects. For example a
MAP is used to optimize «, F and B. Another difference is the use
of oriented Gaussian covariances to better modell the color distribu-
tion and a sliding window is used to construct neighborhood color
distributions.

Like in the algorithms before the picture is separated in a fore-
ground, background and unknown region. The goal for bayesian
matting is to solve for a foreground color F, a background color B
and an o given the observed color C for each pixel of the picture
which lies in the unknown region. Since the colors F, B and C all
have three color channels we can derive three equations with seven
unknowns.

Like before in the approach of Ruzon and Tomasi [Ruzon and
Tomasi], the problem will be solved partly by creating probability

Mishima Knockout

Unknown,

(a)

Ruzon-Tomasi Bayesian

Figure 8: The four algorithm summarized. Each of the algorithms
shown in this figure requires some specification of background and
foreground pixels. Mishimas algorithm (a) uses these samples to
form a global distribution, whereas Knockout (b), Ruzon-Tomasi
(c), and the Bayesian approach (d) analyze unknown pixels us-
ing local distributions. The dark gray area in (c) corresponds to
a segment within the unknown region that will be evaluated using
the statistics derived from the square regions overlap with the la-
beled foreground and background. Figures (e)-(h) show how matte
parameters are computed using the Mishima, Knockout, Ruzon-
Tomasi, and the Bayesian approach, respectively.

distributions for the foreground and background in a given neigh-
borhood of the pixel. In difference to Ruzon and Tomasi, bayesian
matting uses continuously sliding windows for neighborhood defi-
nitions, which march inward form the foreground and background
regions and, in addition to the values from known regions, make use
of nearby computed F, B and o values when constructing oriented
Gaussian distributions. This is shown in Figure 8(d). Additionally
this approach formulates the problem of computing the parameters
of a matte in a well-defined framework, the Bayesian framework.
The MAP (maximum a posteriori) technique is used to solve the
problem. A MAP estimation tries to find the most likely estimates
for F, B and « given the observation C. This can be expressed as
a maximization over a probability distribution P and afterwards the
Bayes’s rule is used to express the result as a maximization over a
sum of log likelihoods:

arg maxrp o PEB,o0 —C)=
argmaxpp o P(C—EB,o) P(F)P(B)P(c)/P(C) =
arg maxgpo L(C—FEB,a)+L(F)+L(B)+L(x)

The function L(x) = log P(x) and P(C) is dropped since it is a con-
stant with respect to the optimization parameters. See Figure 8(h)
for an illustration of the distributions which are used to solve the
problem of the optimal F, B and o.. Now the problem is reduced to
defining the logarithms of the likelihoods which are L(C—F,B,),
L(F), L(B) and L().

The first term can now be modelled by quantifying the difference
between the observed color C and the color which would be pre-
dicted by the estimations for F, B and a.

LCIF.B,a) =~ |[C—aF —(1-)B[* /o (D)

The function L models the error in the measurement of C and cor-
responds to a Gaussian probability distribution centered at C = aF
+ (1 - ov)B with standard derivation o¢.

To estimate the foreground term L(F) the spatial coherence of the



image is used. The color probability distribution is made using the
known and estimated foreground colors within the neighborhood of
each pixel. To improve the distribution a weight w; = a,-zg,- ,with
o = 8 for the g;,is applied. The O‘i2 will give more weigth to pixels
with high opagueness while the g; will give more relevance to the
pixels which are close than to those further away.

With a given set of foreground colors and their corresponding
weights, the colors first are partitioned clusters. For each cluster
the weighted mean color F and the weighted covariance matrix F is
calculated, using the following equations.

F= % Y wiFi (22)
ieN
1 _ _
Yr=1y YwilE-F)(F-F) (23)
ieN

with W =Y} w; Using this the L(F), the log likelihoods for the fore-
ieN

ground, can be modeled as being derived form an oriented elliptical

Gaussian distribution by using the weighted covariance matrix } .

L(F)=—(F-F)" Y ;' (F-F)/2 (24)

Solving the matting problem for the likelihood for the background
L(B) works quiet analogous for natural image matting. The only
change, except from the notation of course, is that the weight w;
which was used improve the distribution is now (1 - Oc,~)2 gi. For con-
stant or known background colors the problem of course is much
easier.

