
Modeling and Rendering of Hair and Fur
Clemens Brandorff

Abstract

The very thin nature, the very high count and the illumination com-
plexity of hair makes modeling and rendering hair a very complex
task. Two main representations to model hair exist: volumetric and
spline/polyline representations. Both representations have their ad-
vantages and disadvantages. This work is a State of the Art Re-
port on how to model and render hair. It should give an overview
over the techniques and methods available, including a small sec-
tion about real hair aquisition.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics-Three-Dimensional Graphics and Realism

Keywords: rendering hair/fur, illuminating hair/fur, modeling
hair/fur

1 Introduction

In almost every part of computer graphics it is higly needed to ren-
der creatures (mostly either humans or animals). To gain visually
plausible results of these synthetic creatures, hair or fur has to be
rendered according to the physical reality. Speaking of humans,
complex hairstyles are needed to truly represent a person. Until
now, most of the characters in live action feature �lms, where it is
needed to render a synthesized version of the actors for special ef-
fects,wear only simple hairstyles (like ponytails, where no individ-
ual hair strands are visible, short hair, or even they are just bald), to
avoid the rendering and modeling complexity of the hairstyles (for
example the Matrix series). Speaking of animals, where mostly
short hair and fur are involved, it is nevertheless important to ren-
der this huge amount of hairs at an acceptable speed while keeping
the results visually and physically plausible.
Modeling and rendering hair is a highly complex task. Not only

the geometric complexity is hard to grasp and model with current
computer graphic methods (splines, polylines, texels, polygons,
etc.), the illumination properties of a single hair �ber is also highly
complex since it is not just an opaque cylinder. Furthermore the
small geometry of hair leads to very bad aliasing artifacts if no ex-
tensive subpixel sampling or antialiasing is used.
This work is a State of the Art report on how to render and model

hair. It presents the most commonly used techniques to model and
render hair. Since research in this sector has been done for quite
some time (compared to other topics in computer graphics), and
a �nal conclusion is far from been drawn, this work can not be
complete. Nevertheless I want to show how dif�cult this topic can
be, and want to present different techniques on how these problems
could be solved.
In the following sections i will present some different represen-

tations and illumination techniques for hair: real hair aquisition is
described in Section 2, where real hairstyles are captured using dig-
ital image processing techniques; the volumetric representation in-
cluding some real-time techniques in Section 3. The polyline/spline
approach (used for more complex hairstyles) in Section 4. In Sec-
tion 5 some advanced illumination techniques are discussed, and in
Section 6 two examples of rendering hair for movies are discussed.

Figure 1: Upper row: pictures from a sequence. Lower row: corre-
sponding masks.

2 Real Hairstyle Aquisition

Real Hair Aquisition tries to capture the geometry of real hairstyles
by techniques originating in the �eld of digital image processing.
This techniques generate a geometric model of the outermost hairs
of a hairstyle. These geometric models cannot be used per se, since
they are not good enough to represent a complex hairstyle, but nev-
ertheless these models could be used as a starting point to interac-
tively generate a pleasant looking hairstyle.

[Grabli et al. 2002] propose an aproach, where a sequence of
images are taken from a viewport under controlled lighting con-
ditions. From this sequence, geometrical 3D data of hair strands
are generated. This technique works under the assumption that for
a given pixel position all pictures in the sequence (from the same
viewport) show projections of the same hair strand.
Since the properties of hair result in strong light scattering and

high specularity, 3D-scanners are not able to capture the geometry
of hairstyles. The authors use these properties to generate models
of hairstyles, which could be used by an artist to faciliate the mod-
eling process of hairstyles. The technique proposed here is based
on shape-from-shading [Brooks and Horn 1989] and shape-from-
specularities [Yang et al. 2003] approaches. First the images have to
be taken under controlled conditions (that conditions contain intrin-
sic camera parameters, camera/object position and lighting condi-
tions for each shot). One important property of the camera is a very
high resolution, since hair strands are projected to pixel size. After
image generation, a mask is computed for each image, that outlines
the hair strands, which are most visible (see Figure 1). Therefore
for a given pixel position a number of vectors are generated which
represent the projection of the same hair in image space. Out of
all these masks a single representative vector is chosen and stored
within a so called sequence mask (visible in Figure 2). This mask
contains the most visible hair strands of the whole sequence. The

Figure 2: A sequence mask, generated from the masks visible in
�gure 1.

2D vectors of this hair strands represent projections of 3D vectors
to image space. These 3D vectors are generated using the sequence
mask and the illumination changes within the image sequence (us-
ing a re�ectance map). After the 3D vectors are computed, they are
chained and result in the hairstrands.
Results of this technique are shown in �gure 3. This technique

was only designed as a proof of their theory and work only on a sin-
gle viewport. Therefore the results look very sparse since only the
most prominent hair strands are captured using only one viewport.
The main drawbacks are, that the subject has to sit perfectly still
while the images are taken, and that this technique is only able to
capture the outermost geometry of the hairstyles (the hidden hairs
can not be captured). Another drawback is, that a hairstyle is as-
sumed to consist of thin hair strands and that their orientation is
visible in the images, therefore hairstyles consisting of thick strands
(like dreadlocks) or short hair pointing directly towards the camera
cannot be captured

The next technique proposed by [Paris et al. 2004] is based on
the work of [Grabli et al. 2002] and tries to improve the results of
the former technique.
First, images are taken from a �xed viewport under a moving

lightsource, using only one camera.The setup can be seen in Figure
4. To generate a 3D model of the whole hairstyle, these sequences
have to be taken from various viewports. After the pictures are
made, the properties of the images are analyzed using various �l-
ters (a large portion of this work considers the development and
performance of these �lters). In this 2D analysis the orientation of
a segment (which is a small section, approximately 1mm) projected
on a viewing plane is computed, which results in a plane where the
segment is contained.The 2D analysis is followed by a 3D analy-
sis of the illumination variations across the images,where a normal
to this segment is computed, which results in a second plane. In-
tersecting both planes generate the 3D orientation of the segment.
The linked segments generate the hair strands. The resulting 3D
data of the different viewports has to be registered (this means that

Figure 3: In the upper row are the rebuild hair strands (rendered as
broad strands for visual convenience) from the differend viewports
below.

Figure 4: The setup to generate the images from a viewport.

Figure 5: Some models generated from the series of images (the
upper right images are photographs as a reference).

the different 3D models are transformed into the same coordinate
system). This registration process has to be done manually. There
are several drawbacks to this technique. The main drawbacks of
this technique are still the same as discussed at the technique of
[Grabli et al. 2002]. The authors state that their setup to generate
the images has some dif�culties with long hair, since long hair tends
to move, when the person to be scanned changes the position to get
images from another viewport. Nevertheless this in an interesting
technique which would be very interesting to be incorporated into
other interacive modeling techniques as a starting point.
To render the the results displayed in Figure 5 they used the illu-

mination model described in [Marschner et al. 2003] and rendered
each hair strand as antialiased GL lines. Another problem is that
the generation of one image sequence takes more than one minute
in which the person should be perfectly still. These two problems
could be eliminated using more �xed cameras and a generally faster
setup to generate the images.

[Wei et al. 2005] propose an improvement over the technique de-
scribed in [Paris et al. 2004] where they generate the 3D informa-
tion from multiple viewports, which are registered automatically in
advance, and the segments are computed from the registered view-
ports. This leads to slightly better results displayed in �gures 6.

Figure 6: Results from the multiviewport technique (left: pho-
tographs of the original subject).

