
Dynamic Occlusion Culling

A. Julian Mayer∗

TU Wien

Abstract

Visibility computation is one of the fundamental problems in 3D
computer graphics, and due to ever-increasing data-sets its rele-
vance is likely to increase. One of the harder problems in visibility
is occlusion culling, the process of removing objects that are hidden
by other objects from the viewpoint. This paper gives an overview
of occlusion culling algorithms and the data structures they oper-
ate upon. Special emphasis is given to dynamic occlusion, which
enables real-time modification of the scene, and the supporting dy-
namic data structures.

CR Categories: I.3.7 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Hidden line/surface re-
moval; E.1 [Data]: Data Structures—Trees

Keywords: visibility, occlusion culling, data structures, dynamic
occlusion, dynamic visibility, dynamic data structures

1 Introduction

In 3-dimensional rendering typically only a small subset of the
scene is visible from a given viewport at any time. The determina-
tion of this visible subset is part of the visibility problem, and has
two solutions: visible surface determination and hidden surface de-
termination. While visible surface determination tries to determine
the visible-set without touching all the geometry, hidden surface
determination starts with the full scene and removes invisible parts
until it ends up with approximately the visible-set. Hidden surface
determination typically contains these stages:

• View frustum culling:
The viewing frustum is a geometric representation of the vir-
tual camera’s view volume. View frustum culling removes
objects that are completely outside of the viewing frustum
since they naturally can not be possibly visible. View frus-
tum culling is a very important step because it removes a very
significant portion of the geometry, but it has to be manually
handled by the developer at the geometry level. The algorithm
used is typically dependent on the spatial data structure used.
Objects that are only partially in the viewing frustum can be
clipped against it, though this is normally handled automati-
cally at a lower level.

• Occlusion culling:
Occlusion culling is the process of removing objects that
are hidden by other objects from the viewpoint. Occlusion

∗e-mail: julianmayer@mac.com

culling is ”global” as it involves interrelationship among poly-
gons and is thus far more complex than backface and view-
frustum culling. It has historically necessitated expensive pre-
processing steps, which largely prevented dynamic scenes.
This article focuses on the algorithms used for occlusion
culling and the structures they operate upon.

• Backface culling:
Objects are usually represented by their hollow shell, which
is composed of polygons that are defined in a special or-
der (clockwise or counter-clockwise) so that their front-side
can be distinguished from their back-side. There is normally
no reason to draw polygons that are facing the virtual cam-
era with their back-side. Culling those polygons is also the
cause for objects becoming invisible if the virtual camera
(accidently) gets inside them. Backface culling can remove
about 50 percent of all geometry and nowadays does not need
developer-intervention since it happens at the graphics-library
level.

• Exact Visibility Determination:
Exact Visibility Determination resolves a single or multiple
contributing primitives for each output image pixel - the clos-
est object at any given screen pixel should be drawn [Aila
2000]. This is today handled in hardware by the z-buffer, in
the past developers were forced to do it themselves, e.g. using
the Painters Algorithm.

• Contribution culling:
Contribution culling is the process of removing objects that
would not contribute significantly to the image, due to their
high distance or small size. This is usually measured with
their screen projection. Contribution culling can also happen
as part of the occlusion culling step, e.g. when using occlu-
sion queries, which return the exact number of pixels an ob-
ject would take up on screen. ”Whereas the other four sub-
categories leave the output image intact, contribution culling
introduces artifacts. The term aggressive culling is sometimes
used to refer to such non-conservative methods.” [Aila 2000]
It is also common to discard far-away objects regardless of
their size and draw e.g. fog instead, though advances in graph-
ics hardware have made this measure less necessary. Another
common technique is to replace objects by representations
with a lower level of detail (LoD) when they are far away.

The problem of the 3D-visibility from a specific point (camera) de-
scribed is only a part of visibility problem, there are other parts
like the visibility from a region [Bittner and Wonka 2003], which is
needed for pre-computing a potentially visible set (see section 4.2).

”The goal of visibility culling is to bring the cost of rendering a
large scene down to the complexity of the visible portion of the
scene and mostly independent of the overall size. Ideally, visibility
techniques should be output sensitive: the running time should be
proportional to the size of the visible set. Several complex scenes
are ’densely occluded environments’, where the visible set is only
a small subset of the overall environment complexity. This makes
output-sensitive algorithms very desirable. Visibility is not an easy
problem since a small change in the viewpoint might cause large
changes in the visibility.” [Cohen-Or et al. 2000]



Figure 1: A sample scene that explains view-frustum-, back-face-
and occlusion-culling[Cohen-Or et al. 2000].

The problem of dynamic occlusion culling is the focal point of this
paper and can be divided into two smaller problems. First, dynami-
cally updating a spatial data structure with minimal overhead, when
scene updates happen. Second, doing dynamic occlusion culling on
top of this structure. This involves amongst others the independence
from any pre-computed information that would be invalidated dur-
ing scene updates. Consequently this paper has the two major chap-
ters ”Spatial Data Structures” and ”Occlusion Culling Algorithms”,
analogous to these two problems.

2 Related Work

Visibility is a well covered field [Cohen-Or et al. 2000] [Bittner and
Wonka 2003] [Hadwiger and Varga 1997].

Spatial data structures are covered in books [Samet 1990b] [Samet
1990a] and also their relationship to occlusion-culling [Helin 2003]
and its performance [Meißner et al. 1999] is evaluated.

Heinrich Hey and Werner Purgathofer give an overview over var-
ious occlusion culling methods [Hey and Purgathofer 2001] while
others explore certain methods in depth [Bittner et al. 1998] [Zhang
et al. 1997] [Hua et al. 2002] [Ho and Wang 1999].

David Luebke and Chris Georges documented the possibility of us-
ing portals to speed-up rendering [Luebke and Georges 1995].

Pre-computed occlusion information has long been the method of
choice for speeding up rendering and so their generation is well-
understood [Laine 2005] [Koltun et al. 2000]. S. Nirenstein and E.
Blake proposed an interesting way to speed-up this expensive oper-
ation using hardware-acceleration [Nirenstein and Blake 2004].

Occlusion queries may be the method of choice for occlusion
culling in the future since they are part of consumer graphics hard-
ware since a few years now. However, due to their nature it is imme-
diately obvious that a straightforward and simple approach will not
bring the desired performance-benefits. Therefore a large number
of algorithms and techniques has been developed that use occlusion
queries to get the desired acceleration [Bittner et al. 2004] [Hilles-
land et al. 2002] [Staneker et al. 2003] [Guthe et al. 2006] [Kovalcik
and Sochor 2005] [Staneker et al. 2006] [Sekulic 2004]. Maybe a
combination of some of these ideas will bring the best results.

While occlusion queries provide the possibility for dynamic scene
updates (in opposition to pre-computed approaches like the PVS),
these can only happen if the underlying spatial data structure sup-
ports dynamic updates. These dynamic structures are notably cov-

ered by Joshua Shagam and Joseph J. Pfeiffer, Jr. [Shagam 2003]
[Pfeiffer et al. 2003].

Dynamic occlusion of course does not have to depend on occlu-
sion queries, H. Batagelo and S. Wu present an output-sensitive
occlusion culling algorithm for densely occluded dynamic scenes
[Batagelo and Wu 2001]. Oded Sudarsky and Craig Gotsman gen-
eralize existing occlusion culling algorithms, intended for static
scenes, to handle dynamic scenes while also having a look at
dynamically updating an octree-structure [Sudarsky and Gotsman
1999].