The next step is taking care of the likelihood for the opacity, L(a).
Assuming that L() is constant we can use the can use the max-
imization introduced earlier. Because of the multiplications of o
with F and B in L(C—EB,« ) the function is not quadratic equa-
tion in its unknowns if maximized. In order to solve this equation
efficiently the problem is divided in two quadratic sub-problems.
For the first sub-problem « is considered constant. Making this
assumption and taking the partial derivatives of the maximization
with respect to F and B and considering them 0 leads to the follow-

ing equation.
F
B

{ E;l + I 0-2_,-"05-,

Ia(l — a)/o?,

Ina(1 —a)/o2
S +I(1-a)*/o
_[ ZF'F+Cajag
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Here is a 3x3 identity matrix. With & constant, the best parameters
F and B can be found solving the 6x6 linear equation.

For the second sub-problem we assume that F and B are constant
which leads to a quadratic equation in & This problem can be solved
by projecting C, the observed color, on the between F and B in color
space.

o C=B)-(F-B) (25)
|F—B|?

With the two sub-problems solved the next task is to optimize the
overall maximization by alternatively assuming that either « is con-
stant and using the equation from the first sub-problem or assuming

Knockout

Ruzon and Tomasi

i'

Inset

Bayesian approach

- 1
Composite Composite Inset

Alpha Matte

Alpha Matte

Figure 9: Samples of natural image matting. The insets of these two
photographs show both a close-up of the alpha matte and the com-
posite image. For the womans hair, Knockout loses strands in the
inset, whereas Ruzon-Tomasi exhibits broken strands on the left and
a diagonal color discontinuity on the right, which is enlarged in the
inset. Both Knockout and Ruzon-Tomasi suffer from background
spill as seen in the lighthouse inset, with Knockout practically los-
ing the railing.

that B and F are constant and using the equation from the second
sub-problem. For the start of the optimization « is initialized with
the mean ¢ of the nearby pixels. If there are more clusters for fore-
ground and background for each of them pairs have to be made and
the pair with the maximum likelihood is chosen.

In Figure 5 comparisons of the Knockout, Ruzon and Tomasi and
Bayesian methods can be seen for two natural images. There are
some missing strands of hair in the close-up for the Knockout re-
sults, while the Ruzon and Tomasi result has a discontinuous hair
strand on the left side of the image, as well as a color discontinuity
near the center of the inset. In the lighthouse example, both, the
Knockout as well as Ruzon-Tomasi, show background spill. For
example, with Ruzon-Tomasi the background blends through the
roof at the top center of the composite inset, while with Knockout
the railing around the lighthouse is almost completely lost. The
Bayesian results shows none of these artifacts.

3.2.5 Poisson Matting

The last approach i want to discuss is called Poisson matting. Since
all approaches mentioned before rely on sampling pixels in the
known background and foreground area they all rely on a carefully
specified trimap. This leads to the problem that for pictures like in
Figure 10 where foreground hairs and background branches might
be confused, especially in low contrast regions, these approaches
fail. Poisson matting uses a different method based on the gradient
of the foreground element and therefore achieves better examples
in such pictures.

While the previously discussed approaches optimize the foreground
color, background color and the ¢ statistically, this approach intro-
duces methods which operate directly on the gradient of the element
which should be retrieved, from now on called a matte. In complex
scenes this reduces the error made by mis-classification of the color
samples. The gradients of the matte of the image are estimated and
afterwards the matte is reconstructed by solving Poisson equations,
which leads to the name Poisson matting. For Poisson matting it is
assumed that the intensity changes in foreground and background
are smooth. The first step is global Poisson matting, while if the



Figure 10: From left to right: a complex natural image for exist-
ing matting techniques where the color background is complex, a
high quality matte generated by Poisson matting, a composite im-
age with the extracted koala and a constant-color background, and
a composite image with the extracted koala and a different back-
ground.

quality of the global approach produces not good enough quality
for the mattes local Poisson matting is introduced which works on
a continuous gradient field in a local region. However user interac-
tion is required to distinguish the image gradients caused by fore-
ground and background colors locally. The information from the
user interaction is integrated into Poisson matting with the help of
tools which work on the gradient field of the matte. This allows
Poisson matting to maintain the continuities of thin long shapes in
foreground objects, like the Koala bear in Figure 10.

Generally Poisson matting consists of two steps. The first step is
to compute an approximate gradient field of matte from the imput
image. The second step is to retrieve the matte from the the gradient
field using the Poisson equations.