3 Volumetric Hair Representation

Volumetric hair representations try to capture the geometry of hair
while representing this geometry in volumetric data structures, like
texels,voxels, shell textures, etc. This representations save a lot
of computation power since the real geometry is approximated us-
ing the volumetric representation, and there for it is suited for real-
time rendering (which will be illustrated by three techniques in this
section). But since single hair �bers are not individually repre-
sented this techniques are only usable for short hair or represen-
tations where single hairs are not individually visible (for example
if viewed from far).

[Kajiya and Kay 1989] propose to render fur using texels,which
are a generalisation of volume densities. Texels are three dimen-
sional arrays of various parameters which approximate a collec-
tion of micro surfaces within the volume. These texels are used
to approximate the real geometry at a higher level. The para-
meters stored in the three dimensional array are the density and
a lighting model distributed within the volume. The density de-
scribes the distribution of the micro surfaces while the lighting
model describes the light transport within the volume. The orig-
inal de�nition according to [Kajiya and Kay 1989] is : 'A texel
is a tripel ρ;B;ψ consisting of a scalar density ψ(x;y;z), a frame
bundle B= [n(x;y;z); t(x;y;z);b(x;y;z)],and a bidirectional light re-
�ectance function ρ .' The scalar density ρ approximates how much
of the unit area of a volume cell is covered by microsurfaces. The
frame bundle B describes the local orientation of the surfaces within
the texel, it consists of a �eld of coordinate basis vectors n (nor-
mals), t (tangents) and b (binormal s). The bidirectional light re-
�ectance function ψ describes the type of the surface contained
within the texel. The equations to render texels are :

T = e�r
t f ar

∑
s=tnear

ρ[x(s);y(s);z(s)] (1)

B =
t f ar

∑
t=tnear

e
�r

t f ar

∑
u=tnear

ρ[x(s);y(s);z(s)]
(2)

�[∑
i
Ii(x(t);y(t);z(t))ψ(x(t);y(t);z(t);θ ;φ ;ρ)]

�ρ(x(t);y(t);z(t))

While Equation 1 computes the transmission (i.e. if the sum is
in�nite the transmission is zero and therefore the density is totally
opaque).Equation 2 computes the brightness along the ray. The co-
ef�cient r converts the density into an attenuation coef�cient. The
Ii describes the incident intensities and are computed by shooting
a ray towards each lightsource from point P (see Figure 7). Since
rendering texels using these equations is impossibly expensive [Ka-
jiya and Kay 1989] has developed an algorithm where these sums
are approximated using a Monte Carlo treatment in the spirit of dis-
tributed ray casting. The algorithm works as follows:

1. Intersect a ray with all texel boundaries to �nd tnear and t f ar
for each texel. Sort all intersections from front to back and
match with distance. Let Tnear=min(tnear) where the min-
imum is over all segments. Similary T f ar =max(t f ar).

2. Divide up the ray from Tnear to T f ar into ray segments Si of
length Li where 1L is a reference length parameter, the number
of samples per unit distance in world coordiantes is set by the
user.(The last segment may be shorter than L).

Figure 7: Rendering point P within a texel

3. Set transparency to unity.

4. For each segment:

(a) Shoot shadow rays from the sample towards every light
source to calculate the amount of light reaching the
point.

(b) Calculate brightness from lighting model and illumina-
tion intensity and multiply by transparency to give the
overall contribution to the pixel (pixel = pixel+ trans�
lightModel).

(c) Multiply transparency by erρ the transmission coef�-
cient of the segments.

5. At the end segment, calculate brightness as above but normal-
ize by fractional length of the segment.

After we have seen what texels are and how they could be ren-
dered, I will present the method of [Kajiya and Kay 1989] on how
to generate texels for fur. Since the bidirectional re�ectance func-
tion ψ is the same for all texels of the same hair type it only has
to be stored once for all texels. They treat a single hair �ber as an
in�nite thin, opaque cylinder and therefore the only necessary com-
ponent in the frame bundle B is the tangent vector t, the normal and
the binormal are omitted. For their reference model (teddy bear)
they only used a single texel repeated over the whole surface. The
bear texel was stored in a 40x40x10 array and the contents were
designed based on the following criteria:

1. The hairs are distributed as a Poisson disk.

2. The Poisson disk is created with a torus topology, so the single
texel can tile the entire bears surface without showing seams.

3. Animal fur comes often in two layers, an 'overcoat', and an
'undercoat'. The undercoat is a dense cover of short fur, while

Figure 8: Two versions of the same geometrical teddy bear. The
bear on the left used fewer larger texels than the one on the right.

the overcoat is a sparser distribution of long hair.(They found
out that this is an important property to avoid a brushlike ap-
pearance).

The lighting model used here is seperated in a diffuse component
, which is derived from the Lambertian shading model applied to a
very small cylinder. The specular component is a model similar to
the Phong light re�ection model modi�ed for cylindrical surfaces.
The equation of the diffuse component is given by:

ψd = kd sin(t; l) (3)

where l is the light vector, t is the tangent and kd is the diffuse
re�ection component. The specular part is given by:

ψs = ks((t � l)(t � e)+ sin(t; l)sin(t;s))p (4)

where ks is the specular coef�icient, e is the vector pointing to
the eye, and p is the phong exponent specifying the sharpness of
the highlight.
The overall lighting model combines to:

ψhair = ψd +ψs (5)

The render time for the images, the size of 1280x1024 (Figure
8) was about two hours on a network of large IBM mainframes,
using twelve 3090 and two 3081 processors (30% to 40% processor
usage of each of them). The results look like real Teddy Bears,
the only �aw considering real hair is the appearance of the hair
which de�nitively looks synthetic using their illumination model
(nevertheless, since it is used to render a synthetic teddy, it is a very
plausible illumination model for this task).

3.1 Real-Time Hair

In the �eld of real-time hair rendering, not much work has been
done since hair geometry is not usable ad hoc in real time (either the
computers were too slow to compute the real geometry in real-time,
or a single hairy object consumes 95% of the computation power of
the whole scene when rendered in real-time using splines or poly
lines. Therefore some volumetric techniques had to be invented
where texture shells are used to represent hair volumetric.

Figure 9: Different levels of detail to represent hair, using shell
textures.

[Lengyel 2000] proposes a level of detail approach for real-
time hair rendering. Four different view dependant levels of detail
are proposed: a geometric representation, a line representation, a
shell representation and a hybrid line-shell representation (see Fig-
ure 9).The author states that the geometric representation is not in-
cluded in his system, but it should be a straightforward addidtion.
For the innermost level of his system, he uses alpha-blended,

textured lines to represent the hair. As the viewport moves farther
away from the object the line-shell hybrid is used. In this repre-
sentation the alpha value is gradually scaled down to zero as the
porgenerated texture shells take over the visual appearance. These
shells are gradually removed until only one texture map is used to
represent the hair.
The modeling of the different levels of detail is done by gener-

ating seeds directly on the surface of the mesh. The hair is then
created by growing the seeds as particle system trajectories. This
is used for the line representation. The texture shells are created by
a simple normal offset of the vertices. The hair integration in the
texture shells is done by sampling the particle system to the texture
shells and �ltering them afterwards by a Gaussian �lter kernel. The
layers representing lower levels of detail are either derived by �lter-
ing their predecessors, or by repeating the hair integration process
with lower sampling rates.
To render hair, the author proposes two techniques, per-vertex