3 Spatial Data Structures

3.1 Overview & Features

There are numerous ways to represent and store the geometrical
shape of fictional objects or approximations of real-world objects
in a computer-system, depending on the desired application: point-
clouds, edge-lists, volume-data (CSG, ) or mathematical curves and
surfaces. Here we will focus on the representation through the
triangles and polygons that approximate the surface of an object,
since this is the predominant solution for realtime and non-realtime
graphics alike. It is also versatile, applicable to a wide array of use-
cases and its use is also supported and accelerated through current
3D-graphics-hardware. So, we are mostly covering the structures
below in the context of storing polygons, even if many of them are
also suited to store other objects or primitives.

It is obvious that storing the polygons that make up a scene in a
simple (linear) list is unsuited to any but the simplest task, because
there is no efficient way to get the spatial information that is neces-
sary not only for the various culling stages in the graphics pipeline,
but also for things like collision-detection or polygon-sorting.

Since there are many different possible structures their various fea-
tures have to be compared to the unique needs in the desired ap-
plication. Typical properties are the space complexity (in memory
and on disk), the time complexity for generation, dynamic updates
and the various spatial queries, as well as code complexity nec-
essary to support its use. Because of their unique characteristics
only hierarchical subdivision structures are suitable for most appli-
cations: if one item is invisible, then all of its children are invisible
as well. Given similar characteristics it may be desired to choose
the structure that is easier to understand or has a more familiar men-
tal model.

”Instead of having all the geometry in one, unbounded space, one
might want to subdivide the space into smaller segments or voxels
as they are called [...]. It should be noted that the [spatial] sub-
division can always be done to the plain geometry (splitting the
polygons) or e.g., bounding boxes (adding the pointer of the ob-
ject to each voxel it touches), depending on the application and re-
quirements. [...] One should also note that it is possible and often
very useful to use multiple and concurrent spatial subdivisions for
a scene. E.g., the static geometry could be placed inside a BSP-tree
while a loose octree could be used to store the dynamic objects.”
[Helin 2003] It should also be noted that it is possible to combine
spatial data structures, e.g. an octree can stop subdividing when a
certain threshold is reached and store the content data in a small
BSP-tree, at each leaf-node.



3.2 Non-Hierarchical Grids

3.2.1 Uniform Grids

Figure 2: An uniform grid (2-dimensional).

”We place a regular grid over the scene and assign the geometry
to the grids voxel that encloses its center point. Afterwards we
can find all the geometry in voxel n by indexing the grid. One
could also clip the polygons to fit perfectly inside the voxels, but
this would increase the amount of polygons. Then again, one could
assign the polygons to every voxel they intersect. [...] Regular grids
are suitable for dynamic scenes when used with bounding volumes
for the objects, because relocating geometry is easy: just remove
it from the current voxel and place it into the new one. Regu-
lar grids work best when the geometry is uniformly distributed in
the scene.” [Helin 2003] ”It involves the subdivision of initial cell
into equally sized elementary cells formed by splitting planes that
are axis-aligned regardless of the distribution of objects in a scene.
[...] The n-dimensional grid resembles the subdivision of a two-
dimensional screen into pixels. A list of objects that are partially
or fully contained in the cell is assigned to each parallelepiped cell
(also called a voxel in IE3 space). [...] Since the uniform grid is
created regardless of the occupancy of objects in the voxels, it typ-
ically forms many more voxels than the octree or the BSP tree, and
therefore it demands necessary storage space.” [Havran 2000]

The possibility of using a uniform grid for dynamic scene occlu-
sion culling is explored by H. Batagelo and S. Wu [Batagelo and
Wu 2001], but such a partitioning suffers from performance and/or
scalability problems when used for extremely large environments
or when there is a high variability in object density [Pfeiffer et al.
2003]. It should be noted that the time complexity for creating an
uniform grid is very low, I presume it has order of n, where n is the
number of geometric objects to be placed.

3.2.2 Non-Uniform Grids

”In the non-uniform grid the splitting planes are also axis-aligned,
but along the axis they can be positioned arbitrarily. Non-uniform
grids can have a better fit of voxels to the scene geometry, since
for sparsely occupied scenes they put more splitting planes to the
spatial regions with higher object occupancy. The positioning of
the planes is performed according to the histogram of objects along
the coordinate axes.” [Havran 2000]

Figure 3: A non-uniform grid (2-dimensional).

The non-uniform grid trades higher cost for generating the grid for
better efficiency fitting the geometry in the grid. It should be noted
that algorithms that work with an uniform grid may work much
slower, or not at all with a non-uniform grid [Havran 2000]. It
should also be noted that it is possible to fit a 3-dimensional scene
within a 2-dimensional grid, discarding one of the coordinates dur-
ing placement in the grid. This can be useful when the density of
objects is much lower in one dimension (e.g. many objects placed
along a 2d-plane).

3.3 Hierarchical Grids

3.3.1 Recursive Grids

Figure 4: A recursive grid (2-dimensional) [Helin 2003].

”Recursive grids [...] simply bring the concept of recursiveness into
uniform grids. The principle is as follows: construct a uniform grid
over the set of objects, assign the objects to all voxels where they
belong. Then recursively descend; that is, for each voxel that con-
tains more objects than a given threshold, construct a grid again.
The construction of grids is terminated when the number of objects



referenced in the voxel is smaller than a threshold or some maxi-
mum depth for grids is hit. This maximum depth is usually set to
two or three. The principle is thus similar to the BSP tree or the
octree, but at one step a cell is subdivided into more than two or
eight child cells.” [Havran 2000]

3.3.2 Hierarchies of Uniform Grids

Figure 5: ”A hierarchical uniform grid. Here the all objects are on
the same level in space with grid n+1, but to emphasize the fact that
the grids are not spatially connected they were drawn separately.”
[Helin 2003].

”Hierarchical uniform grid [...] has a different kind of approach to
the spatial subdivision problem. Instead of starting by subdividing
the whole scene we first group the scenes objects by their size. Next
we go through all the groups and put neighboring objects of similar
size into clusters. Then we use regular grids (where the voxel size
depends on the size of the objects inside the cluster) to subdivide
the clusters. [...] Hierarchical uniform grids have flatter hierarchy
than e.g., octrees, but they are not very suitable for dynamic scenes
either, unless every cluster in the scene moves as one (scaling or
adding more objects might require a new subdivision or at least
new uniform grids).” [Helin 2003]

3.4 Octrees and Quadtrees

Figure 6: An octree [Stolte 2007].

Octrees and Quadtrees are hierarchical subdivision structures. The
initial voxel is set to the enclose all of the scenes geometry, and

is recursively subdivided into eight (octree) or four (quadtree) sub-
voxels until a threshold value is met.[Helin 2003]. Typically an
octree is used for dividing 3-dimensional space and a quadtree for
dividing 2-dimensional space, but the quadtree can also be used
in 3-dimensional space when discarding one dimension (see sec-
tion 3.2.2). ”Every polygon is assigned to the smallest voxel that
encloses the polygon completely. [...] Octrees subdivision places
many (and smaller) voxels into areas with plenty of geometry and
less (and larger) voxels into areas with only a little geometry.” [He-
lin 2003]

There are many variations of the octree:

• Octree-R:
”There is a variant of the octree called Octree-R that results
in arbitrary positioning of the splitting planes inside the inte-
rior nodes. The difference between the octree and Octree-R
is similar to that between the BSP tree and the kd-tree. The
smart heuristic algorithm for positioning the splitting planes
inside the octree interior node is applied independently for all
three axes. Then the speedup between the octree-R and the
octree can be from 4 percent up to 47 percent, depending on
the distribution of the objects in the scene.” [Havran 2000]

• Loose octree:
”Loose octree, introduced by Thatcher Ulrich (2000), is like
an octree where all the voxels have been subdivided into a
certain level. The looseness comes from the fact that the
voxels of the same level overlap each other, e.g., in an oc-
tree the voxel size would be N*N*N, but the same voxel in
a loose octree would be 2N*2N*2N. The objects of the 3D-
scene are surrounded by a bounding sphere and depending on
the spheres radius the object is positioned into a voxel on level
p (the larger the radius the larger is the voxels size on level p).
Spheres center c indicates the objects position on the grid.”
[Helin 2003]

The octree is not inherently suited to dynamic updates since it has to
be rebuilt if an item leaves its subvoxel, but the loose octree may be
better suited [Helin 2003] and the Dynamic Irregular Octree [Pfeif-
fer et al. 2003] is specially crafted for optimized dynamic updates.
Sudarsky and Craig Gotsman also manage to dynamically updating
a standard octree using temporal bounding volumes [Sudarsky and
Gotsman 1999]. Octrees are among the most popular, simplest and
fastest spatial partitioning structures and with some updates they
also seem suited for dynamic updates.

