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Abstract

Pre-integrated volume rendering is an effective technique for generating high-quality visualizations. The pre-
computed lookup tables used by this method are slow to compute and can not include truly pre-integrated lighting
due to space constraints. The lighting for pre-integrated rendering is therefore subject to the same sampling
artifacts as in standard volume rendering. We propose methods to speed up lookup table generation and mini-
mize lighting artifacts. The incremental subrange integration method we describe allows interactive lookup ta-
ble generation in O

�
n2 � time without the need for approximation or hardware assistance. The interpolated pre-

integrated lighting algorithm eliminates discontinuities by linearly interpolating illumination along the view direc-
tion. Both methods are applicable to any pre-integrated rendering method, including cell projection, ray casting,
and hardware-accelerated algorithms.

1. Introduction

Pre-integrated volume rendering [MHC90, EKE01] is a
commonly used technique for improving the quality of vol-
ume renderings. Because much of the necessary compu-
tation is done in advance, this method can generate high-
quality images with better performance than heavily super-
sampling the volume. It has been used successfully with
many types of rendering algorithms including cell projec-
tion, ray casting, and hardware-accelerated methods. Unfor-
tunately, the pre-integrated lookup table can take a long time
to compute and can not incorporate lighting due to space
constraints. The long computation times limit interaction
with the transfer function, and current lighting approxima-
tions are not general and can introduce artifacts.

We address the problems of table generation speed and
high-quality lighting in pre-integrated volume rendering.
The proposed interpolated pre-integrated lighting method
uses linear interpolation for lighting values between sam-
ples along the view direction to achieve smoothly varying
results. We also present an O

�
n2 � alternative to the O

�
n3 �

brute-force algorithm for computing pre-integration tables
that we call incremental subrange integration. This method
does not make use of approximations and permits the in-

teractive generation of these tables in software for transfer
functions with a large number of entries.

2. Pre-Integrated Volume Rendering

Volume rendering consists of integrating color and opacity
values across a 3D space. This integration is often performed
by sampling the volume at regular intervals: hardware al-
gorithms slice through the volume using a stack of closely-
spaced polygons, while software algorithms typically sam-
ple viewing rays at regular intervals. According to sampling
theory, it is sufficient to sample at the resolution of the scalar
field to avoid aliasing with respect to scalar value. In volume
visualization, however, the scalar field is sampled before be-
ing transformed by a transfer function. This transfer function
may add arbitrary frequencies to the data, requiring much
higher sampling rates to capture all details.

Consider a very thin surface resulting from a thin spike in
the transfer function. If the feature is smaller than the sample
spacing, as is often encountered when viewing isosurfaces
or somewhat thicker “isoslabs,” some rays will sample the
detail while others will miss it completely, as illustrated in
Figure 1. The result will be a series of aliasing bands rather
than a continuous surface. If the feature is somewhat larger
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than the sample spacing, a similar problem will still occur
because some rays will sample the object once while others
will sample it twice.

Figure 1: For transfer functions with spikes, such as this
example of two isosurfaces, regular sampling can miss most
of a feature, resulting in significant artifacts. Pre-integrated
rendering solves the transfer function integration problem.

Such artifacts can be reduced in traditional volume render-
ings by sampling at very high rates and using smooth, low-
frequency transfer functions such as Gaussian curves to blur
the edges of the features. Unfortunately, spread-out trans-
fer functions limit the types of renderings that can be made
at high quality, and very high sampling rates limit the per-
formance of both hardware and software implementations
while still not guaranteeing sufficient sampling.

The idea behind pre-integrated volume rendering is to
calculate the volume rendering integral for pairs of sam-
ple values in advance. During this computation, the transfer-
function space can be analytically integrated or adaptively
sampled at as high a rate as necessary to incorporate all fea-
tures of the transfer function. At rendering time, a sampling
“slab” of data is considered rather than individual sampling
points. The volume is sampled at the front and back plane
of the sampling slab. These values are then used as indices
into a two-dimensional table which stores the pre-computed
volume rendering integral for the transfer function between
the two samples.