and per-pixel. The per-vertex technique projects the light vector
L and the specular half vector H onto the disk of normals given
by the hair tangent, and use standard hardware lighting to actually
compute the illumination (see Figure 10).The per-pixel approach
only works for direct lighting and a non local viewer (a single view
direction for all vertices). It uses the hardware texture matrix to
encode the light and eye positions, and a 2D lookup to compute the
per pixel lighting.
Furthermore he uses a soft shadow approach where a lightmap

is computed every time the light position changes in respect to the
object position. First the scene is rendered from the point of view
of the light using a combined mesh UV texture map to generate
the shadows of the meshes (hair geometry is omitted in this step).
Second, samples are gathered from this rendereing, corresponding
to each mesh (a small rendering window is used here, so that the
number of samples does not fully cover the illuminated region of
the object. The last step is to splat a small Gaussian for each light-
view sample to �ll in between the missing samples and to generate
soft edged shadows.
The bear example (visible in Figure 11) discussed in this paper

consists of 9406 triangles, 129466 triangles when expanded to 16
shells, and renders at 15 fps (5fps with a moving light source) on
an Intel P3 733 MHz and a Nvidia Geforce 256 graphics board.
the results of this technique looks pleasant and far better framerates
should be archieved using up-to-date graphics hardware.

[Lengyel et al. 2001] propose a technique which archieves real-
time framerates while being capable of displaying fur over arbitrary

Figure 10: Per-vertex lighting projects the lighting vector L and the
specular half vector H onto the disk given by the hair tangent T.

Figure 11: The bear example, left: volume texture only, right: mod-
ulated by soft shadows.

surfaces. To archieve this goal they use shell textures proposed in
[Lengyel 2000]. This system takes as an input a triangle mesh and a
parametric model for hair. Before runtime two operations have to be
performed: a geometry preprocessing, and a texture preprocessing.
In the geometry preprocessing step the lapped patches parametiz-
ing the surface are generated like in [Praun et al. 2000]. Therefore
the method grows patches over random uncovered locations on the
surface and locally parametrize them onto the texture domain using
a fast optimization process. In the texture preprocessing step the
components of the texture are created (the shell textures and the �n
textures).
First the geometric hair is created by generating hair strands

within a rectangular bounding box using a particle system. The
shell textures are created by a RGBA-Image for each layer of the
shell model by overlaying a grid on the bounding box containing the
hair strands. At each gridpoint for every RGBA-Image, colour and
opacity are computed using a tall gaussian �lter with the geometric
hair. the innermost shell is assigned full opacity since it represents
the skin. In their implementation they usually used 16 layers, and
the texture patches have a resolution of 128x128. The �n textures
are used for silhouettes of the model. Only one instance of this
texture is generated for the whole model. To generate this instance
a slab of the geometric hair along an arbitrary surface tangent di-
rection is chosen where the width of the slab corresponds with the
density of hair associated with the �n. This width is chosen man-
ually according on how much density is visually appropriate for a
given model and texture. To render the model in real time, the �rst
step is to render an opaque version of the whole mesh setting the
z-buffer. The next step is to render the textured �ns. The �ns are
quadrilaterals which are rendered on the silhouette-edges and ex-
tended out along the surface normals. To maintain temporal coher-
ence the �ns are gradually faded in as the �ns approach the silhou-
ette. The last step is to render the offset shells from the innermost
to the outermost. For each layer the patches of the lapped texture
are composed over what has already been rendered. For lighting a
32x32 texture map table according to [Lengyel 2000] is used. For
the shadow, Banks selfshadowing approximation is used to darken
the shells near the skin, and therefore to fake selfshadowing.
In addition to lighting and camera interaction, they implemented

three more interactive controls: Hair colour,hair length and hair
direction.
The authors generated the images in �gure 12 on an AMD K7-

700Mhz with a Nvidia GeForce DDR32 graphics card using Di-
rectX 7. In Figure 13 are the framerates they archieved rendering
the models shown in Figure 12, where the upper row shows the
�at-shaded models which were used to generate the furry models
below.

[Yang et al. 2006] propose an improvement over the method pro-
posed by [Lengyel et al. 2001]. While the former method uses uni-
formly distributed texture layers the new method takes into account
the eye position and the fur states at various regions on how many
texture layers are needed to render the furry model faster while
gaining the same results (see Figure 14). Therefore different re-
gions are rendered with a different number of layers (see Figure
15). It is clear that every time the viewpoint changes in respect to
the model the suitable number of layers has to be estimated again.
While this process takes some time, it greatly reduces the number
of polygons rendered. Figure 16 gives an impression on how the
framerate improves using the heirarchical model over the uniform
model while visually gaining similar results. The second part of
this paper considers the modeling of fur. Since this method is repre-
sented by multilayer meshes, where these meshes are generated by
shifting the vertices of the original mesh outwards from the model
surface, the authors propose two �elds (a scalar �eld and a vector
�eld) to interactively control the appearance of fur.The user is able

Figure 12: The upper row shows the �at shaded polygon meshes
used to generate the furry models below. the models use 16 layers
(only the dice uses 32).

Figure 13: Model complexities and render times.

Figure 14: While the left object uses an uniform number of layers,
the right object uses only that layers that are needed according to
the viewpoint and the geometry.

Figure 15: From left to right: the regions represented with 16, 31
and 61 layers. On the far right: all three hierarchies combined.

Figure 16: A comparison between the framerates archieved using
uniform layers and hierarchical layers.

to control the fur slant by modyfying the vector �eld which sets
the direction of each vertex when generating multi-layer meshes.
The scalar �eld controls the magnitude of each vertex which in turn
controls the fur length. With these two tools to interactively modify
the fur, the authors realized �ve effects including combing of fur,
blowing fur (where interesting dynamic effects could be generated),
interpolating fur, smoothing fur and disturbing/unifying fur.
The authors implemented their method in Visual C++ 6.0 and

measured the framerates on a 2.8Ghz Pentium CPU with 2 GB
RAM and a GeForce FX5950 Ultra with 256 MB VRAM.In Fig-
ure 17 three models are shown, while the torus is designed mainly
using the disturbance operation, the other two incorporate more of
the effects.

4 Spline and Polyline Hair Representation

The most intuitive representation for hair �bers or strands is using
polylines or splines. This representation consumes a lot of com-
putation, since the amount of hair rendered is usually huge. But

Figure 17: Three models generated using different reshaping tech-
niques.

Figure 18: Schematics of a hair as a cantilever beam.

nevertheless this representation is the only usable one when trying
to render complex hairstyles where individual hair �bers or strands
are visible. Usually this approach does not render in real time, if
more complex scenes are rendered. Only one paper uses this rep-
resentation to archieve interactive framerates (greater 5 fps), and
they only render one human head including a complexs hairstyle
for modelling purposes, but to generate the �nal image they dont
bother with real-time framerates.

[ichi Anjyo et al. 1992] proposed a model for human hair con-
sisting of a technique for modeling hairstyles and another technique
to simulate the dynamical behaviour of hair.
The modeling of hairstyles consists of three steps:

1. De�nition of an ellipsoidal hull of the head model which is
a rough approximation of the head. The region of the pores
(where the hair could grow) is de�ned on this hull afterwards.

2. Hair bending is calculated according to a simpli�ed simula-
tion of the cantilever beam. Hair-head collisions are calcu-
lated in this step too.