3.5 BSP trees

Binary space partitioning (BSP) is a method for recursively sub-
dividing space. The recursion usually stops when one or more
requirements are met, often being that each part is convex. Like
the name suggests, binary space partitioning divides space using
one plane into two subvoxels, compared to octrees (quadtrees),
which divide space using 3 (2) planes into 8 (4) subvoxels (see sec-
tion 3.4). The subdivision of the scene results in a tree data structure
known as BSP tree.

Note: some literature divides BSP trees into axis-aligned and
polygon-aligned versions, where the polygon-aligned version uses
the plane defined by one of its polygons as splitting plane. How-
ever, since the axis-aligned version is equivalent with the kd-tree
(see section 3.6), we are talking here just about the polygon-aligned
version (sometimes the axis-aligned BSP tree has a constraint con-
cerning the position of the splitting plane). [Havran 2000]

Binary space partitioning was initially used because it provides ef-
fortless back-to-front sorting of polygons for using the painter’s al-



Figure 7: An example 2d-BSP-tree generated with the BSP-Java-
Applet (http://symbolcraft.com/graphics/bsp/)

gorithm (when dividing until each subvoxel contains a convex set).
The BSP tree still remains in wide use today although exact poly-
gon sorting is less of an issue now because of the hardware-z-puffer.
BSP trees are very expensive to set-up because of the long search
for the best splitting plane at each step and are quite ill-suited to
dynamic updates. Dynamism is often provided by using a second,
concurrent (non-BSP-)hierarchy for dynamic objects.

Time complexity for creating a BSP tree (n is the number of geo-
metric objects to be placed):

O = (n2 ∗ lg(n))[Ranta−Eskola2001] (1)

Since the polygons in the scene have to be split along the splitting
planes their number increases while building the BSP tree. It is
important to keep this increase of the number of polygons low by
choosing splitting planes that only split few polygons. In addition
it is very desirable to choose each splitting plane in a way that re-
sults in an equal distribution of polygons into the two subvoxels, in
order to keep the tree balanced and his depth low. Finding the best
splitting-plane is usually a tradeoff between these two properties,
and building the BSP tree is a very expensive process since it often
involves trying all the possible choices at each step. The useful-
ness of the final BSP tree highly depends on these tradeoffs and the
algorithm used in the generation of the tree.

3.6 kd-trees

A k-dimensional tree (kd-tree) is a special version of the BSP tree
which only uses splitting planes that are perpendicular to the coor-
dinate system axes. As such it is (similar to) an axis-aligned BSP
tree (see section 3.5), whereas in the (polygon-aligned) BSP tree
the splitting planes can be arbitrary. The distinction between differ-
ent versions is based on the splitting rules: it can be necessary for
the splitting plane to pass through one of the points that are to be
stored (e.g. the median in the case of the balanced kd-tree), while
there is no such restriction in the adaptive kd-tree [Samet 1990b].
Additionally it is possible either to cycle trough the axes used to
select the splitting plane, or to select the dimension based on some
criteria (like using the dimension with the maximum spread).

While a kd-tree is certainly better suited for dynamic updates than
the BSP tree, like the Octree it does not seem like a inherently good

Figure 8: ”A 3-dimensional kd-tree. The first split (red) cuts the
root cell (white) into two subcells, each of which is then split
(green) into two subcells. Finally, each of those four is split (blue)
into two subcells. Since there is no more splitting, the final eight
are called leaf cells. The yellow spheres represent the tree vertices.”
[Wikipedia 2006d]

fit either. Procopiuc et al. propose a dynamic scalable version of the
kd-tree called Bkd-tree, which consists of a set of balanced kd-trees
[Procopiuc et al. 2002].

Time complexity for creating a kd-tree (n is the number of geomet-
ric objects to be placed):

O = (n∗ log(n))[Wikipedia2006d] (2)

3.7 Other spatial data structures

”A bounding volume for a set of objects is a closed volume that
completely contains the union of the objects in the set. Bounding
volumes are used to improve the efficiency of geometrical opera-
tions by using simple volumes to contain more complex objects.
Normally, simpler volumes have simpler ways to test for overlap.
[...] In many applications the bounding box is aligned with the axes
of the coordinate system, and it is then known as an axis-aligned
bounding box (AABB). To distinguish the general case from an
AABB, an arbitrary bounding box is sometimes called an oriented
bounding box (OBB). AABBs are much simpler to test for intersec-
tion than OBBs, but have the disadvantage that when the model is
rotated they cannot be simply rotated with it, but need to be recom-
puted.” [Wikipedia 2006b]

”A natural extension to bounding volumes is a bounding volume hi-
erarchy (abbreviated to BVH [...]), which takes advantage of hierar-
chical coherence. Given the bounding volumes of objects, an n-ary
rooted tree of the bounding volumes is created with the bounding
volumes of the objects at the leaves. Each interior node [...] of [the]
BVH corresponds to the bounding volume that completely encloses
the bounding volumes of the subtree [...].” [Havran 2000] The in-
teresting property of BVH is that although a bounding volume of a



node always completely includes its child bounding volumes, these
child bounding volumes can mutually intersect [Havran 2000], sim-
ilar to the loose octree (see section 3.4). Contrary to all the other
spatial data structures discussed above, the BVH is not a spatial
subdivision, and can also be constructed bottom-up, in contrast to
top-down. BVH are likely to better accommodate to the underlying
geometry compared to common spatial subdivisions like the kd-
tree. However, a downside is that the individual bounding volumes
often largely intersect, especially at the top of of the hierarchy.

Figure 9: ”A bounding volume hierarchy. Here the grey rectan-
gles are the objects bounding rectangles. Other rectangles are the
bounding rectangles constructing the hierarchy.” [Helin 2003]

The AABB Tree is a special case of the bounding volume hierarchy,
where AABBs are used as bounding volumes. Joshua Shagam and
Joseph J. Pfeiffer, Jr. (who also invented the Dynamic Irregular Oc-
tree in the same year) thoroughly examine the possibility of using a
modified AABB tree aptly called dynamic AABB tree as a fully dy-
namic data structure. ”For the dynamic AABB tree, we dont limit
the number of children that a node can have, and we allow objects to
be stored in internal nodes. Furthermore, rather than build the entire
tree based on static data, we only build subtrees which are actively
being queried. Finally, the tree as a whole has a nesting heuristic,
which dictates how nodes are split and how objects are stored in
the children.” [Shagam 2003] They develop and test four nesting
heuristics called K-D, Ternary, Octree and Icoseptree, concluding
”Based on the preceding information, it is fairly straightforward to
determine that the best performance overall is with the icoseptree
heuristic, and that the icoseptree heuristic is also likely to continue
to scale exceptionally well for even greater orders of magnitude.
[...] The modifications to the AABB tree presented here make it
quite effective at efficiently determining visibility [...].” [Shagam
2003] Although they sadly don’t test their structures against other
dynamic structures (not even their own Dynamic Irregular Octree),
their idea certainly seems worth investigating. It may be worth not-
ing that not all (occlusion culling) algorithms may work on top of
the dynamic AABB tree (without modification), since many are tai-
lored for the standard hierarchical structures like the octree or kd-
tree.