Pre-integrated rendering grew out of work rendering tetra-
hedral meshes [MHC90, SBM94]. It was applied as an en-
hancement to the Projected Tetrahedra algorithm using 3D
texture hardware for enabling the use of arbitrary transfer
functions and for rendering isosurfaces without reconstruct-
ing them geometrically [RKE00]. A later enhancements has

optimized lookup table creation and final rendering using 2D
texture hardware [RE02].

Hardware-accelerated pre-integration was applied to the
rendering of regular-grid volume data and isosurfaces by
Engel et al. [EKE01]. Higher-quality output was achieved
by Roettger, et al. [RGW � 03] through accurate clipping and
super-sampling to improve lighting. Methods have also been
proposed to combine pre-integration with the shear-warp al-
gorithm [SKLE03] and for the pre-integrated rendering of
multi-dimensional data [KPI � 03].

Although pre-integrated volume rendering is usually used
to address sampling problems, it does have sampling prob-
lems of its own due to the assumption that the data varies
linearly. This assumption occurs in two places. First, data
values are interpolated linearly as the pre-integrated table is
computed. Accounting for the additional data values needed
for higher-order interpolation would require a similarly-
higher-dimensional lookup table and would quickly become
unwieldly. Second, the data is usually interpolated to get
each sample value used for lookup into the pre-integrated
table.

2.1. Lighting Limitations of Pre-Integrated Volume
Rendering

Lighting presents a problem in pre-integrated volume ren-
dering. The pre-calculated integral in the lookup table is
based only on pairs of scalar values, not normals. Integrat-
ing three-component normals into the pre-integrated lookup
table requires four values each for the front and back sam-
ples

�
scalar � Nx � Ny � Nz

� giving an eight-dimensional lookup
table, far too large for a practical implementation.

Engel, et al. address this problem by sampling the lighting
at one location (discussed below) and handling isosurfaces
as special cases. Because isosurfaces are infinitely thin, it
is possible to compute the lighting at exactly one location,
the surface itself, for proper results. Isosurface rendering is
often the case where precise lighting matters the most, and
this method produces very accurate results.

The case of multiple transparent isosurfaces is problem-
atic. Meißner, et al. [MGS02] propose using the closest iso-
surface for shading, but if two such surfaces intersect one
sampling interval, only one will be used for normal calcula-
tion as in the top two rays of Figure 2. This will not usually
introduce artifacts because the normals of the two surfaces
are likely to be very close, but a problem occurs if one sur-
face splits off into its own sampling interval as in the bottom
ray of Figure 2. Now the normals for both surfaces will be
used. The abrupt change from using only one surface to us-
ing both surfaces for normal calculation can cause artifacts.

To avoid these discontinuities in the case of multiple
transparent isosurfaces, there must always be one sample
per surface. It may seem that such sampling can be accom-
plished using multiple passes, one for each isovalue. But
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Figure 2: Special-case isosurface handling can still produce
lighting artifacts if multiple transparent isosurfaces inter-
sect the same sampling interval. If one of the surfaces moves
to another sampling interval in an adjacent view ray, light-
ing calculated from the normals (gray arrows) may change
abruptly.

multiple passes do not respect the ordering of the surfaces,
which must be drawn from back-to-front for proper com-
positing. Correct sampling of the lighting of each surface re-
quires looping over each isosurface, an operation that is not
efficiently supported in current hardware pixel shaders.

For non-isosurface data, Engel, et al. calculate the light-
ing from the normal computed at the center of the sam-
pling slab by averaging the front and back normals. This
lighting method is equivalent to standard texture-based
hardware-accelerated volume rendering with the benefits of
pre-integration of color values. Unfortunately, it can intro-
duce distracting visual artifacts because the normal direc-
tion can change abruptly between sample slabs. Figure 8(b)
and Color Plate 3 show the banding artifacts that can result
from this type of sampling. They are especially noticeable
on abrupt transitions and can obscure the shape of important
features.

Roettger et al. acknowledge this problem and propose
supersampling between the front and back samples. This
method can reduce such artifacts, and they propose sampling
four times over the Nyquist rate as a practical level for high-
quality images. However, the required level of sampling is
dependent on the projected size of a voxel, no level of sam-
pling can guarantee the result will be free of artifacts, and
calculating the additional samples has performance over-
head. It would be desirable to achieve high-quality lighting
without the need for oversampling.