3. In the last step the hair is cut and some minor adjustments are
applied in order to get the desired hairstyle.

A cantilever beam originally was de�ned as a straight beam
with a one-sided and �xed support (see Figure 18).To calculate hair
bending a numerical simulation of the cantilever beam deformation
is used. As force is uniformly applied on the beam, two deforma-
tions may happen: a shearing force (which is neglected since the
authors state that it is not needed for hair bending), and the bending
momentum which is crucial for the technique described here. Since
only the bending momentum is used here, the cantilever beam sim-
ulation is reduced to a two-dimensional case, where the x-axis is
the initial direction of the beam away from the head, and the y-axis
represents the de�ection of the beam. This equation governs the
elastic deformation process:

d2y
dx2

=� M
E � I (6)

Where E is Youngs modulus and I denotes the second momen-
tum of the area. The term E � I usually is referred to as the �exural
rigidity.
Another important part in this cantilever beam simulation is the

head-hair collision detection. Since collision detection is a compu-
tational very expensive task, only the rather rough approximation is
used here.The modeling process is depicted in Figure 19, where 19a
shows the initial state where the head and the hair pores are de�ned.
In this state the hair-beams stand radially away from the head. Af-
ter applying gravity the result depicted in Figure 19b is archieved.
Note that the hairs near the top of the head are almost not deformed
because the bending momentum is relatively small there. After the
cutting operations and after applying an external force �eld (to bend
the hair from Figure 19b) to one side of the hairstyle Figure 19c

Figure 19: The modelling process using the cantilever beam simu-
lation.

Figure 20: Different hairstyles using the cantilever beam simula-
tion.

Figure 21: A wind gust scene.

is archieved. Figure 19d is archieved after applying the same cut-
ting operation and force�eld to the other side.Figure 20 shows some
more hairstyles generated with this technique.
The second important part of this work is the dynamical behav-

iour of hair. The authors state that some aesthetic features in hair
animation are obtained as a result of inertia versus applied force.
Since hair is modeled as a collection of linked linear segments, this
segments are treated as rigid sticks for animation. Using this ap-
proach simple one-dimensional differential equations are needed to
compute the animation. To solve this equations a rough approxima-
tion is made using an external pseudo-force �eld.
Figure 21 shows a wind-gust scene while Figure 22 shows the

collision avoidance using a pseudo force �eld. Since the main as-
pect of this paper lies in the modeling and animating of hair, i will
omit the rendering technique used to gain the resulting images.
The technique described here was implemented on a Silicon

Graphics Iris Power Station workstation with a VGX graphics
board. Typically the model consists of 20.000 hairs, each of which
consists at most of 20 linear segments. It took about 50 seconds. to
obtain the bending, while approximately 40 seconds per frame for
the animation (bending time not included).

[Kim and Neumann 2000] propose a technique for long
hairstyles modeled by surfaces, which includes hair-hair interac-
tions.
The sketches in Figure 23 illustrates the steps of this technique:

1. First the hairstyle is modeled as a gently curved surface. Note
that this technique only covers hairstyles which could be mod-
eled as surfaces or polygons (Figure 23a).

2. Next a curved volume is generated by adding a thickness
along the normal vectors to the former generated surface (Fig-
ure 23b).

Figure 22: Example of a dynamic collision avoidance.

Figure 23: The modeling process using thin shell volumes.

Figure 24: The tooth of the virtual comb.

3. To simplify hair-hair interaction it is easier to use a regular
rectilinear volume. That is why the curved volume is im-
plicit warped to a regular rectilinear volume called a normal-
ized thin shell volume. The authors state that the distortions
made in this step are visually neglectible, since it only in�u-
ences hair-hair interaction behaviour. Long hair strands are
uniformly distributed within the normalized thin shell volume.
The individual hair strands are generated by particles on a path
along the length of the hair (Figure 23c).

4. The next step consists of the virtual combing of the hair
strands within the thin shell volume. The combing is repre-
sented as a path for each tooth of the comb (Figure 23c, Fig-
ure 24 shows a tooth of the comb). Each tooth of the comb
affects the hair strands as follows:

(a) Only particles hit by the tooth are affected.
(b) Each particle moves away from the center of the tooth's

in�uence.
(c) Each affected particle tries to follow the path of the

comb.
(d) The vertical motions of particles are generated in a way

that combed hair moves upward (outward) to lie on top
of unaffected hair.

5. After combing each hair strand is recovered by connecting the
corresponding hair particles. These stylized hairs are a group
of curves, where each curve represents one hair strand (Figure
23e,f).

This technique was implemented on a SGI Onyx R10000 (only a
single CPU and the graphics pipeline were used).The images shown
in Figure 25 have a size of 512x512 the thin shell volumes used
throughout the test have a size of 20x20x10, and 4000 hair strands
where computed. It took about 20-30 seconds to comb and generate
the model, while the rendering times were quite fast (1-2 seconds
per frame). The authors state that most of the computing time was
needed to reconstruct the hair strands from the particles in the thin
shell volume. To animate the hairstyle, the reference surface could
be deformed. Furthermore it is possible to add dynamics to the
reference surface. Since the hairs within the thin shell volume are
constrained due to the hair-hair interaction technique, it is possible
to add free hairs which could be animated using standard dynam-
ics techniques. The results of this technique is very well suited to

Figure 25: Results of the thin shell volume technique.

Figure 26: A graphical overview it the multiresolution model.

model hairstyles which could be approximated as curved surfaces.
The combed hairs within the thin shell volume add to the realistic
appearance of the hairstyle.

[Kim and Neumann 2002] describe a very powerful tool to in-
teractively model and edit hairstyles. Figure 26 shows a graphical
view of this technique, starting at a scalp surface (the patch where
hair could originate). The actual hair is modeled as a set of gener-
alized cylinders. Each generalized cylinder de�nes a boundary of
each hair cluster, controlling hair strands or a whole group of clus-
ters. The user interactively subdivides these hair clusters to gain
more detail until the desired appearance is archieved.
A generalized cylinder is described by a skeleton curve and a set

of contours placed along the curve.The scalp surface (see Figure 27
left) is a parametrized patch which represents the region where the
user is able to place hairs. The scalp space (see Figure 27 middle)
is spanned by u and v, and the generalized cylinders are placed on
the scalp using arbitrary scalp space shapes (see Figure 27 right),
which are allowed to overlap (see Figure 28).Within these contours
the hair strands are generated (represented as polylines).
After the initial generalized cylinders are created, the subdivi-

sion stage begins to add detail. If a parent cluster is divided, the
child clusters inherit the contours of the parent cluster. To place the
child clusters on the scalp, random sampled positions are generated
�rst (Figure 29 left) and the position relaxation algorithm by [Turk
1991] is used to improve the distribution (Figure 29 right).Now that
the child clusters are positioned, the ownership of the individual
hair strands need to be reassigned.
The next part describes the interactive techniques to manipulate

this hair structure. The user may control the position, contours,
scale and twist of any generalized cylinder, which results in differ-
ent levels of detail. Since the hair is represented as a tree, if a non-

Figure 27: The placement of a shape (right) on the scalp (left) using
the 2D scalp space (middle).

Figure 28: Overlapping shapes in the scalp space (the colours indi-
cate which hair strands belont to which shape).

Figure 29: Subdivision of contours using random samples (left) and
after the relaxation (right).

Figure 30: The user picks a control point (the black dot in the circle
in picture image a), and is able to move (b), scale (c) and twist (d)
the region.