Meißner et al. explore the ”Generation of Subdivision Hierarchies
for Efficient Occlusion Culling of Large Polygonal Models” and
present three novel algorithms for efficient scene subdivision, called
D-BVS, p-HBVO and ORSD, and compare these with the subdi-
vision of SGIs OpenGL Optimizer toolkit [Meißner et al. 1999] .
While the results are quite promising they do not provide any infor-
mation if their new algorithms support any dynamic scene updates.
Including more existing methods for comparison would have made
their results a lot more meaningful too.

We have now covered the common spatial subdivisions as well as

the bounding volume hierarchies - hybrid structures, which com-
bine spatial subdivisions with bounding volume hierarchies, are
also possible.

4 Occlusion Culling Algorithms

4.1 Overview & Features

As already explained (see section 1), occlusion culling is the pro-
cess of removing parts of the scene are occluded by some other part,
in order to avoid rendering them unnecessarily.

Occlusion culling is ”global” as it involves interrelationship among
polygons and is thus far more complex than backface and view-
frustum culling. Since testing each individual polygon for occlu-
sion is too slow, almost all the algorithms place a hierarchy on the
scene, with the lowest level usually being the bounding boxes of
individual objects, and perform the occlusion test top-down on that
hierarchy. [Cohen-Or et al. 2000]

Occlusion culling algorithms can be classified based on numerous
criteria and features:

• Online vs. offline and point vs. region:
One major distinction is whether the algorithm pre-computes
and stores the visibility information or determines it dynam-
ically at runtime. This is also connected to the distinction of
point versus region visibility. Since it is impossible to pre-
compute the information for all possible points, all those al-
gorithms determine the information for specific regions. On-
line algorithms are usually point-based. It is worth noting that
point-based algorithms are usually more effective in the sense
that they are able to cull larger portions of the scene.

• Image space vs. object space:
”For point-based methods, we will use the classical distinction
between object and image-precision. Object precision meth-
ods use the raw objects in their visibility computations. Image
precision methods, on the other hand, operate on the discrete
representation of the objects when broken into fragments dur-
ing the rasterization process. The distinction between object
and image precision is, however, not defined as clearly for oc-
clusion culling as for hidden surface removal since most of
these methods are conservative anyway, which means that the
precision is never exact.” [Cohen-Or et al. 2000]

”Image-space algorithms are usually highly robust, since no
computational geometry is involved. Degenerate primitives,
non-manifold meshes, T-junctions, holes or missing primi-
tives are all handled without special treatment. Parametric
surfaces and everything that can be rendered and bounded
with a volume can be used, at least in theory. [...] Object-
space algorithms usually have no such desirable features.
What makes them important, is their theoretical possibility
for utilizing temporal coherence, which is missing from every
image-space algorithm.” [Aila 2000]

• Conservative vs. approximate:
”Most techniques [...] are conservative, that is, they over-
estimate the visible set. Only a few approximate the visi-
ble set, but are not guaranteed to find all the visible poly-
gons. Two classes of approximation techniques can be distin-
guished: sampling and aggressive strategies. The former use
either random or structured sampling (ray-casting or sample
views) to estimate the visible set and hope that they will not
miss visible objects. They trade conservativeness for speed



and simplicity of implementation. On the other hand, aggres-
sive strategies are based on methods that can be conservative,
but choose to lose that property in order to have a tighter ap-
proximation of the visible set. They choose to declare some
objects as invisible, although there is a slight chance that they
are not, often based on their expected contribution to the im-
age.” [Cohen-Or et al. 2000]

• Continuous vs. point sampled visibility:
”Continuous visibility methods determine the visibility in all
view directions that pass through the image, which is an in-
finitely large set of view directions. In contrast to that are
point sampled visibility methods which determine the visibil-
ity only for a limited set of view directions, e.g. for the centers
of all pixels in the image. Point sampling can also be used for
object space occlusion culling.” [Hey and Purgathofer 2001]

• Individual vs. fused occluders:
”Given three primitives, A, B, and C, it might happen that
neither A nor B occlude C, but together they do occlude C.
Some occlusion-culling algorithms are able to perform such
an occluder-fusion, while others are only able to exploit sin-
gle primitive occlusion. Occluder fusion used to be mostly
restricted to image-precision point-based methods.” [Cohen-
Or et al. 2000]

Figure 10: ”The principle of occluder fusion. Objects A and B can
together occlude object C, even though neither of them can occlude
C on their own.” [Aila 2000]

”Point sampled image space occlusion culling methods im-
plicitly support occluder fusion because in their image space
occlusion information they do not distinguish between dif-
ferent occluders. Therefore the occluders are automatically
combined without having to do additional computations for
the occluder fusion. Occluder fusion is very important for oc-
cluders like trees, because each single leaf of a tree usually
occludes only very few objects, if any, behind it. But all the
leafs of the tree together can represent an important occluder
that occludes many objects behind it. Occlusion culling meth-
ods which do not support occluder fusion can usually only be
used efficiently in restricted scenes which contain objects that
are large enough to represent strong occluders.” [Hey and Pur-
gathofer 2001]

• All versus a subset of occluders:
Either all objects or just a subset can be used as occluders. Us-
ing all objects instead of a subset has the advantage of maxi-
mized occlusion. Occluder selection usually happens heuristi-
cally, selecting objects that are assumed to occlude large parts
of the scene (typically big objects are selected). Addition-
ally, simplified representations of the occluders can be syn-
thesized at this step. [Hey and Purgathofer 2001] Occluder
selection often necessitates pre-processing, which may pre-
vent dynamic scene-updates.

• Virtual occluders:
”Law and Tan made a superb observation that any hidden ob-
ject or volume in the scene can act as an occluder. Occluding
geometry can be replaced with considerably simpler virtual
occluders. A classic example is a dense forest where visibility

is only 15 meters. If a virtual occluder could be placed at the
distance of 15 meters from the camera, all the trees actually
blocking the visibility could be ignored as occluders. Savings
can be tremendous. Virtual occluders mainly reduce occluder
setup time, and in some cases can provide pre-computed oc-
cluder fusion.”

Figure 11: ” (a) The union of the umbrae of the individual objects
is insignificant. (b) But, their aggregate umbra is large and can be
represented by a single virtual occluder. (c) The individual umbrae
(with respect to the yellow viewcell) of objects 1, 2, and 3 do not
intersect, but yet their occlusion can be aggregated into a larger
umbra.” [Cohen-Or et al. 2000]

• Supported scenes:
”Although it is desirable to support general scenes, many oc-
clusion culling methods are nevertheless restricted to certain
types of scenes. Visibility pre-computation methods are re-
stricted to mainly static scenes. Occlusion culling methods
which use portals for their visibility calculation, usually re-
quire architectural environments. Several methods are re-
stricted to terrains, which are usually based on a height field,
and several other methods are restricted to walkthroughs in
urban environments or to 2.5D scenes, which are modeled on
a ground plan. But of course also the (in)ability of a method
to use all objects as occluders and to support occluder fusion
decides whether the method is suitable for general scenes or
not.” [Hey and Purgathofer 2001]

• Use of coherence:
”Scenes in computer graphics typically consist of objects
whose properties vary smoothly. A view of such a scene con-
tains regions of smooth changes (changes in color, depth, tex-
ture,etc.) at the surface of one object and discontinuities be-
tween objects. The degree to which the scene or its projection
exhibit local similarities is called coherence. Coherence can
be exploited by reusing calculations made for one part of the
scene for nearby parts. Algorithms exploiting coherence are
typically more efficient than algorithms computing the result
from the scratch. [...] three types of visibility coherence:

– Spatial coherence: Visibility of points in space tends
to be coherent in the sense that the visible part of the
scene consists of compact sets (regions) of visible and
invisible points.