3. Interpolated Pre-Integrated Lighting

For high-quality lighting, one of the most important require-
ments is that it varies continuously. The lighting should
change consistently as a feature passes from one sampling
slab to the next and as the view changes. Sampling the light-
ing at one or even several points inside the slab may pro-
duce sharp changes in lighting, and, as discussed above, true
pre-integrated lighting is not feasible due to its high space
requirements.

Our solution to the lighting problem is to interpolate light-
ing values between the front and the back sample planes. The
challenge is to properly combine these interpolated lighting
values with pre-integrated densities and colors. Instead of
using one lookup table as in standard pre-integrated render-
ing, our method uses two pairs of tables. One pair represents
the diffuse and specular contribution, respectively, weighted
toward the front sample and the other pair represents the
diffuse and specular contribution weighted toward the back
sample.

The diffuse lookup table contains the volume rendering
integral computed between all possible pairs of samples us-
ing the color as specified in the transfer function. The spec-
ular lookup table is computed in an identical way but using
white for the color over the entire range. Each of these inte-
grals is weighted toward the front or back sample such that
their

�
r� g � b � sum is equal to the unweighted integral.

The rendered result is calculated as a combination of the
diffuse and specular contributions of the front and back sam-
ples. The rendering process is as follows:
� Retrieve the front sample value i and the back sample

value j for the current ray and sampling slab.� Look up the front-weighted pre-integrated diffuse and
specular values and the corresponding back-weighted val-
ues. These tables are indexed by

�
i � j � and contain

�
r� g � b �

values.� Look up or compute the normals at the two sam-
pling points, Ni and N j. Multiply each diffuse and
specular lighting contribution by the corresponding dif-
fuse and specular table value to get the diffusely�
Diffusei � Diffuse j

� and specularly
�
Speculari � Specular j

�
lit material for each.� The front- and back-weighted colors with lighting (Ci and
C j , respectively) are the sum of the corresponding diffuse
and specular colors.� The output color is then the sum of the front- and back-
weighted lit values: Coutput � Ci � C j . This represents the
total pre-integrated color value plus interpolated specular
and diffuse lighting.� The opacity is not affected by lighting. The un-weighted
opacity is stored in one of the tables and copied to the
output.

The result is analogous to Gouraud shading in which the
lighting value is interpolated rather than the normal. This
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Figure 3: To calculate the lookup tables for two samples i and j, the transfer function red, green, and blue channels are scaled
by two ramp functions, one for each lookup table. The volume rendering integral is then computed over these modified transfer
functions for each

�
i � j � pair.

algorithm generally produces fewer artifacts than Gouraud
shading, however, because only the lighting is interpolated
and then only in the view direction. True Gouraud shading
interpolates both per-vertex lighting and color in the view
plane.

4. Incremental Subrange Integration

4.1. Traditional Lookup Tables

Before considering lit pre-integrated volume rendering
lookup tables, it is important to understand how traditional
pre-integrated lookup tables are computed. Recall that the
goal is to compute the volume rendering integral between a
front sample value i and a back sample value j using a given
transfer function. The transfer function may be analytically
defined, but typical transfer functions consist of a table of
color and opacity values for each possible data value. The
interpolation method used between transfer function entries
is usually nearest or linear interpolation. The integrals over
these small spans are composited together to get the integral
over larger spans of the transfer function.

The distance between any pair of samples along the view
ray is not necessarily constant. In projected tetrahedra al-
gorithms, for example, the distance is the thickness of the
tetrahedra at that point. This means that the table must have a
third axis to take into account every possible sample spacing.
However, typical ray-casting and 3D texture-based hardware
renderers such as ours use a constant world-space sample
distance and a two-dimensional table is sufficient.

As the volume rendering integral between i and j is eval-
uated over the transfer function, there will be � j 	 i � values
composited together, each of which represent a fixed dis-
tance in world space. Each opacity must therefore be cor-
rected according to the distance that each composited value
represents in world space. (The need for this correction is

most readily apparent in the case of a constant transfer func-
tion, where the integral between any i and any j should be
identical.) Given a world-space sampling slab width ∆, a
number of composited transfer function intervals � j 	 i � , and
an opacity value from the transfer function which represents
opacity per unit in world space, the correction is:

αfor compositing � 1 	 �
1 	 αfrom xfer func

� ∆

j � i



(1)

This correction must be applied to the α values before com-
positing; it can not be applied to a composited sequence of
color values.