Figure 31: The sorting of the segments of the polylines for smooth
drawing.

leave cluster is modi�ed all of its decendant clusters must follow
the shape-changes to preserve their relative position and orientation
(Figure 30). Another operation, which the user is able to perform,
is copy & paste, where any node in the hair tree could be copied to
any other node regardless of the depth. Every copy operation gen-
erates a potential style template which can be used as a default in
the subdivision stage.
To facilitate the edit operations there are four different ways to

select parts of the hair. 1) The user is able to pick a cluster or
region with a sphere. 2) Standard 2D-selection techniques are used
to select clusters within the scalp space. 3) A cluster is selected and
the hair-tree is used to move to other clusters. 4) Clusters regarding
their depth within the hair tree could be selected.
To avoid hair-head-penetration the closest-point-transformation

(CPT) algorithm described in [SEAN 2000] is used.
For the interactive rendering process the hair is rendered as poly-

gons in OpenGL and the shading model used here is similar to
the technique proposed by [Kajiya and Kay 1989]. For the self-
shadowing of the hair, they used their opacity shadow maps algo-
rithm [Kim and Neumann 2001] which is an approximation of deep
shadow maps by [Lokovic and Veach 2000]. Since antialiasing is
very important, due to the very thin hair strands, and the OpenGL
antialiased line drawing option is not suf�cient since the correct
result depends on the drawing order, the authors use a visibility or-
dering algorithm inspired by [Levoy and Whitted 1985]. With this
algorithm the bounding box of all segments is sliced by a plane par-
allel to the camera.This resulting bins are displayed in Figure 31.
After the head mesh is drawn, the z-buffer is disabled and the seg-
ments are drawn as antialiased lines so that the ones indexed by the
farthest bin are drawn �rst. To speed up the rendering, the authors

Figure 32: Some results generated using the interactive multireso-
lution modeling technique.

implemented a level of detail method which allows the user to de-
�ne the number of hair strands and the number of segments per
strand.
Figure 32 shows some results of this technique. The authors

state that it took about 10-20 minutes to generate such a hairstyle
and most of the time for modelling the hairstyle is consumed by
manually placing the initial 10 -30 root clusters. They implemented
their model on a Pentium3 700Mhz with 512MBRAM and a nVidia
Quadro 2 Pro.
Typical time measurements for a hairstyle with 10.000 hair

strands and 40 segments per strand, calculating 40 opacity maps
of 200x200 pixels are: shading 1.2 seconds, visibility ordering 0.43
seconds, 5000 strands are updated per second, and shadow calcula-
tion 5.88 seconds per light source. For the interactive session usu-
ally 150.000 segments (5.000 strands with 30 segments per strand)
are used,which renders with about 5 frames per second at a win-
dow size of 512x512. This tool seems to be a very powerful one,
considering the manual modeling of complex hairstyles. The vari-
ety and complexity of the modeled hairstyles is very great, and the
modeling time is acceptable.

Figure 33: An electron micrograph of a hair �ber [??Robbins 1994]

Figure 34: A model of a hair �ber.

5 Advanced Illumination of Hair

In this section, i will present some more advanced illumination
techniques for hair and hair �bers. These range from very realis-
tic lighting of hair �bers, over some global illumination techniques,
image based lighting, to an illumination model where very short
hair is represented without geometry (only the initial mesh is ren-
dered) and the appearance of hair is only faked by the lighting com-
putation.

[Marschner et al. 2003] developed a simple practical shading
model based on experimental and theoretical study of the scattering
of light from individual hair �bers.
Figure 33 shows a picture of a hair �ber taken from an electron

microscope. This original hair �ber is approximated by an cylinder
with tilted surface scales depicted in Figure 34. Figure 34 shows
the light interaction with a hair �ber as well.

1. R denotes the shift of the primary specular peak towards the
root. This effect is hypothesized to be due to the tilted scales
on a hair �bers.

2. TT denotes the strong forward scattering property of light
from coloured hair. This property is strongly observed on
light coloured hair which looks much brighter when lit from
behind.

3. TRT denotes a secondary coloured specular peak shifted to-
wards the tip of the hair �ber from the �rst specular peak.

Figure 35: The result of the lighting model form [Kajiya and Kay
1989] under a single point light (left), the result of the model pro-
posed by [Marschner et al. 2003] under the same lighting conditions
(center), and a photograph (right)

Figure 36: The components of the lighting model: (a) the R compo-
nent (primary highlight), (b) the TRT component (secondary high-
light), and (c) the complete model.

The experimental and theoretical study resulted in a scattering
model which predicts that light from a directional source will be
scattered into a perfect cone and the distribution around the cone is
a sum of three distinct terms (MR;MTT ;MTRT) the exact discussion
of the three scattering terms is found in [Marschner et al. 2003].
Figure 35 shows a comparison between a photograph, the model
developed here and the model of [Kajiya and Kay 1989], where the
hair �bers are treated as opaque cylinders. Switching from the sim-
pler model of.[Kajiya and Kay 1989] to the model proposed here
increased the rendering time from 6 minutes to 8 minutes on a two
processor Pentium 3 1GHz system, and resulted in far better visual
quality.Figure 36 shows the result of the R component, the TRT
component and the results of the whole model. Figure 37 shows the
result of this model under varying illumination directions, where
the movement of the two specular peaks can be observed..
These results were generated using a commercial ren-

dering software called Sasquatch (Worley Laboratories,
http://www.worley.com). The hair models consisted of 50.000
to 100.000 spline curves. This illumination model captures the
complexity of hair very well and is almost not to distinguish from
real hair, as the results show.

[Moon and Marschner 2006] propose a technique to com-
pute the scattering within light coloured hair using a photon map
approach. Figure 38 again shows some results of the work of
[Marschner et al. 2003].
Two effects can be seen which are very important for the apper-

ance of hair.The �rst effect is visible in Figure 39 between the direct
illuminated image and the image, which was computed using pho-
ton mapping, and therefore includes indirect illumination between
hair �bers. It can be observed that if only direct illumination is con-
sidered the overall re�ectance is much less than using indirect illu-
mination, which leads to different colours.The second effect, which
could be observed in Figure 40, where hair is illuminated using a
sharp spot, is that there is a light glow around the edges of the spot.

Figure 37: A hair model under various lighting angles. It can be
observed how the two highlights move.

Figure 38: The three different scattering modes of hair.

Figure 39: A hair strand with direct illumination (left) and the same
strand with direct and indirect illumination

Figure 40: A photograph of hairs under a single sharp spotlight.

Figure 41: conventional photon placement method (top), placing
method proposed by [Moon and Marschner 2006] (bottom)

Their technique, which includes both of that scattering effects,
treat the hair �bers as one-dimensional �ber, neglecting the varia-
tions of thickness within a hair �bers, and only computing an av-
erage radiance per hair �ber. Since their scattering function is a
�ve dimensional function (three dimensional point and two dimen-
sional angular direction), this technique uses a 5D photon map to
store the photons after they have been traced through the hair and
followed multiple scattering events. The method to trace the pho-
tons here is similar to the method described in [Jensen and Chris-
tensen 1998] but with some differences accounting for the geomet-
rical and optical properties of hair used with this techniques. All
rays interact only with the geometry, since no continuous material
is used here, and the photons are deposited with uniform proba-
bility along a ray, instead of only mapping them at interactions (a
comparison between the old and the new technique can be seen in
Figure 41).The last difference is that a 5D density estimate is used
rather than a 3D, which handles the strong directional variations in
re�ectance better.
To speed up computation a radiance cache is proposed, which is

ef�cient since viewing rays that lie close together generally lead
in spatially close-by positions, and if similar scattered positions
are choosen, it results in gathering almost the same photons.Figure
42 shows the results compared between direct illumination, the old
photon mapping and the technique described here.
The technique described here was implemented as a single-

Figure 42: A comparison between conventional path traced hairs
and hairs rendered with the method proposed by [Moon and
Marschner 2006]

threaded java application and was used on a dual Intel Xeon 3.8GHz
workstation. As seen in the results, this technique yields the visu-
ally same results as a conventional pathtracer while saving a lot
of computation time (This technique reduces the conputation time
from 60 to 100 hours of a conventional pathtracer down to 2.2 to
2.7 hours.)