We receive the approximate gradient field of matte, by taking the
partial derivatives on both sides of the matting equation using the
formula:

VI=(F—B)Va+aVF +(1—a)VB (26)

V is the gradient operator ( d % , 89% ). This is the differential form
of the matting equation, for the RGB channels. If the foreground
F and the background B are smooth, for example if aVF + (1 —
o)VB is small in relation to (F-B)Va, the gradient field can be
approximated by

1
Var~ ——VI 27)
F-B

This means that the matte gradient is proportional to the image
gradient. The approximation above was used in [Mitsunaga et al.
1995] to estimate the opacity around the boundaries for a solid ob-
ject by integrating the gradient of matte along a 1D path perpendic-
ular to the object boundaries. By using this approximation Poisson
matting can reconstruct the matte more efficiently by solving Pois-
son equations in a 2D image space directly.

Global Poisson Matting

As in the other approaches before the image is divided in three
regions, definately foreground, definately background and the un-
known region. For each pixel p=(x,y) in the image, I, is the inten-
sity and Fj, and B, are the respective foreground and background
intensities of the pixel, while N, is the set of the four neighbours of
the pixel.

0Q=peQrUQpN,NQ#0 (28)

With dQ being the exterior boundary of Q. In order to recover the
matte Q, the unknown region, with (F - B) and the image gradient
VI given, the following variational problem must be minimized.

(a) (b)

Figure 11: The left picture shows Global Poisson matting, the right
describes Local Poisson matting.
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with Dirichlet boundary condition ¢t|5q = 0|5q, with @]y = 1 for
p € Qp and O|yq =0 forp € Qp.

This definition is similar to the supplied trimap which divides the
picture in the three regions. The Poisson equations with the same
boundary condition is:

Adt = div(—"—) (30)

F—-B

with A = (82ﬁ + 82%))2) and div are Laplacian and Divergence
operators respectively. In order to obtain the solution for the Pois-
son equations the Gauss-Seidel iteration with overrelaxation is used
([Perez et al. 2003]). For color images (F-B) and VI are measured
in the grayscale channel.

The Global Poisson matting is an operative optimization process:

First (F-B) is initialized for each pixel p in the unknown region
Q, by taking into account the nearerst foreground pixel in Qf to
approximate F), and the nearest background pixel in Qp to approx-
imate B,. This way a (F-B) version of the image is constructed,
which is smoothed by a Gaussian filter to eliminate most of noise
and inaccurate estimations.

The second step is reconstructing & by solving the Poisson equation
stated above by using (F-B) and V1.

The third step is called F and B refinement. We will use the follow-
ing equation.

Qf ={peQla, >0951,~F,} @31
The conditions «, greater than 0.95 and I, ~ F}, guarantee that the

pixels in Q}' are mostly foreground. The same thing is with the
background, however with slight changes.

Q} ={peQla, <0.051,~B,} (32)

Here Fp, B, and I, represent the color vectors at the pixel p. F,
and B, are updated corresponding to the color of the nearest pixels
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Figure 12: If A approximates A* good the result is a correct matte.
However if A is smaller than A* the matte will appear smooth and if
A is greater than A* the matte will appear sharp. A similar behaviour
can be seen for D.

in Qr U Q}r and QpU Qg. Like before a Gaussian filter is applied
for smoothing.

The second and third steps are iterated until the changes in the re-
sults are small enough or Q; and Q;; are empty in the third step.
In the usual case only a few iterations are needed.

The global form of Poisson matting gives satisfying results in
scenes with both foreground and background being smooth. In
complex images however Equation 27 is often a not good enough
approximation of the matte gradient. This leads to Local Poisson
matting, where the user can engage in the loop to locally refine the
results.

Local Poisson Matting

First we bring up a different form of Equation 26:

Vo =A(VI-D) (33)

In this equation A = 1/(F-B) and D = [&VF + (1 — &) VB]. A af-
fects the gradient scale of the matte, so increasing A the boundaries
would be sharpened, while D is the gradient field caused by back-
ground and foreground. Because of that A and D must be estimated
to approach the ground truth, A* and D*. For the global approach
discussed before A is automatically estimated from the image and
D is assumed to be zero. If the gradients of either background or
foreground are strong the mattes achieved by using global Poisson
matting are of poor qualitiy.

Now what local Poisson matting actually does is allowing the user
to locally manipulate the gradient field. If A is smaller than A*
the matte received as a solution by Poisson matting appears to be
smoother than it should be, while a difference in |[D| and |D| also
results in an erroneous matte. This is illustrated by Figure 12. The
key thought for local Poisson matting is that the user can examine
the recovered matte and adjust A and D to improve the result.