Computing the integral between two arbitrary sample val-
ues for a transfer function of m entries requires O

�
m � time.

Computing integrals for all possible entries in an n � n
lookup table by brute force therefore requires O

�
n � n � m �

time. Given that the table dimension is usually the same as,
or a small constant factor of, the size of the transfer function,
this algorithm requires O

�
n3 � time. On a 2.2 GHz Athlon

FX-51, this takes 1.5 seconds to run for n � 256, clearly too
slow for interactive transfer function manipulation.

4.2. Efficient Computation of Traditional Lookup
Tables

It is important that the computation of the lookup tables be
efficient so that the transfer function may be interactively
modified. Engel, et al. discuss a method for quickly approx-
imating the integration step for traditional pre-integrated
lookup tables in O

�
n2 � time by neglecting attenuation within

a sampling slab. However, this simplification can cause or-
dering problems, especially if there are multiple spikes in the
transfer function such as thin “isoslabs.” Roettger and Ertl
propose a method that uses the graphics hardware to more
quickly compute the lookup tables.

We propose an algorithm called incremental subrange in-
tegration that computes the exact n � n lookup table in O

�
n2 �
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time. This algorithm can be used as-is when implementing
traditional pre-integrated volume rendering, or as a first step
in computing the weighted lookup tables used for lighting
calculations (discussed below). It can also be used to calcu-
late three-dimensional lookup tables for projected tetrahedra
rendering in O

�
n3 � time rather than the O

�
n4 � time required

by the brute-force method.

The problem with the brute-force method is that the inte-
gral for many small ranges over the transfer function must
be repeatedly calculated. Ideally, results would be re-used
in subsequent steps, but the non-linear opacity correction in
Equation 1 depends on the number of ranges of the trans-
fer function that are being considered. Because this depen-
dency can not be factored out, it is not always possible to add
new intervals to the beginning or end of a previously com-
puted integral: the opacity scaling for the previously com-
puted color values would be wrong.

To re-use previously computed entries when generating
the table, each opacity, and therefore the value � j 	 i � , must
not change. This quantity is constant along the table diago-
nals, so it is possible to composite additional values as long
as the final result has � j 	 i � composite steps. Unfortunately,
it is not always possible to “uncomposite” values, so having
a value for the integral over i 
 j will not help in integrat-
ing over

�
i � 1 � 
 �

j � 1 � . We therefore have developed a
method that computes these integrals in parts.
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Figure 4: The update rule for subranges. A left-hand sub-
range can be expanded one step in the transfer function to
the right, and a right-hand subrange can be expanded one
step to the left. This process will eventually give all pairs of
subranges between i and j.

The strategy is to compute the integral over a certain range
i 
 j in two subranges. Each subrange is computed in con-
stant time and can be reused for the calculation of additional
subranges. First, consider some x where i � x � j, there is a
left-hand subrange i 
 x. Given the integrated value of this
subrange, it can be expanded by one to the right by com-
positing a new value behind it and getting the integral over
i 
 �

x � 1 � . Likewise, the right-hand subrange x 
 j can
be expanded by compositing one value in the front to get an
integral over

�
x 	 1 � 
 j. This process is shown in Figure 4.

For the case where i � j, corresponding to the values in
the pre-integrated lookup table below the diagonal, the view
direction is reversed. In these cases, the integrals between

transfer function samples and the composite operations must
be computed in the opposite direction.