In their sketch [Yuksel and Akleman 2006] propose a global
illumination model for hair. Most of the hair rendering techniques
only consider direct illumination since hair geometry is highly com-
plex and that complexity results in scenes where a single hairy ob-
ject consumes much more computation time than the rest of the
scene, using radiosity or raytracing techniques. If only direct light-
ing is used, inconsistencies in the overall appearance could be ob-
served. The authors propose some simpli�cation techniques to re-
duce computation time while still generating good results.

Lr(φ) =
Z
S

F(θ ;φ)γ(x)Li(x;θ)dθ (7)

Equation 7 describes the re�ected radiance Lr from a point in
direction φ . Where F is the geometry term, γ is the visibility of
x which are the points of the incoming radiance Li and θ is the
radiance form x. Since hair inhibits strong forward scattering the
authors state, that they can safely ignore inter-hair-re�ection of hair
strands and therefore rewrite the equation as follows:

Lr(φ) =
Z
S

F(θ ;φ)Γ(θ)Λ(θ)dθ (8)

Where Γ is the visibility, and Λ is the incoming radiance in the
direction θ . In this equation, hair strands do not contribute to Λ and
only affect Γ, and therefore Λ is computed using standard global
illumination techniques, and Γ is calculated by projecting the hairs
onto the unit sphere. The authors suggest two more simpli�cation
techniques based on the level of detail. The �rst technique takes
only one random subset of the hair geometry to represent all hairs.
The second simpli�cation eliminates subsets of selected hairs ac-
cording to their distance from the computation point. Therefore
hairs that contribute less (which are farther away) are computed
with less accuracy while hairs with strong contribution are com-
puted without any accuracy loss. Figure 43 shows the results with
direct lighting (top) compared to the results with global illumination
(bottom).It can be seen that the appearance of the directly illumi-
nated hair is much darker and that computing global illumination
for hair adds more realism. The rendering technique was based on
a photon map with �nal gathering approach proposed by [Jensen
1996] and the shading model from [Kajiya and Kay 1989] was used
.

[Neulander 2004] proposes a fast approximative solution for
image-based lighting of curved hair. The hair is modeled by a
curve using a set of control points, where each control point in-
cludes world position and another four real values used in their oc-
clusion model. The author states that other attributes like colour,
hair thickness, etc. are useful, but not relevant for this model.
The lighting model used here is based on [Kajiya and Kay 1989].

Since image-based lighting has to consider numerous light direc-
tions, the diffuse and specular models used here are summations of
the Phong diffuse and specular model over multiple shading nor-
mals, distributed orthogonally to the curve tangent. For each dif-
fuse and specular shading sample, multiple look-ups into the image
based lighting texture, with an occlusion appoximation per look-
up, are performed. The image-based lighting texture is pre�ltered
by a pair of cosine-�lter kernels to reduce the diffusion samples to
a plane and the specular samples to a cone (see Figure 44). This

Figure 43: hair rendered with direct illumination only (top), and
rendered with indirect illumination (bottom)

Figure 44: A schematical view of the specular and diffuse samples.

Figure 45: Two results where the furry torus is lit by a HDR image.

Figure 46: Line and face intersections on an igloo.

vastly reduces the rendering complexity with an acceptable loss in
accuracy.
For the occlusion model used here, an extension of the model

proposed by [Neulander and van de Panne 1998], two additional
parameters are stored at each control point. The unit occlusion
vector N0 and an occlusion height scalar h0. For an incident light
vector L the fractional visibility is given by the following expres-
sion, where ρ is some density constant:

e�ρ(�h0N0L+
p
1�h20(1�N0L2)) (9)

The extension of the occlusion model described here uses an
opaque inner sphere centered at the same point as the outer sphere
(see Figure 44). This is useful for modeling shorter hair which can
be abruptly shadowed by skin.
The author states that this technique is well suited for GPU im-

plementation, and that its main limitation is the assumption of a
locally spherical, homogeneous medium, which precludes accurate
shadowing. Some result of this technique is shown in Figure 45,
where the usability of this technique for furry objects can be ob-
served. Furthermore it can be observed that for furry objects, this
technique yields nice image-lit results.

[Yuksel and Akleman 2005] propose a projection based frame-
work for indirect illumination of hair-like structures including self-
shadowing. This framework is based on a visibility calculation suit-
able for line segments. This visibility calculationis based on a hemi-
sphere projection method. This projection method uses a structure
that resembles an 'igloo' (see Figure 46). Using this igloo, the visi-
bility problem reduces to line-circle intersection on a in�nite plane
(Fee �gure 46). The framework also can be implemented using
other approximations of hemispheres like hemicubes, etc.
The authors state that the images in Figure 47 are rendered in

ten minutes on a Pentium 4 3Ghz CPU and no tricks, like different
colours for each hair strand (to fake selfshadowing), where used.
Furthermore they mention that no artifacts where produced in ani-
mated sequences.

[Goldman 1997] proposes a probabilistic lighting model for thin
coats of fur. This method is much faster than hair-by-hair or vol-
umetric methods. This 'fakefur' algorithm is used to render mam-

Figure 47: Left, rendered with an aera light, right rendered with an
ambient occlusion.

malian fur creatures to be composed into live-action feature �lms
(like '101 Dalmatians' by Disney). The outline of this illumination
algorithm is given as follows:

1. Compute the mean hair geometry within the sample region.
This is the "reference hair".

2. For each light:

(a) Using the fakefur opacity function (described later),
compute the hair over hair shadow attenuation.

(b) Compute the re�ected luminance of the average hair in
the sample region.

(c) Using the fakefur opacity function to compute the hair
over skin shadow factor.

(d) Compute the re�ected luminance of the underlying
skin.

(e) Using the fakefur opacity function to compute the
hair/skin visibility factor.

(f) Blend the re�ected luminance of the skin and hair using
the visibility ratio to optain the �nal re�ected luminance
of the sample region.

3. Sum the re�ected luminance for each light to obtain the total
re�ected luminance for the sample region.

The fur geometry on a surface is parametrized by hair length,
hair radius, hair density, hair tangents at root and tip. The re�ec-
tivity of individual hairs is described by diffuse re�ectivity (wave-
length dependant), specular re�ectivity, specular exponent, several
directionality factors for transmissivity or re�ectivity control and
Lambertian macro behaviour. This parameters may vary over the
creatures surface, either described procedurally or by texture maps.
For the re�ected luminance of a single hair �ber a modi�ed ap-

proach from the algorithm of [Kajiya and Kay 1989] is used. Since
this model lacks the directionality it had to be modi�ed. This modi-
�cation uses two new attenuation factors, the relative transmissivity
(ρtrans) and the re�ectivity factor (ρre f lect). These two factors are
used for forward (ρtrans) and backward scattering (ρre f lect), and
are combined in their directional attenuation factor (fdir) which is
computed as follows:

fdir =
1+κ

2
ρre f lect +

1�κ

2
ρtrans (10)

κ characterizes the relative directionality of a given incident light
ray L, eye ray E, and hair tangent T , and is de�ned as follows :

κ = cos(T̄ � L̄; T̄ � Ē) = (T̄ � L̄)(T̄ � Ē)
jT̄ � L̄jjT̄ � Ēj (11)

Therefore κ is greater than zero for frontlighting and less than
zero for backlighting.