– Image-space, line-space, or ray-space coherence:
Sets of similar rays tend to have the same visibility clas-
sification, i.e. the rays intersect the same object.

– Temporal coherence: Visibility at two successive mo-
ments is likely to be similar despite small changes in the
scene or a region/point of interest.

The degree to which an algorithm exploits various types of



coherence is one of the major design paradigms in research
of new visibility algorithms. The importance of exploiting
coherence is emphasized by the large amount of data that need
to be processed by the current rendering algorithms.” [Bittner
and Wonka 2003]

• Other criteria:

– ”Some methods are restricted to 2D floorplans or to
2.5D (height fields), while others handle 3D scenes.”
[Cohen-Or et al. 2000]

– ”Convexity of the occluders can be required by
some methods (typically for object-precision meth-
ods).” [Cohen-Or et al. 2000]

– ”Several occlusion culling methods require that a cer-
tain kind of bounding volumes or spatial subdivision
structure is used.” [Hey and Purgathofer 2001]

– ”Many occlusion culling methods require that the scene
is traversed in a front to back order to make efficient oc-
clusion culling possible.” [Hey and Purgathofer 2001]

– Output sensitivity is a desired attribute for an occlusion
culling algorithm - the running time should be propor-
tional to the size of the visible set.

– Some algorithms depend on graphics hardware, some
on a hardware z-buffer and some on hardware
occlusion-query support.

– Another classification-factor is the degree of overes-
timation in conservative algorithms or the number of
missed objects in an approximate algorithm.

Despite all these criteria, if we look at the aim of occlusion culling,
that is culling away geometry to save time when rendering, we see
that the most important feature of an occlusion culling algorithm is
its performance, which could be defined as the ratio of the number
of culled objects to the time needed. If the algorithm is too slow, we
might even lose time instead of saving time by using it. Of course
the algorithm also has to fit the scene and data structure in use as
well as meet the other requirements.

While usage of the hardware z-buffer is sometimes considered as an
occlusion culling technique, this is certainly false. The z-buffer is
a tool for exact visibility, and while it prevents occluded geometry
from ending up on screen, it does nothing to speed up rendering
by omitting occluded geometry. Even the early-z-rejection found
on newer hardware (designed to prevent texture and shader lookups
for geometry that will not end up on screen) is no substitute for
real occlusion culling, because it will not reject polygons until the
rasterization level.

4.2 (Pre-computed) Potentially Visible Set

The Potentially Visible Set (PVS) is a superset of the visible set,
typically calculated from a region (cell). While the term is also
used to describe a dynamically obtained superset of the visible set
(compare ”conservative visibility set” [Cohen-Or et al. 2000]) we
are referring here to the pre-computed PVS that is calculated from
preprocessed visibility information and stored alongside the scene.
Using the PVS is strictly speaking not part of the occlusion culling
stage of the hidden surface removal, because we do not start out
with the full set, but instead just with the Potentially Visible Set,
which is then reduced by frustum culling. Normally occlusion
culling takes place after this step. However, the outcome is sim-
ilar: (most) occluded geometry is not considered for drawing on

screen. The PVS works on the cells that are defined by the spatial
data structure and for every cell a list of all other cells that are po-
tentially visible is produced. Generating this extensive information
usually takes very long upfront (and also takes much space to store),
but increases the rendering performance significantly. Referring to
our classification, the PVS is a offline and region-based algorithm,
other properties may depend on the exact algorithm used.

Figure 12: A demonstration of the idea of the PVS. Only the grey
cells are potentially visible from the black cell.[Kortenjan 2001]

A similar technique to the PVS is the Global Occlusion Map, which
results in a more compact representation of the occlusion informa-
tion [Hua et al. 2002]. Koltun et al. research the possibility of
using virtual occluders as ”An Efficient Intermediate PVS represen-
tation” [Koltun et al. 2000]. S. Nirenstein and E. Blake proposed
an interesting way to speed-up the expensive PVS-generation using
hardware-acceleration [Nirenstein and Blake 2004].

Naturally using pre-computed information eliminates the possibil-
ity for dynamic updates to the scene, so it is covered here only
for comparison and completeness. Since the pre-computed PVS is
defined on complete cells it is often significantly bigger than the
visible set from a specific point, even in indoor scenes where the
technique works best. Despite all its shortcomings it has been in
wide use in the past.

4.3 Portals

Like the PVS (see section 4.2) Portals are not strictly a occlusion
culling technique, but yield similar results to it. Portals are not even
part of the hidden surface determination, but instead a method of the
visible surface determination (see section 1), which calculates the
visible objects, instead of culling away the hidden objects. This dis-
tinction is quite artificial, most papers count portals to the occlusion
culling algorithms and many do not make a distinction between vis-
ible and hidden surface determination (it seems the terminology in
the field of visibility is hardly standardized). However, using por-
tals for the rendering achieves what we are having in mind in this
section, not considering occluded geometry for drawing. So now,
what are portals exactly?



Indoor scenes are often composed of rooms that are connected by
tight doors, resulting in heavy occlusion. The portal system divides
the scene in cells (typically the rooms) that are connected by so
called portals (typically the doors). ”A cell is a polyhedral volume
of space; a portal is a transparent 2D region upon a cell bound-
ary that connects adjacent cells. Cells can only ’see’ other cells
through the portals. [...] Given such a spatial partitioning of the
model, we can determine each frame what cells may be visible to
the viewer.” [Luebke and Georges 1995] The portal algorithm flags
the current cell (the cell the camera is located in) for rendering,
determines which adjacent portals are in the viewing frustum, and
flags their connected cells for rendering too. The algorithm now
clips the viewing frustum against the visible portals and recurses to
the connected cells (since it is possible to see the portal that is con-
nected to another room). While this system usually overestimates
the visibility and does not account for occlusion due to objects in
the cells or due to the shape of the cells, it yields a usually small
number of visible cells to be rendered.

Figure 13: A picture designed to explain the concept of portals,
cells and mirrors. [Luebke and Georges 1995]

A nice property of the portal system is that mirrors are easily in-
tegrated, they are treated as portals that transform the attached cell
about the plane of the mirror [Luebke and Georges 1995]. Follow-
ing this thought it is also possible to introduce portals that let you
see into far-away cells, by using a different transformation.

Referring to our classification, portals are online, conservative,
point-based and operate in object-space. Regarding occluder fu-
sion: ”Cell and portal methods are a special case since they consider
the dual of occluders, openings, implicitly fusing together multiple
walls.” [Cohen-Or et al. 2000]

The portal system is quite nicely suited for dynamic scenes, with
some restrictions. The contents of cells may change, as long as they
are still connected to their portals. It is possible to introduce a flag
to portals to define if they are opened or closed, this may be toggled
at runtime. Arbitrary portals can be created, although it may be dif-
ficult to determine the destination cell, e.g. when breaking through
a wall. [Tyberghein 1998]

The portal system has its drawbacks too, it is really only suited to
tight indoor scenes, therefore it is no universal solution. Further-
more the portals must either be manually placed or a portal place-
ment algorithm has to be developed, which often gives suboptimal

results and takes long to compute.