The key to the O
�
n2 � execution time of this algorithm is

that the subrange integrals are organized in a manner that
allows for their incremental constant-time computation. For
each diagonal of the pre-integrated lookup table, a subrange-
integral table is constructed consisting of a series of sub-
ranges. Consider the case where i � j and are separated by
length nr , which corresponds to all entries on the diagonal
starting at

�
i � 0 � j � nr

� and extending to the upper-right.
The transfer function with nt entries is separated into bins
of length nr. Each bin has its subrange integrals incremen-
tally computed from the left to right and right to left, and
the intermediate results are stored as shown in Figure 5. Two
subrange-integral pairs from adjacent bins can then be com-
posited to construct integrals of length nr. Since there are
2nr integration values stored in each bin, and nt � nr bins, the
total number of entries in each sub-integral table is O

�
nt

� .
The geometric intuition behind the linear size of the sub-
integral tables is that in cases where the length of integra-
tion nr is small, each bin contains few entries, but there are
many bins. Alternatively, as nr approaches the transfer func-
tion length nt , fewer bins are required, but each bin contain
more entries. Two examples are shown in Figure 5.

Using the subrange-integral table, a complete pre-
integrated lookup table can be computed in O

�
n2 � time.

Each bin requires 2nr constant-time composite operations
and there are nt � nr bins, so each range-integral table requires
2nt composite operations. For an n � n pre-integrated lookup
table, there are 2n diagonals, each of which requires a single
range-integral table. The entire lookup table can therefore be
computed in

�
2nt

� � 2n � � O
�
n2 � time.

4.3. Efficient Computation of Weighted Lookup Tables

The front-weighted and back-weighted lit pre-integration ta-
bles are like the standard pre-integration tables but with an
additional scaling function applied to each integral. As each
transfer function sample is evaluated and composited with
the previous values, the

�
r� g � b � color (not opacity) is multi-

plied by a ramp function as illustrated in Figure 3 (c) and (d).
For the two front-weighted lookup tables, this ramp function
has a value of one at the front sample and a value of zero
at the back sample. For the two back-weighted lookup ta-
bles, the ramp function is reversed. Since the front-weighted
and the back-weighted scaling factors always sum to one for
a given transfer function sample, adding the

�
r� g � b � com-

ponents of the two lookup tables gives the standard pre-
integrated lookup table.

The goal is to generate four tables, two specular and two
diffuse. Only the two diffuse lookup tables will be discussed
here; the specular tables are computed identically except
with the appropriate specular rather than diffuse colors. For
white specular lighting, the specular weighted lookup tables
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Figure 5: The pre-integrated lookup table showing the direction of computation along the table diagonals. Each diagonal
(corresponding to integrals of length nr) requires one subrange-integral table. Each subrange-integral table contains all length
nr integrals over the transfer function in one direction. One such integral is shown as a dotted box in the lower-right table.

0 nt

ntnt

0 nt

1

0 nt

(a)

Standard pre-integrated
lookup table weighting
function (unit weight)

(b)

Global weighting
function in each direction.

0 nti j

1

(c)

Desired local weighting
function for samples i and j.

Figure 6: The standard, unweighted pre-integrated lookup table is shown in (a) for a transfer function of nt elements. The two
modified weighting functions are shown in (b), which are used to generate two intermediate tables. The desired function shown
in (c) uses weighting functions that depend on the range of integration for each element.

are computed by replacing all transfer function colors with
white.

Efficiently computing these weighted tables presents a
challenge since the weighting function changes for every en-
try; it ramps from zero at one end of each integral to one at
the other end, so it depends on both front and back sample
values. We compute the weighted lookup tables for lighting
in O

�
n2 � time using three intermediate tables.

The first intermediate table is the standard pre-integrated
lookup table discussed previously. The other two intermedi-

ate tables contain the integrals computed with the two mod-
ified weighting functions. The transfer function colors are
multiplied with the ramped weighting functions shown in
Figure 6(b). In more concrete terms, each color value is mul-
tiplied by its index (or nt minus its index for the opposite
weighting direction) into the table. The pre-integrated ta-
ble computation procedure is run on these modified transfer
functions to get globally-ramped weighted tables.

What we have now are two tables that use a globally
ramped weighting function which does not depend on where
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the integration starts and ends. The final tables needed for
rendering use weighting functions that do depend on the
range of integration. Fortunately, the needed tables can be
easily computed from the globally ramped integration tables.