To do this the user can specify a region Q7 which is not satisfacting
and apply local Poisson matting for that region. Figure 12(b) shows
that the integral region became €7 N Q and the boundary of the new
integral region becomes

89:{pe(QLﬂQ)Wpﬂ(QLﬂ.Q)#(D} (34)

The user selection Q; and the new boundary dQ are illustrated in
figure 12(b). The following equation defines the variational prob-
lem to be minimized by local Poisson matting.

(a)

Figure 13: An illustration on how channel selection can improve
the quality of the matte.

(x*=argngn//pegmgHVappr(lepouzdp (35)

with Dirichlet boundary condition ¢t|5q = 0|5q, with 0|5 = 1 for
p € Qp and 0yq =0 for p € Qp and 0|yq = o for p € Q. Here
0, is the current matte value in an unknown region on the local
boundary.

The local region is usally quite small in size (fewer than 200x200
pixels). A Poisson solver will very quickly generate a result for
such local regions. Additionally a local operation can be integrated
into the matte seamlessly because the boundary conditions exists.

As mentioned before the user can modify A and D in the selected
region to receive a better approximation of Va. We can distinguish
the operations in channel selection and local filtering, with channel
selection reducing the error of D while local filtering directly ma-
nipulates A and D. The user can use these operations and in that
way there is no need to optimize matte pixelwise and the results
after a operation has been applied are produced quickly.

The first kind of operation which will be discussed is the so called
channel selection. When considering color images, the equation
(27) can measured in different channels, one of the three RGB chan-
nels or the grayscale channel, which was used in global Poisson
matting, Voo = A, (VI — Dg). Assuming that foreground and back-
ground are smooth makes |Dg| small, which makes A,VI, a good
approxaimation for V. In a similar way it is intended to con-
struct a new channel ¥y = aR + bG + ¢B with |Dy’ is smaller than

|Dg|. Therefore the variance of he foreground or background is
minimized and the new channel 7y is constructed in two steps:

In step one the user select a background or a foreground color sam-
ple (R;,G;,B;) in the image. In the second step the weights of a, b
and ¢ are computed to minimize the sample variances in the chan-
nel. This leads to the linearly constrained quadratic optimization
problem

min [(abc) - (RiG:B;)T — (abc) - (E@)T] 36

with a + b + ¢ = 1 and (RGB) being the mean color value of the
samples. The weights (a b c) are obtained by solving an augmented
linear system [P. Gill and Wright 1981]. The operation is illustrated
in figure 13. The error of D is reduced and therefore the quality of
the hair shape recovered is better.



As mentioned before there is a second kind of operations which
directly operate on A and D, this is called local filtering. There
are a number of local filters a user can use to manipulate the matte
gradient field.

The first one is called boosting brush. If the matting result is too
sharp or too smooth the user can use this filter to either decrease or
increase A. This filter has a local Gaussian shape for each pixel p in
the area it is applied. For A, we receive a modified A’ after using
the boosting brush filter on it.

2
_lp—poll
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with pg being the coordinate fo the brush center and ¢ and y are
parameters the user can define to control size and strength of the
boosting effect. Therefore the user can boost the desired partial
region, or even the whole region, by using brushes of the needed
sizes. If y ¢ O the filter will increase A around the brush center and
if its j O it will decrease it.

The next filter to be discussed is the highpass filter. Since channel
selection generates smooth foreground or background this leads to
low frequency gradients. Using this D can be estimated by using
the low frequency part of the image gradient

D=KxVI (38)

with K being a Gaussian filter N(p;po,cz) centered at pg and *
being the convolution operator.

The third filter is the diffusion filter. Since on the boundaries of
solid objects the alpha matte changes quickly, AV/ is already a good
approxiamtion, but the gradient VI is sensitive to noise and block-
ing effects from JPEG images. Anisotropic diffusion [Perona and
Malik. 1990] is used to diffuse the image. It is a blurring process,
which preserves edges, that removes small scale noise. Afterwards
the image gradient VI is re-computed from the diffused image.

The last filter mentioned here is the clone brush. Some situations
may occur in which it is intended to copy the matte gradient A(VI —
D) of a selected source to a target region via the clone brush. It can
be seen as a copy paste method.