4.4 Hierarchical Z-Buffer & Hierarchical Occlusion
Maps

”The Hierarchical Z-buffer (HZB) is an extension of the popular
HSR method, the Z-buffer. [...] It uses two hierarchies: an octree
in object-precision and a Z-pyramid in image-precision. The Z-
pyramid is a layered buffer with a different resolution at each level.
At the finest level, it is just the content of the Z-buffer; each coarser
level is created by halving the resolution in each dimension and
each element holding the furthest Z-value in the corresponding 2x2
window of the finer level below. This is done all the way to the top,
where there is just one value corresponding to the furthest Z-value
in the buffer. During scan-conversion of the primitives, if the con-
tents of the Z-buffer change, then the new Z-values are propagated
up the pyramid to the coarser levels.” [Cohen-Or et al. 2000]

Figure 14: ”Hierarchical Z-buffer principle.” [Aila 2000]

The HZB requires modifications to graphics hardware, which un-
fortunately do not exist, and software based implementations are
slow. However: ”An optimized version of the hierarchical z-buffer
has been proposed that allows to integrate a hierarchical z-buffer
stage into the rendering pipeline of conventional graphics hardware.
[...] Adaptive hierarchical visibility is a simplified one layer version
of the hierarchical z-buffer where bucket sorted polygon bins are
rendered and occlusion tested. It is simpler to implement in graph-
ics hardware than the hierarchical z-buffer.” [Hey and Purgathofer
2001]

As proposed, the HBZ requires an octree as spatial subdivision
method, although it could be adapted to other spatial structures
[Hey and Purgathofer 2001].

”The hierarchical occlusion map method is similar in principle to
the HZB, though it was designed to work with current graphics
hardware. In order to do this, it decouples the visibility test into an
overlap test (do the occluders overlap the occludee in screen space?)
and a depth test (are the occluders closer?). It also supports approx-
imate visibility culling; objects that are visible through only a few
pixels can be culled using an opacity threshold. The occlusion is
arranged hierarchically in a structure called the Hierarchical Occlu-
sion Map (HOM) and the bounding volume hierarchy of the scene
is tested against it. However, unlike the HZB, the HOM stores only
opacity information, while the distance of the occluders (Z-values)
is stored separately. The algorithm then needs to independently
test objects for overlap with occluded regions of the HOM and for
depth.” [Cohen-Or et al. 2000]

”An opacity map can be used instead of a hierarchical occlusion
map. Whereas the the hierarchical occlusion map resembles a
pyramid of mipmaped textures, the opacity map corresponds to a
summed area table which allows to perform an overlap test in con-
stant time. The generation of the summed area table has to be done
in software.” [Hey and Purgathofer 2001] One drawback of hier-
archical occlusion maps is that they need a preprocessing step to
identify potential occluders (which prevents dynamic scenes), but



Figure 15: ”The hierarchy of occlusion maps. This particular hi-
erarchy is created by recursively averaging over 2 blocks of pix-
els. The outlined square marks the correspondence of one top-level
pixel to pixels in the other levels. The image also shows the render-
ing of the torus to which the hierarchy corresponds.” [Zhang et al.
1997]

this can be avoided with incremental occluder selection [Hey and
Purgathofer 2001] as it is used for incremental occluder maps [Aila
2000].

4.5 Occlusion Queries

Occlusion Queries are a occlusion culling feature that is built right
into the graphics hardware. Occlusion queries are likely to end
up as the predominant technique, like the z-buffer which is now
the de-facto standard exact visibility technique because of its broad
hardware support. Hardware support for occlusion queries is com-
mon since the 2001 launch of the ATI Radeon 7500/8500 and the
NVIDIA GeForce 3, on the software side it it supported by the
OpenGL ARB occlusion query extension and DirectX 9. Funda-
mentally, occlusion queries are quite simple: after issuing a query
for a specific object or its bounding box the GPU answers exactly
how many pixels should have ended up visible on-screen. This al-
lows not only for occlusion culling, but also enables us to discard
an object if its visible pixels are below a specific threshold (con-
tribution culling) or substitute the rendered object with a simpler
version (LoD). The catch? The naive approach to using occlusion
queries is not necessarily faster, but can even be slower than render-
ing without it, because the CPU has to wait until the GPU finishes
drawing all triangles (those given before the test and all that are part
of the test) until it gets its answer, resulting in CPU stalls and GPU
starvation. There is also another problem with the basic approach,
bounding boxes cannot write to the depth buffer, since it is possible
that the bounding box of object A completely occludes the bound-
ing box of object B, but the real object A does not occlude object
B. Since the naive approach does not work well, the real question
is how to use occlusion queries efficiently. [Sekulic 2004]

However, if we can find an efficient algorithm for using occlusion
queries there are several advantages to their use (besides those al-
ready mentioned):

• Generality of occluders:
”We can use the original scene geometry as occluders, since
the queries use the current contents of the z-buffer.”

• Occluder fusion:

”The occluders are merged in the z-buffer, so the queries au-
tomatically account for occluder fusion. Additionally this fu-
sion comes for free since we use the intermediate result of the
rendering itself.”

• Generality of occludees:
”We can use complex occludees. Anything that can be raster-
ized quickly is suitable.”

• Exploiting the GPU power:
”The queries take full advantage of the high fill rates and in-
ternal parallelism provided by modern GPUs.”

• Simple use:
”Hardware occlusion queries can be easily integrated into a
rendering algorithm. They provide a powerful tool to mini-
mize the implementation effort, especially when compared to
CPU-based occlusion culling.”

[Bittner et al. 2004]

4.5.1 Efficient Occlusion Queries

Dean Sekulic gives in his article ”Efficient Occlusion Queries” an
introduction to occlusion queries and proposes some improvements
over the naive approach. To overcome the latency introduced by
occlusion queries he suggests checking the query result not until
the next frame. His rendering loop consists of rendering all the
visible objects of the last frame, and issuing occlusion queries for
the bounding boxes of objects that were invisible in the last frame.
While the rendering of objects that should be visible lags by one
frame, this should not be a problem. Checking if visible objects
are no longer visible can be done just every few frames, which
reduces the number of outstanding occlusion queries at any given
time. Besides being a definite improvement over the naive approach
his method also solves the problem of occluders vs. occludees.
[Sekulic 2004] However, I suspect that his method still does not
yield very good results since it makes no use of any hierarchical
properties and therefor still has a very high number of unnecessary
queries. On the bright side, this also means that there are no re-
strictions concerning the spatial data structure in use, so a simple
non-hierarchical grid could be used, which is very easy to update in
a dynamic scene.

4.5.2 Coherent Hierarchical Culling

The paper ”Coherent Hierarchical Culling” seeks to minimize the
number of issued queries and overcome the CPU stalls introduced
by occlusion queries by filling the latency time with other tasks,
such as rendering visible scene objects or issuing other, independent
occlusion queries. ”[They] reuse the results of occlusion queries
from the last frame in order to initiate and schedule the queries in
the next frame. This is done by processing nodes of a spatial hi-
erarchy in a front-to-back order and interleaving occlusion queries
with rendering of certain previously visible nodes. The proposed
scheduling of the queries makes use of spatial and temporal coher-
ence of visibility.” [Bittner et al. 2004] Their method can be easily
implemented, has promising test-results, several real-world imple-
mentations are already available and it can be used with any hierar-
chical data-structure.