Consider one case where i � j and we are calculating the
back-weighted table. The desired weighting function for this
range ramps from 0 at W

�
i � to 1 at W

�
j � , giving W

�
x � ��

x 	 i � � �
j 	 i � . To simplify the equations, the opacity factors

of each term will be abbreviated Ax, where

Ax � �
1 	 αi

� � 1 	 αi � 1
� � 1 	 αi � 2

������� � 1 	 αx � 1
� αx

Our goal is to get the weighted color value

CW
i � j � 0

j 	 i
AiCi � 1

j 	 i
Ai � 1Ci � 1 � ����� � j 	 i

j 	 i
A j C j

Factoring out 1 � �
j 	 i � , the goal becomes

CW
i � j � 1

j 	 i

�
0AiCi � 1Ai � 1Ci � 1 � ����� � �

j 	 i � A jC j �

Two values have previously been computed. First, we
have the unweighted color value C1 representing the full pre-
integrated range over i 
 j:

C1
i � j � AiCi � Ai � 1Ci � 1 � ����� � A j C j

Second, we have the color value CG which is integrated over
i 
 j using the globally ramped weighting function:

CG
i � j � iAiCi � �

i � 1 � Ai � 1Ci � 1 � ����� � j A j C j

If we subtract iC1 from CG, the effect will be to remove
the dependence on i from each term. Dividing the result by
j 	 i gives the desired CW above:

CW
i � j � CG

i � j 	 iC1
i � j

j 	 i

Another way to look at the operation is geometrically:

i

ij

For physical intuition as to why these operations can be
performed, consider that only

�
r� g � b � light intensity values

are being scaled or added, and not the non-linear opacity
attenuation of light.

The cases where i � j can be computed analogously. As
an optimization, the front-weighted table can be computed
by subtracting the back-weighted table from the full pre-
integrated lookup table.

5. Implementation and Results

The proposed lighting method for pre-integrated volume
rendering was implemented in a hardware-based volume
renderer. It uses three-dimensional textures to store scalar
and normal data, and rendering is performed back-to-front
with view-aligned slices. It uses conditional execution based
on early depth culling, or computation masking [SHN03], to
reduce the number of calls to the fragment program for invis-
ible voxels. The computer runs Windows XP on a 2.2 GHz
Athlon FX-51 with 2 GB of main memory and has an ATI
Radeon 9800 Pro graphics card with 256 MB of video mem-
ory.

5.1. Optimizing Texture Lookups

The rendering bottleneck for our implementation on current
graphics hardware is the texture lookups. A straightforward
approach requires one lookup for each of the two sample
values and four lookups for the pre-integrated values: two
each for the front and back specular and diffuse components.
We reduce the number of texture lookups by two by packing
the diffuse and specular pre-integrated results.

The lighting lookup results in five pieces of information:
front- and back-weighted diffuse colors, front- and back-
weighted specular colors, and the full pre-integrated opacity
(lighting does not affect the opacity of the rendered result).
All of this data can be packed into two 2D RGBA lookup ta-
bles. The front lookup table contains the diffusely-lit, front-
weighted color in the

�
r� g � b � components, and the complete

pre-integrated opacity in the α component. The back lookup
table contains the diffusely-lit, back-weighted color in the�
r� g � b � components, and the specularly-lit, back-weighted,

result in the α component. Because the front-weighted and
back-weighted integrals should always sum to the full pre-
integrated value, the front-weighted specular color is com-
puted by subtracting the back-weighted specular color in-
tensity in the back table from the α stored in the front table
(identical to the un-ramped pre-integrated specular color in-
tensity).

5.2. Quality Results

For smooth surfaces with smoothly varying normals, our
lighting algorithm produces results indistinguishable from
the special-case isosurface rendering algorithm of Engel, et
al. (see Color Plates). Both of these algorithms improve upon
standard volume rendering and standard pre-integrated vol-
ume rendering, shown in Figure 8. Unlike special-case iso-
surface handling, our method allows an unlimited number of
possibly transparent isosurfaces with no ordering problems
or lighting discontinuities as in displayed in Figure 7.