Figure 14 shows samples for the four filters:

The local operations mentioned above can be used by the user to
refine the matte in the selected region. The global Poisson matting
results as basis, the local ones are proceeded in four steps:

1. Channel selection is applied to reduce the errors in D. The
diffusion filter is applied to remove possible noise for solid object
boundaries.

2. The highpass filter is applied to obtain an approximation of D.
3. The boosting brush is applied to manipulate A.

4. The clone brush may be applied if gradients are indistinguish-
able.

There are to more brushes, an erase and an inverse brush, which
may be used optionally. The generation of results is made very
quickly at each step, so the user can observe the results and select
the regions which do not satisfy him.

At last some some samples to compare Poisson matting with other
approaches.
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Figure 14: The first column shows the boosting brush procuding a
sharper matte. The second shows a highpass filter recovering struc-
tures of the matte and the third one shows how the diffusion filter
removes noise. The last one shows how the clone brush is used to
copy paste the matte gradient from the red to the blue region.
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Figure 15: The performance of different matting techniques in com-
parison.




Figure 16: The first and the second picture are the foreground and
background scene. The third picture shows the problem that oc-
curs if shadow are considered as normal elements, while the fourth
shows the result from shadow matting and compositing. The last
picture is the real photograph, which just looks like the result of the
fourth.

3.3 Shadow Matting and Compositing

The next problem with matting and compositing i want to discuss
are shadows. Since shadows are an important part in the human
perception of the world they should also be considered when com-
positing two images. If shadows are missing in a composited pic-
ture it just will not look realistic. It would be possible just to matte
the shadows like other elements and inserting them in the compos-
ite. However since shadows can interact with the background and
maybe other elements this will not be sufficient to get a realistic re-
sult. Therefore a method is needed to provide correct shadows for
composited images. Such a method was introduced in [Chuang et
al. 2003] and i will discuss this method here in detail.

3.3.1 Shadow Matting

The first step would be to retrieve, or matte, the shadows from an
image. Since the ordinary compositing equation by Porter and Duff
is not sufficient for shadow matting, a new equation, the so called
shadow compositing equation has to be introduced. To determine
an approprieate model it is assumed that a single point light source,
sometimes called the key light, is the only lightsource that casts
shadows in the scene. Secondary lighting is considered to be ei-
ther dim or of such wide area that its shadows do not have to be
considered relevant. Additionally we assume that there are no in-
terreflections. This leads to the model of the observed color C for a
pixel

C=S+pI (39)

with S being the shadowed color, f the visibility of the lightsource
and I the reflected contribution of the light source. If we assume
that L is the color of the pixel without shadows we can substitute I
by L - S, which leads to the shadow compositing equation:

C=BL+((1-B)S (40)

From this equation we can interpret that L is the unshadowed im-
age, S is the shadowed image and f is the shadow matte, which
represents the per-pixel visibility of the light source. 8 can be seen
similar to o in the original composition equation. While 8 may be
transferred itno different scene L and S are dependent on the light-
ing conditions, so for a new image L’ and S’ are required as the new
lit and shadowed images.

Now how can the shadow matte 3 can be recovered with the ob-
served color C given. First L, the lit image, and S, the shadowed
image, must be estimated. This can be done using max and min
compositing [Szeliski et al. 2000], which generally means to find
the darkest and the brightest value of each pixel. First the video

matting algorithm, Chuang et al. [2002], is used to extract the mat-
tes of foreground objects and exclude them from the max/min com-
positing. For each pixel

S = min;Cy 1)

and

L =maxyCy (42)

is computed with min and max being independently computed
across all frames. The color images C, L and S can be seen as
3-vectors at each pixel. The shadow matte 3 can be estimated as

(C-$)-(L-S)

B=
IL— s

(43)

The observed color C can be seen as lying on a line between L and S
computing the parametric distance of the projection along that line.
If the estimations for L ans S are good this method works well,
however if L and S get more similar the estimates for 8 become
noisy. If they are similar this means that we can not recover f3, but
also states that the pixel is not effected by the shadow, since L = S,
so the pixel is not required anyway.

3.3.2 Shadow Compositing

Now that we have separated the shadow matte from the input pic-
ture we can use this information to produce a composite picture.
In order to do shadow compositing however first L, the lit image
of the new background scene, and S’, the new shadowed image are
required. Assuming that the same camera and light source is used
for the new background as for the old, the new composite color can
be calculated using the following equation.