4.5.3 Near Optimal Hierarchical Culling

”The main idea [of Near Optimal Hierarchical Culling] is to use
a statistical model describing the occlusion probability for each



occlusion query in order to reduce the number of wasted queries
which are the reason for the reduction in rendering speed. We also
describe an abstract parameterized model for the graphics hard-
ware performance. The parameters are easily measurable at startup
and thus the model can be adapted to the graphics hardware in
use. Combining this model with the estimated occlusion probabil-
ity our method is able to achieve a near optimal scheduling of the
occlusion queries”[Guthe et al. 2006] Like Coherent Hierarchical
Culling, their method can be easily implemented in existing real-
time rendering packages, and it can be used with any hierarchical
data-structure. Their test results even suggest that their method is
constantly superior to Coherent Hierarchical Culling. They also
claim that: ”We have experimentally verified that it is superior to
state-of-the-art techniques under various test conditions. Even in
low depth complexity situations, where previous approaches could
introduce a significant overhead compared to view frustum culling,
the presented method performs at least as good as view frustum
culling. This means that the introduced method removes the main
obstacle for the general use of hardware occlusion queries.” [Guthe
et al. 2006]

4.5.4 Other occlusion query methods

Hillesland et al. were among the first to explore efficient use of
occlusion queries, in ”Fast and Simple Occlusion Culling using
Hardware-Based Depth Queries” [Hillesland et al. 2002].

Staneker et al. propose ”Improving Occlusion Query Efficiency
with Occupancy Maps” [Staneker et al. 2003] and later build on
this work in ”Occlusion-Driven Scene Sorting for Efficient Culling”
[Staneker et al. 2006].

Guthe et al. were not the first to investigate statistical optimization
of occlusion queries, Kovalcik et al. described ”Occlusion Culling
with Statistically Optimized Occlusion Queries” earlier [Kovalcik
and Sochor 2005].

4.6 Other occlusion culling methods

There are several other methods that can be used for occlusion
culling and may be worth investigating.

Image space methods:

• Directional Discretized Occluders:
”The directional discretized occluders (DDOs) approach is
similar to the HZB and HOM methods in that it also uses
both object and image-space hierarchies. Bernardini et al. in-
troduce a method to generate efficient occluders for a given
viewpoint . These occluders are then used to recursively cull
octree nodes during rendering, similarly to HZB and HOM.”
[Cohen-Or et al. 2000] Since DDO entirely relies on pre-
computed occluders this technique is of no use in our quest
for a fully dynamic occlusion culling algorithm.

• Hierarchical Polygon Tiling with Coverage Masks:
”Greene proposed hierarchical polygon tiling algorithm oper-
ating on a per polygon basis. It exploits coverage masks to ac-
celerate operations on the z-pyramid. Additionally if a front-
to-back order of polygons is established, the z-pyramid can
be replaced by a coverage pyramid. The coverage pyramid
contains only two state values indicating if the correspond-
ing part of screen is occluded. The depth tests are eliminated
completely.” [Bittner 2003] The strict front-to-back traversal
is guaranteed by organizing the scene into an octree of BSP-
trees.

Timo Aila lists advantages (”elegantly bundles visibility de-
termination and antialiasing to significantly reduce memory
requirements of supersampling”), disadvantages (”only works
with fully static environments, since dynamic construction of
an octree of BSP- trees is computationally very expensive”)
and concludes: ”The first drawback is a totally unacceptable
requirement and effectively rules out every interactive envi-
ronment. [...] Our conclusion is that while being a very el-
egant approach, Hierarchical Polygon Tiling with Coverage
Masks has mostly theoretical value.” [Aila 2000].

• Lazy occlusion grid:
The lazy occlusion grid is a conservative image-based occlu-
sion culling method based on a low-resolution grid upon a
conventional z-buffer. ”This grid is updated in a lazy manner
which reduces the number of expensive occlusion queries at
pixel-level significantly compared to a busy update. It allows
fast decisions if an object is occluded or potentially visible.
The grid is used together with a bounding volume hierarchy
that is traversed in a front to back order and which allows to
cull large parts of the scene at once.” [Hey et al. 2001] The
method works without the need for any preprocessing, and so
could be well suited for dynamic scenes.

• OpenGL-Assisted Occlusion Culling using a Virtual Oc-
clusion Buffer [Cohen-Or et al. 2000]

• Approximate Volumetric Visibility [Cohen-Or et al. 2000]

• Occluder Shadow Footprints [Cohen-Or et al. 2000]

• Image Space BSP Trees [Hadwiger and Varga 1997]

• Occlusion Culling Using Silhouettes of Meshes [Aila 2000]
[Aila 2005]

Object space methods:

• Aspect Graph:
”The aspect graph [...] partitions the view space into cells
that group view points from which the projection of the scene
is qualitatively equivalent. The aspect graph is a graph de-
scribing the view of the scene (aspect) for each cell of the
partitioning. The major drawback of this approach is that for
polygonal scenes with n polygons there can be ?(n9 ) cells in
the partitioning for an unrestricted view space.” [Bittner 2003]
The idea is improved upon with the 3D Visibility Complex,
Visibility Skeleton and Convex Aspect Graph Variants. How-
ever, all of them remain unpractical [Aila 2000]. What sets
apart the ideas mentioned in this paragraph from all the other
ones covered in this paper, is that they are global visibility
algorithms [Bittner and Wonka 2003].

• Culling using Shadow Frusta:
”Hudson and Manocha first select all convex objects in a
scene. For each one of them the solid angle is measured. If the
solid angle exceeds a fixed threshold, the object is accepted
as an occluder. At navigation-time they first build shadow
frusta from some of the best occluders, and hierarchically cull
axis-aligned bounding boxes of the scene hierarchy using the
frusta.” [Aila 2000] Since the algorithm works only with con-
vex occluders it is impractical in the general case, addition-
ally their implementation relies on a pre-computed occluder
selection, preventing dynamic scene updates [Cohen-Or et al.
2000].

• BSP Tree Culling & Occlusion Trees:
”The method described [Culling using Shadow Frusta] can be
improved using BSP trees. Bittner et al. combine the shadow
frusta of the occluders into an occlusion tree. [...] The tree



starts as a single lit (visible) leaf and occluders are inserted,
in turn, into it. If an occluder reaches a lit leaf, then it aug-
ments the tree with its shadow frustum; if it reaches a shad-
owed (invisible) leaf, then it is just ignored since it means it
already lies in an occluded region. Once the tree is built, the
scene hierarchy can be compared with it. The cube represent-
ing the top of the scene hierarchy is inserted into the tree. If it
is found to be fully visible or fully occluded, then we stop and
act appropriately; otherwise, its children are compared with
the occlusion tree recursively. This method has an advantage
over [Culling using Shadow Frusta] since, instead of compar-
ing the scene with each of the shadow frusta, it is compared
with one tree [...], while taking in into account occluder fu-
sion.” [Cohen-Or et al. 2000] However, since this method is
based on the static BSP structure it is not suited for dynamic
scenes.

• Large Convex Occluders: [Cohen-Or et al. 2000].

5 Conclusion

As we have seen the problem of handling dynamic scenes and do-
ing dynamic occlusion culling is not an easy one, but recent de-
velopment in structures & algorithms, faster CPUs and GPUs and
hardware support for occlusion culling may finally add up to an
end for largely static scenes. To enable dynamic scenes a dynamic
data structure has to be chosen, as well as a compatible dynamic
occlusion culling algorithm. In the field of hierarchical data struc-
tures, the dynamic versions of kd-trees and octrees, like the Bkd-
tree, loose octree or dynamic irregular octree are certainly worth
a look. Dynamic AABB Trees or simple non-hierarchical grids
may also be of interest. Occlusion queries certainly look like the
new universal method of choice for occlusion culling, due to the
widespread hardware support today and the advances in algorithms
that use them, like Near Optimal Hierarchical Culling.

6 Acknowledgments

The author would like to thank his mentor Oliver Mattausch for his
support.