When the normal changes rapidly or is poorly-defined, the
proposed method can introduce minor lighting artifacts com-
pared to special-case surface rendering. One such case oc-
curs where there are two homogeneous materials separated
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Figure 7: Multiple transparent isosurfaces rendered with the
pre-integrated lighting algorithm. The algorithm can render
an unlimited number of isosurfaces with no lighting discon-
tinuities.

by a sharp boundary. While the normal at the boundary sur-
face is well-defined, the front and back samples surround-
ing the boundary may occur inside the material where the
normal is less well-defined. The resulting lighting may have
some randomness associated with it. One such case is illus-
trated in Figure 8(d). Small horizontal striations are visible
in the small surfaces connecting the roots of the upper teeth,
and small specular highlights in the roots of the lower teeth
deviate from the surface rendering. Fortunately, we found
such deviations to be limited and only visible at high levels
of magnification.

5.3. Performance Results

Our optimized O
�
n2 � lookup table computation algorithm

greatly improves upon the O
�
n3 � brute-force method with-

out the need for approximation or hardware-acceleration.
The algorithm takes significantly less time than the brute
force method, particularly as table size grows as seen in
Table 1. Large table sizes are desirable because interpo-
lating adjacent entries, as is often done when a sample
value falls between two table entries, will not result in the
exact pre-integrated result for the interpolated value. The
larger the table, the smaller such interpolation error will
be. Cell-projection methods, which require a larger three-
dimensional lookup table, will benefit even more.

The rendering algorithm is somewhat slower than the tra-
ditional pre-integrated method as shown in Table 2. This is

n Brute force O
�
n3 � New O

�
n2 �

32 0.0025 0.00078
64 0.022 0.0033

128 0.18 0.015
256 1.57 0.057
512 12.4 0.22

1024 98. 0.88
2048 797. 3.70

Table 1: Comparing computation time in seconds for an
n � n pre-integrated lookup table. These times do not include
the time required to compute the weighted versions of the
table for lighting. The weighted tables require only a small
constant factor of extra time to compute.

Our
method

Single
sample

Skull With comp. masking 4.4 fps 5.0 fps
No comp. masking 2.2 fps 2.6 fps

Vortex With comp. masking 8.1 fps 10.5 fps
No comp. masking 5.4 fps 8.1 fps

Table 2: Comparing frames-per-second for the skull
(256 � 256 � 256) and vortex flow (128 � 128 � 128) data sets
rendered to a 512 � 512 window using interpolated pre-
integrated lighting and the traditional method which uses a
single sample for computing the lighting. Results are shown
with and without computation masking, which eliminates
calls to the fragment program for empty voxels.

because, for every sampling slab, two lighting values must
be computed and one extra texture read is necessary to re-
trieve the weighted pre-integrated data. Due to the complex
fragment program, the algorithm is fill-rate dependent. As
more data is drawn to the screen, performance drops relative
to standard pre-integrated rendering.

6. Conclusions

We have described a method for achieving high-quality
lighting effects with pre-integrated volume rendering. Be-
cause a fully-lit pre-integrated lookup table is not practical,
our method approximates lighting along the volume render-
ing integral through interpolation. The result is more accu-
rate, smoothly changing lighting with minimal visual arti-
facts.

Interpolated pre-integrated lighting is appropriate for
most types of data and transfer functions, including multiple
transparent isosurfaces combined with semi-transparent vol-
ume rendering, without the need for supersampling or spe-
cial handling of certain cases. It integrates well with all pre-
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(a) Full dataset (b) Standard lighting

(c) Special-case surface lighting (d) Proposed lighting method

Figure 8: Comparing rendering methods. Our general-purpose lighting method produces much better results than standard
lighting. Compared to special-case isosurface rendering, it can introduce minor artifacts where the normal is poorly-defined
which can be visible at high magnification.

integrated rendering methods, including cell projection, ray
casting, and hardware-accelerated volume rendering.

We also described an efficient O
�
n2 � method for comput-

ing the lookup tables required to implement pre-integrated
volume rendering both with and without lighting. Cou-
pled with hardware-accelerated rendering, very high-quality,
real-time exploration and transfer-function manipulation is
possible.
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Color Plate 1: Buckyball dataset rendered with
interpolated pre-integrated lighting.

Color Plate 2: Detail view using interpolated 
pre-integrated lighting.

Color Plate 3: Detail view using traditional 
sampled lighting.
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