C'=BL+(1-Pp)s’ 44)

While it is relatively easy to render scenes lit and shadowed for
synthetic scenes, for natural scenes photosymetric shadow scanning
must be done by moving an object between the light such that every
part of the scene needed for compositing is shadowed once. As
previously described the max/min compositing operations are used
to recover the lit and shadow images of the scene. However the
shadow cast by this method does not yet consider the geometry of
the new background scene, as you can see in figure 17(c), which
leads us to the next step.

3.3.3 Estimating Shadow Deformations

Since we want the shadows in the composited image to look realis-
tic the geometry of the background scene of the compisited image
must be taken into consideration. First we assume that there is a
region in the target background that is planar to the source back-
ground, in other words a reference on the height within the image.
Then we need to construct a displacement or warping map W which
places each pixel p in the target image in correspondence with a
point W,y in the target image.

The shadow composition equation defined before can be used, with
the exception that we now have a warped shadow matte:
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Figure 17: The whole process of shadow compositing: Picture a)
and b) show the lit and shadow images recovered for the target ge-
ometry. In picture c) the result without considering the geometry
can be seen. Picture d) to f) show the process of displacement and
g) the result with displacement. Another example with a different
background is shown in h).

(@) Source frame b) Target frame (©) Composite

Figure 18: Another sample for a composite with correct shadows.

B=B W] (45)

The method for estimating the shadow displacement map is based
on Bouguet’s shadow scanning approach [1998]. Shadow scan-
ning is an active illuminatiom method for which the reconstruc-
tion cotains gaps where surfaces are occluded from the view of the
lightsource or the camera. However these gaps are exactly what
is needed for shadow compositing. The process used for shadow
compositing is called geometric shadow scanning.

First it is required that the target background has planar regions,
which are specified by the user, see 17(d). This region is called the
reference plane region and the plane defined as 7. Imagine a pixel
p from which the point P in the target background can be seen.
For P there is a projection Q on the reference plane that lies at the
intersection of 7 and the shadow ray V which passed through P.
Q can be computed as the intersection between two shadow lines,
caused by a thin object (a stick) that casts a shadow on P, on the
reference plane. With q being the image-space projection of Q the
problem can be solved directly, since it is in fact the warping map
W[p], by doing all computations in image coordinates.

3.4 Environment Matting

There are two more effects which increase realism in an image that
are missing in ordinary compositions, refraction, by transparent ob-
jects, and reflection, by shiny objects. Additionally scattering ef-
fects may occur in the case of glossy materials. In this section i
will discuss the process called environment matting and composit-
ing, introduced in [Zongker et al. 1999], which expand traditional
matting and compositing processes by the above mentioned effects.

Figure 19: A glass of water composited on two different back-
grounds.

Environment matting and compositing is aimed to capture, addi-
tionally to the foreground object, a description of how the object
refracts and reflects light from the scene. This information is called
the environment matte. Using this environment matte good results
for refraction and reflection of objects in the new scene can be pro-
duced. The following figure gives an example what environment
matting and compositing is capable of.

3.4.1 The Environment Matte

We will start by expanding the traditional compositing equation

C=F+(1-a)B (46)

by the environment matte, which defines how the foreground el-
ement interacts with light in the environment. Although o refers
to the coverage of pixel and the opacity as well in the traditional
compositing equation, we assume that it will only refer to cover-
age now, so for a pixel with no foreground element ¢ is zero and
if it is completely covered « is 1, no matter whether the the ele-
ment is semitransparent or opaque at that pixel. In a similar way an
elements color is handled differently than in traditional composit-
ing. An elements color characterized any emissive component of
the foreground object and any reflections coming from lightsources
in the scene, but not any additional reflections or transmission of
light from the rest of the environment.

The environment matte, which captures any transmissive effects of
the foreground element is added to the traditional equation.

C=F+(1-a)B+® A7)

with @ representing the contribution of light from the environment
that refracts through or reflects from the foreground element.

There are two requirements the environment matte should meet.
The first one is that compositing should be relatively fast, therefore
the environments are represented by sets of texture maps, just like
in environment mapping. The second requirement is that the repre-
sentation should only require a small, constant amount of data for
each environment map.

First we assume that only light coming from distant parts of the
scene reaches the foreground object. Using this a simplified model
of light transport can be created. An environment can be described
as light E(®) coming from directions @. The total amount of light
@ can be described as following:



&= / / R(® — p)E(w)dodp 48)

This means that the total amount of light emanating form a por-
tion f of the foreground element that is visible through a given pixel
can be described as an integral over f of all light from the envi-
ronment that contributes to the point p in the pixel, attenuated by
the reflectance function R(w — p). The reflectance function de-
scribes the effect of all absorption and scattering by the foreground
element.