Another factor has to be added to compute smooth shadows
within the surface, the surface normal factor:

fsur f ace = 1+ρsur f ace(smoothstep(N̄ � L̄;ωmin;ωmax)�1) (12)

N̄ is the normalized surface normal and smoothstep is the
smooth Hermite interpolation between ωmin and ωmax de�ned as:

smoothstep(x;a;b) =

8<:
0;8x< a
1;8x> b

�2(x�ab�a)
3+3(x�ab�a)

2;8a< x< b

9=; (13)

fdir and fsur f ace are multiplied into the equation ψhairof [Kajiya
and Kay 1989] (see Equation 5):

ψhair = fdir fsur f ace(ψd +ψs) (14)

Like in [Kajiya and Kay 1989] this model is a �rst order approx-
imation, which is most accurate when the hair albedo is low, and no
secondary scattering of light off the hairs onto other hairs or skin is
considered.
The fakefur opacity function computes the mean opacity for a fur

patch and is described by the hair geometry, the hair distribution and
the viewing angle. Considering the hair geometry, hairs are viewed
as truncated cones of radius rb at the base, radius rt at the tip and
length l where the values are considered as follows:

l � rb (15)
rb � rt

For the distribution of hairs two assumptions are made:

1. All hairs in the sample region share the identical direction and
geometry.

2. The distribution of hairs in a small region has Poisson charac-
teristics: Within a zone of uniform density, a sample of half
the size will contain half the hairs and the hairs are placed
independantly of each other.

Therefore the fakefur opacity function α f is given by:

α f = 1�
�
1� DAhg(Ē; T̄ ; N̄)

ni

�ni
(16)

Where ni is a constant denoting the number of hairs within a
sample region andD is the local density of hairs. Ah is the computed
aera of projection onto the viewing plane as:

Ah =
l(rb+ rt)

2
(17)

The probability of a random ray striking a single hair αh from E
is given by :

αh =
Ah
As
g(Ē; T̄ ; N̄) (18)

where the projection dependent part of αh is g de�ned as:

g(Ē; T̄ ; N̄) =
sin(Ē; T̄)
Ē � N̄ (19)

This opacity function is used in the illumination process for
three different computations: hair-over-skin shadows, hair-over-
hair shadows, and hair-over-skin visibility. The other large scale

Figure 48: A image of the �lm 101 Dalmatians by Disney.

Figure 49: A comparison between the fakefur algorithm and the
realfur algorithm.

geometry steps (skin-on-hair shadows, skin-on-skin shadows, skin
illumination, etc.) are not included in this paper since the authors
state that these are well handled by existing techniques.
There are two cases in which the result of the fakefur algorithm

is not accurate: case one is the 'hot spot' where the viewing vector
Ē is close to the illumination vector L̄. Case two is the 'halo' where
the viewing and illumination vector are nearly opposite. The author
states that these illumination enviroments are generally avoided by
cinematographers and since this model was designed for live-action
feature �lms, it has no impact on the visual results of the fakefur
algorithm.
Figure 48 is taken from the �lm '101 Dalmatians' by Disney,

while Figure 49 is a comparison between the fakefur and a 'real-
fur' (implemented for evaluation, where fur is geometrical repre-
sented) algorithm. As the �gures show, the visual performance of
the fakefur algorithm is very well in comparison to the realfur al-
gorithm. Considering the geometrical complexity of a realfur algo-
rithm, the fakefur algorithm is a very good alternative for very short
hair where lots of computation power can be saved, as long as the
two situations where this technique does not work are avoided..

6 Hair Rendering for Movies

In this section i want to present two sketches considering hair ren-
dering for movie productions. The �rst sketch illustrates the prob-
lems when choosing the representation of hair for the rendering,

Figure 50: Scrat, the hero of Ice Age: the Melt Down.

where the bene�ts of the decision could lead to other not consid-
ered problems later in the production process. The second sketch
describes a very powerful method to groom realistic looking hair,
used in Peter Jacksons King Kong.

[van Swaaij 2006] illustrates some problems and work-arounds
when rendering fur for a �lm production like 'Ice Age: The Melt
Down'.The tragic-comic hero, Scrat (see Figure 50) is discussed
as an example here. When his hair is modeled as B-spline curves
(1.3 million) with six control points where each control point has
�ve values (three coordinates,colour and opacity), and adding sup-
port for deformation, blur, bounding boxes and subdivision of the
B-splines into Bezier segments, Scrats fur would require more than
600 MB memory. Because CGI Studio is a ray-tracer, the geome-
try has to be in memory while rendering. While this huge memory
requirements are a big problem there are more drawbacks with this
approach. Because the hairs have a tiny radius, ray-tracing this
geometry, which is much smaller than a pixel, would result in se-
vere aliasing if no tremendous amount of subsampling is done. The
worst of all is that CGI Studio is based on axis-aligned bounding
box hierarchies so that the intertwined nature of hair would lead to
very long rendering times.
To overcome these problems the Blue Sky Studios decided to

use voxels, which are similar to the texels used in [Kajiya and Kay
1989], to represent the geometry. The use of voxel proved to be
a big advantage considering memory usage since the actual geom-
etry is contained within the voxels and therefore the number of
hairs does not determine the memory allocation. Another advan-
tage is that the rasterization is antialised by a �lter function allow-
ing the voxels to be rendered without additional anti-aliasing. The
third advantage is that it proved to be much more ef�cient march-
ing through a regular voxel grid than ray-tracing highly overlapping
bounding boxes.
This improvement resulted in much faster rendering, if pre-

processing is neglected. Since one frame is often rendered multiple
times during lighting design this preprocessing is amortized over
several renderings by caching the voxels on disk. Nevertheless, new
problems arose using voxels,which are the actual generation of the

Figure 51: Using more deformers from left to right.

voxels, so when they are rendered they look the same as if rendered
the actual geometry, and motion blur was very problematic for the
voxel system, because it used alot of memory and several memory
reduction strategies had to be employed.
They looked for an alternative technique to reduce memory us-

age, but in the end they found out, that using the voxel system
turned out to be a real memory hog because of the motion blur.

[Preston and Hill 2006] explain how their proprietary fur
grooming and rendering program, called Bonobo by Weta Digital,
for Peter Jacksons 'King Kong' works. The program allows both,
styling and animating, using a form of visual programing.
The grooming part consists of a dependancy graph of deform-

ers, which will modify each hair on the subdivision surface, which
is initially grown standing straight out from the geometry. A lot
of different deformers where used to model the appearance of fur
(strands, clumping, collision, etc.), and even the dynamics were re-
alized using deformers, generated by a soft-body simulation or a
curve-based dynamic simulation, which are applied at the end of
the grooming program. After the deformers are set, the grooming
program reaches the renderer (PRman) for fur growth. About four
million curve strands were created on King Kongs body. Besides
this fur, the same groom program was applied to additional geom-
etry within the fur to create mud, leaves, dirt, etc. The Renderman
shader used here was based on the work of [Marschner et al. 2003],
adopted to the characteristics of Yak-hair. They incorporated non-
perfect cuticles in the individual hairs, light absorption through the
volume and the effect of inter-hair light transport. Some results of
the layered deformers are shown in Figure 51.