References

AILA, T., AND MIETTINEN, V. 2004. dpvs: An occlusion culling
system for massive dynamic environments. IEEE Computer
Graphics and Applications 24, 2, 86–97.

AILA, T. 2000. SurRender Umbra: A Visibility Determination
Framework for Dynamic Environments. Master’s thesis, Helsinki
University of Technology.

AILA, T. 2005. Efficient Algorithms for Occlusion Culling and
Shadows. PhD thesis, Helsinki University of Technology.

BATAGELO, H., AND WU, S., 2001. Dynamic scene occlusion
culling using a regular grid.

BITTNER, J., AND WONKA, P., 2003. Visibility in computer
graphics.

BITTNER, J., HAVRAN, V., AND SLAVÍK, P. 1998. Hierarchical
visibility culling with occlusion trees. In Proceedings of Com-
puter Graphics International ’98 (CGI’98), IEEE, IEEE, 207–
219.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATH-
OFER, W. 2004. Coherent hierarchical culling: Hardware oc-
clusion queries made useful. Computer Graphics Forum 23, 3
(Sept.), 615–624.

BITTNER, J. 2003. Hierarchical Techniques for Visibility Com-
putations. PhD thesis, Department of Computer Science and
Engineering. Czech Technical University in Prague.

COHEN-OR, D., CHRYSANTHOU, Y., AND SILVA, C., 2000. A
survey of visibility for walkthrough applications.

DENIS HAUMONT, O. M., AND NIRENSTEIN, S. 2005. A low
dimensional framework for exact polygon-to-polygon occlusion
queries. In Rendering Technqiues 2005: Proceedings of the
16th symposium on Rendering, Eurographics Association, Eu-
rographics Association, 211–222.

GUTHE, M., BALÁZS, A., AND KLEIN, R. 2006. Near optimal
hierarchical culling: Performance driven use of hardware occlu-
sion queries. In Eurographics Symposium on Rendering 2006,
The Eurographics Association, T. Akenine-Möller and W. Hei-
drich, Eds., The Eurographics Association.

HADWIGER, M., AND VARGA, A., 1997. Visibility culling.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. Ph.d. the-
sis, Department of Computer Science and Engineering, Faculty
of Electrical Engineering, Czech Technical University in Prague.

HELIN, V., 2003. Hierarchies for occlusion culling.

HEY, H., AND PURGATHOFER, W. 2001. Occlusion culling meth-
ods. In Proceedings of EUROGRAPHICS 2001, Eurographics
Association, Eurographics Association.

HEY, H., TOBLER, R. F., AND PURGATHOFER, W. 2001. Real-
time occlusion culling with a lazy occlusion grid. Tech. Rep. TR-
186-2-01-02, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Jan. human contact: technical-
report@cg.tuwien.ac.at.

HILLESLAND, K., SALOMON, B., LASTRA, A., AND MANOCHA,
D., 2002. Fast and simple occlusion culling using hardware-
based depth queries.

HO, P. C., AND WANG, W. 1999. Occlusion culling using min-
imum occluder set and opacity map. In Information Visualiza-
tion, 1999. Proceedings. 1999 IEEE International Conference
on, IEEE, IEEE, 292–300.

HUA, W., BAO, H., PENG, Q., AND FORREST, A. R. 2002. The
global occlusion map: a new occlusion culling approach. In
VRST ’02: Proceedings of the ACM symposium on Virtual real-
ity software and technology, ACM Press, New York, NY, USA,
ACM Press, 155–162.

KOLTUN, V., CHRYSANTHOU, Y., AND COHEN-OR, D., 2000.
Virtual occluders: An efficient intermediate pvs representation.

KORTENJAN, M., 2001. Ifc votrag von michael kortenjan zum
thema potentially visible sets. [Online; accessed 3-January-
2007].

KOVALCIK, V., AND SOCHOR, J. 2005. Occlusion culling with
statistically optimized occlusion queries. In WSCG (Short Pa-
pers), 109–112.



LAINE, S. 2005. A general algorithm for output-sensitive visibility
preprocessing. In SI3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games, ACM Press, New York,
NY, USA, ACM Press, 31–40.

LUEBKE, D., AND GEORGES, C. 1995. Portals and mirrors:
simple, fast evaluation of potentially visible sets. In SI3D ’95:
Proceedings of the 1995 symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, ACM Press, 105–ff.

MEISSNER, M., BARTZ, D., HTTNER, T., MLLER, G., AND
EINIGHAMMER, J. 1999. Generation of subdivision hierarchies
for efficient occlusion culling of large polygonal models. Tech.
Rep. WSI-99-13, Department of Computer Science, University
of Tbingen.

NIRENSTEIN, S., AND BLAKE, E. 2004. Hardware accelerated
aggressive visibility preprocessing using adaptive sampling. In
Rendering Technqiues 2004: Proceedings of the 15th symposium
on Rendering, Eurographics Association, Eurographics Associ-
ation, 207–216.

PFEIFFER, J., SHAGAM, J., AND JR., 2003. Dynamic irregular
octrees.

PROCOPIUC, O., AGARWAL, P., ARGE, L., AND VITTER, J.,
2002. Bkd-tree: A dynamic scalable kd-tree.

RANTA-ESKOLA, S. 2001. Binary Space Partioning Trees and
Polygon Removal in Real Time 3D Rendering. Master’s thesis,
Uppsala University, Computing Science Department.

SAMET, H. 1990. Applications of spatial data structures: Com-
puter graphics, image processing, and GIS. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

SAMET, H. 1990. The design and analysis of spatial data struc-
tures. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

SEKULIC, D. 2004. Efficient occlusion culling. In GPU Gems:
Programming Techniques, Tips and Tricks for Real-Time Graph-
ics. Pearson Higher Education.

SHAGAM, J. 2003. Dynamic spatial partitioning for real-time visi-
bility determination. Master’s thesis, New Mexico State Univer-
sity, Department of computer science.

STANEKER, D., BARTZ, D., AND MEISSNER, M. 2003. Improv-
ing occlusion query efficiency with occupancy maps. In PVG
’03: Proceedings of the 2003 IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, IEEE Computer Soci-
ety, Washington, DC, USA, IEEE Computer Society, 15.

STANEKER, D., BARTZ, D., AND STRASSER, W. 2006.
Occlusion-driven scene sorting for efficient culling. In Afrigaph
’06: Proceedings of the 4th international conference on Com-
puter graphics, virtual reality, visualisation and interaction in
Africa, ACM Press, New York, NY, USA, ACM Press, 99–106.

STOLTE, N., 2007. Nilo stolte home page - octree. [Online; ac-
cessed 3-January-2007].

SUDARSKY, O., AND GOTSMAN, C. 1999. Dynamic scene occlu-
sion culling. IEEE Transactions on Visualization and Computer
Graphics 5, 1 (/), 13–29.

TYBERGHEIN, J. 1998. Crystal Space Online Manual: 4.9.9 Dy-
namic Worlds.

WIKIPEDIA, 2006. Binary space partitioning — wikipedia, the free
encyclopedia. [Online; accessed 3-January-2007].

WIKIPEDIA, 2006. Bounding volume — wikipedia, the free ency-
clopedia. [Online; accessed 3-January-2007].

WIKIPEDIA, 2006. Hidden surface determination — wikipedia, the
free encyclopedia. [Online; accessed 31-December-2006].

WIKIPEDIA, 2006. Kd-tree — wikipedia, the free encyclopedia.
[Online; accessed 3-January-2007].

WIKIPEDIA, 2006. Scene graph — wikipedia, the free encyclope-
dia. [Online; accessed 3-January-2007].

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF III, K. E.
1997. Visibility culling using hierarchical occlusion maps. Com-
puter Graphics 31, Annual Conference Series, 77–88.