The first approximation made is that the reflectance function is con-
stant across the covered area of a pixel.

o= /R(w)E(a))dw (49)

The next step is to break up the whole integral to a sum of m in-
tegrals representing the different parts of the environment, which
means their texture maps which represent the light coming from
those parts.

o=y [RioT)dx (50)
i=1

The integral is taken over the whole area of the texture map for each
texture map and R;(x) is the reflectance function for a point x on the
texture map T;.

The last assumption made is that the contribution of a texture map
T; can be approximated by a constant K; multiplied by the total
amount of light emanated by an axis-aligned rectangular region A;
of the texture map. The operator M(T,A) returns the average value
of this rectangle, what leads to:

m m
Y KAM(T,A) = Y, RM(T;,A))
i=1 i=1

o= i K; | T;(x)dx=
¥ K f mde= 3 x

(i=

(51

Inserting the approximation for ® in the first Environment Matting
Equation leads to the overall Environment Matting Equation.

C=F+(1-a)B+ Y RM(T;,A)) (52)
(i=1)

3.4.2 Environment Matting

The next question is how we can do environment matting, which
means extracting the foreground and background with the pixel
coverage o as well as the environment matte & for each pixel. The
idea is to capture how the collection of all rays passing through a
pixel are scattered into the environment, some kind of backward
ray tracing. As shown in Figure 20 some different patterned tex-
tures, the backdrops and sidedrops are displayed behind and at the
sides of the foreground object. For each backdrop one image with-
out the foreground, the reference image, and one image with the
foreground, the object image, is created. This gives a non-linear
optimization problem which solution is a set of parameters which
are most consistent with all the image data. In order to split the
problem of finding a rectangle into finding two one-dimensional in-
tervals the patterns used in the textures vary in only one dimension.

Figure 20: The environment matting process.

The colors green and magenta are used because they are orthogonal
in RGB space and have a similar luminance. Additionally to the
patterns two textures must be one colored.

A difficulty is the large dimensionality of the Environment Matting
problem. Since we there are three color components there are three
degrees of freedom for the foreground color F and for each R;, the
reflectance coefficient, in . Additionally there are four degrees
of freedom for each area extent A; and one more for o. This fact
requires that the problem is solved in four stages. In the first stage
only the backdrop is considered and different backdrops are used to
compute a coarse estimate for or. After that F and R; are determined
for the pixels which are covered by the foreground element. The
third stage is to solve for A; and make a finer estimate for & at the
boundary of the foreground element. In the last step R; and A; are
determined for other faces of the environment, the sidedrops.

Stage 1 - estimate the coverage

The first step is to make a coarse estimate of coverage for each pixel.
We start by separating the pixels of the environment matte in two
classes, the covered, which means the reference and object images
differ, and the uncovered. The next step is clean up the resulting
alpha channel by removing isolated covered or uncovered pixels,
what is done with a morphological operations ( a close and a open
box), a operation used in image processing.

The uncovered pixels are considered the background, having an o
of 0. The covered are separated into foreground, o = 1, and bound-
ary pixels having a fractional o.

Stage 2 - foreground color and reflectance coefficients

Now that we know the pixel which are considered covered the color
of the foreground F and the reflectance coefficients R; for the envi-
ronment must be determined. Here the one colored, or solid, back-
drops are needed, by which F and R; can be determined.

Imagine two colors B and C with B being the color of a backdrop
and C being the color of the foreground before this backdrop. We
use a second backdrop with the color B’ and get the color C’ which
is the color of the foreground of the second backdrop B’. By in-
serting these four colors in the Environment matting equation we
receive the two equations

C=F+(1-a)B+R\B (53)



and

C'=F+(1—a)B"+RB’ (54)

which are tow equations with two unknowns, which can be solved
by replacing R and F by functions of . This leads to

c-C’
Ri(@) = 5= (1-0) (55)
and
Fla)=C—(1—oa+Ry)B (56)

Stage 3 - the area extents and a refined estimate of coverage

Now that Ry and F have been determined, we can go on to the
third stage, where a refined alpha for the boundary pixels and the
axis-aligned rectangle A; which approximates the reflections and
refraction of the background in the best way are determined. To do
this the objective function over all backdrops for each covered pixel
is made

_ i ‘CJ—F(a)—(l—oc)Bj—Rl(a)M(le7A1)H2 (57)

with B/ and C/ being the colors of the pixel in the referenced and

object image in the j-th backdrop, T{ being the texture map of the
j-th pattern. F(a) and R{¥ are of course the functions from the last
stage. What we try to do is find the rectangular A which minimizes
this function.