7 Conclusion

As we have seen the high complexity of hair, considering the geom-
etry of the very thin hair �bers, and the illumination properties of
hair, most of the techniques described here do not work for all sorts
of hairs and hairstyles. Volumetric representations have the advan-
tage that the real geometry is approximated and therefore a lot of
memory could be saved. This may be true for the representation,
but as we have seen in the sketch about Ice-Age this memory re-
duction does not work for the motion blur they used, and therefore
this advantage had also its pitfall included. Nevertheless, volumet-
ric representations are very well suited to generate short hair and
fur where individual hairs do not affect the overall appearacne of

that hairstyle. The other representation method as splines or poly-
lines has much more memory consumption, and due to the very
thin hair �bers, extensive subpixel sampling or other antialiasing
methods have to be used to avoid artifacts. Although this represen-
tation has many drawbacks, it is the only representation to capture
complex hairstyles, where individual hair �bers or strands have a
huge impact on the visual appearance. The method to approxi-
mate hairstyles with thin shell volumes is only suitable for a few
hairstyles, but this hairstyles could be captured very well and com-
pared to the polyline/spline representation a lot of computation time
could be saved. The real hair aquisition techniques, have, as we
have seen, many drawbacks, but research in this direction is quite
young, and maybe more usable techniques will be developed in the
future. Nevertheless, this techniques could be incorporated into
other interactive modeling tools as a starting point to faciliate the
modeling process.
If someone has the task to render realistic looking hair, a lot of

considerations have to be made (what hairstyles should be rendered,
how much memory and computation time is available,etc.). Taking
this considerations as a starting point, some techniques can be cho-
sen to achieve this goal. Perhaps more than one technique have to
be put together to achieve this goal, until today there is no general
technique to generate every kind of hairstyle.

References

BROOKS, M. J., AND HORN, B. K. P. 1989. Shape and source
from shading. 53�68.

GOLDMAN, D. B. 1997. Fake fur rendering. In SIGGRAPH
'97: Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 127�134.

GRABLI, S., SILLION, F., MARSCHNER, S. R., AND LENGYEL,
J. E. 2002. Image-based hair capture by inverse lighting. In
Proc. Graphics Interface, 51�58.

ICHI ANJYO, K., USAMI, Y., AND KURIHARA, T. 1992. A simple
method for extracting the natural beauty of hair. In SIGGRAPH
'92: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 111�120.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Ef�cient sim-
ulation of light transport in scences with participating media us-
ing photon maps. In SIGGRAPH '98: Proceedings of the 25th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 311�320.

JENSEN, H. W. 1996. Global illumination using photon maps. In
Proceedings of the eurographics workshop on Rendering tech-
niques '96, Springer-Verlag, London, UK, 21�30.

KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three
dimensional textures. In SIGGRAPH '89: Proceedings of the
16th annual conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, 271�280.

KIM, T.-Y., AND NEUMANN, U. 2000. A thin shell volume for
modeling human hair. ca 00, 104.

KIM, T.-Y., AND NEUMANN, U. 2001. Opacity shadow maps. In
Proceedings of the 12th Eurographics Workshop on Rendering
Techniques, Springer-Verlag, London, UK, 177�182.

KIM, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolution
hair modeling and editing. In SIGGRAPH '02: Proceedings of
the 29th annual conference on Computer graphics and interac-
tive techniques, ACM Press, New York, NY, USA, 620�629.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H.
2001. Real-time fur over arbitrary surfaces. In SI3D '01: Pro-
ceedings of the 2001 symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, 227�232.

LENGYEL, J. E. 2000. Real-time hair. In Proceedings of the Eu-
rographics Workshop on Rendering Techniques 2000, Springer-
Verlag, London, UK, 243�256.

LEVOY, M., AND WHITTED, T. 1985. The use of points as a
display primitive. Tech. rep., Computer Science Department,
University of North Carolina at Chapel Hill.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps.
In SIGGRAPH '00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
385�392.

MARSCHNER, S. R., JENSEN, H. W., CAMMARANO, M., WOR-
LEY, S., AND HANRAHAN, P. 2003. Light scattering from hu-
man hair �bers. In SIGGRAPH '03: ACM SIGGRAPH 2003
Papers, ACM Press, New York, NY, USA, 780�791.

MOON, J. T., AND MARSCHNER, S. R. 2006. Simulating multi-
ple scattering in hair using a photon mapping approach. In SIG-
GRAPH '06: ACM SIGGRAPH 2006 Papers, ACM Press, New
York, NY, USA, 1067�1074.

NEULANDER, I., AND VAN DE PANNE, M. 1998. Rendering gen-
eralized cylinders with paintstrokes. InGraphics Interface, 233�
242.

NEULANDER, I. 2004. Quick image-based lighting of hair. In
SIGGRAPH '04: ACM SIGGRAPH 2004 Sketches, ACM Press,
New York, NY, USA, 43.

PARIS, S., BRICEñO, H. M., AND SILLION, F. X. 2004.
Capture of hair geometry from multiple images. In SIGGRAPH
'04: ACM SIGGRAPH 2004 Papers, ACM Press, NewYork, NY,
USA, 712�719.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped
textures. In SIGGRAPH '00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 465�470.

PRESTON, M., AND HILL, M. 2006. Grooming, animating &
rendering fur for "king kong". In SIGGRAPH '06: ACM SIG-
GRAPH 2006 Sketches, ACM Press, New York, NY, USA, 43.

SEAN, M., 2000. A fast algorithm for computing the closest point
and distance function.

TURK, G. 1991. Generating textures on arbitrary surfaces using
reaction-diffusion. In SIGGRAPH '91: Proceedings of the 18th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 289�298.

VAN SWAAIJ, M. 2006. Ray-tracing fur for ice age: the melt
down. In SIGGRAPH '06: ACM SIGGRAPH 2006 Sketches,
ACM Press, New York, NY, USA, 44.

WEI, Y., OFEK, E., QUAN, L., AND SHUM, H.-Y. 2005. Mod-
eling hair from multiple views. In SIGGRAPH '05: ACM SIG-
GRAPH 2005 Papers, ACM Press, New York, NY, USA, 816�
820.

YANG, R., POLLEFEYS, M., ANDWELCH, G. 2003. Dealing with
textureless regions and specular highlights-a progressive space
carving scheme using a novel photo-consistency measure. In
ICCV '03: Proceedings of the Ninth IEEE International Confer-
ence on Computer Vision, IEEE Computer Society, Washington,
DC, USA, 576.

YANG, G., SUN, H., WANG, W., AND WU, E. 2006. Interac-
tive fur modeling based on hierarchical texture layers. In VRCIA
'06: Proceedings of the 2006 ACM international conference on
Virtual reality continuum and its applications, ACM Press, New
York, NY, USA, 343�346.

YUKSEL, C., AND AKLEMAN, E. 2005. Rendering hair-like ob-
jects with indirect illumination. In SIGGRAPH '05: ACM SIG-
GRAPH 2005 Sketches, ACM Press, New York, NY, USA, 21.

YUKSEL, C., AND AKLEMAN, E. 2006. Rendering hair with
global illumination. In SIGGRAPH '06: ACM SIGGRAPH 2006
Research posters, ACM Press, New York, NY, USA, 124.