There are still four degrees of freedom for the rectangle, namely
left, right, top, bottom, or (Lrtb). Since we stated that the pat-
terns in the backdrops are only one dimensional we know that I
and r are independent for horizontally striped backgrounds and t
and b are independent for vertically striped. Knowing this we can
break down the problem to two three dimensional problems, since
we must consider a, which are (a,l,r) and (a,t,b). Since we can
assume « being 1 in the foreground pixels, we are looking for an
interval [L,r] which minimizes E| over the vertically striped patterns
by testing a number of candidates and we do the same thing for [t,b]
and the horizontal patterns. At the border area where « is between
0 and 1 we need to test for multiple ¢ values of the interval Aj.

Stage 4 - the sidedrops

Now that we have acquired A; we know the object refracts and
reflects light from the backdrop, now we must capture the same
information for the sidedrops. We already know « and F as well and
B as the color of the backdrop, while S and S’ are considered two
solid colors of the sidedrop. This leads to the following equations:

C=F+(1—a)B +R:S (58)

C'=F+(1—a)B +RS" (59)

Using these two equations we can extract R;by

R; = (60)

Figure 21: The first column shows the composited pictures without
considering the environment, while the second shows the results
using environment matte compositing. The last pictures in the rows
are real photographs.

what leads to the objective function E;

Rz a)|[ on

(cf —(1-a)B

to minimize for each sidedrop i. Due to the fact that the sidedrops
are not visible to the camera we cannot take reference photographs
for the sidedrops and use the ones from the backdrop as well as the
texture maps. By placing the sidedrops around the object we can
simulate light coming from these directions.

3.4.3 Environment compositing

Now that we have an environment matte for our foreground ob-
ject it can be composited in a new environment with regard to the
refractions and reflections. We just need to implement the Environ-
ment Matting Equation, equation (52), which is called environment
compositing. The contributions of the foreground and background
color as well as all weighted contribution from the texture maps
which describe the environment are considered. In order to prevent
aliasing a filter can be applied. The next figure will show some
samples made with environment compositing.

4 User interfaces

In this chapter i will discuss what kind of software concerning digi-
tal compositing exists. Basically there are two different workflows,
the node-based and layer-based, for digital compositing.

Node-based means that the composite is represented as a tree, with
the nodes being images or effects. This is the way compositing ap-
plications are handled internally. An example is the software Nuke.

Layer-based means that each image or effect in a composited image
is represented as a layer within a timeline. They are just stacked,
one above the next, in the order the user desires, with the bottom
layer rendered first. Layer-based compositing works well for mo-
tion graphics and simple compositing projects, but it is problematic
to use it for more complex composites. An example for layer-based
software would be Adobe After Effects.



Figure 22: The user interface of nuke, a node-based digital com-
positing software.

Adobe After Effects is also capable of natural image matting. Al-
though it is not explicitely mentioned which algorithm is used,
the matting has problems with low contrast. Since other software
shows the same problems it seems that methods like bayesian or
poisson matting is not being used in commercial software so far.

Additionally, at least for my knowledge, no known digital com-
positing software is able to do real shadow or environment matting.
There are two ways the known software handles these problems.
While the first is just ignoring it, most programs offer a list of tools
and effects to edit the images, so a skilled user may hide these de-
ficiencies. In any case shadow and environment matting is not yet
implemented in any known software by now.

5 Conclusion

In this paper the background behind digital compositing and the as-
sociated matting processes has been shown. We started with the
basic idea of compositing of two images using the alpha channel to
prevent aliasing. The next step was to show how matting is actually
done, since usally elements which we want to composite must be
retrieved first. Here we separted in techniques which require a cer-
tain background, for example a blue screen, and techniques which
retrieve elements from natural images, like bayesian and poisson
matting. Afterwards we looked into techniques to improve the re-
alism of composited images. The first one was shadow matting
and compositing which showed up a way to create realistic looking
shadows in composited images. Afterwards we looked into envi-
ronment matting and compositing what is a technique that tries to
consider refractions and reflections when compositing images in or-
der to improve realism.
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