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Abstract

The Visualization Toolkit (VTK) is an open-source toolkit for data
visualization. It is based on a data-flow model and features a rich
library. This paper examines VTK’s visualization model and the
underlying data structures. Practical examples are provided.
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1 Introduction

The Visualization Toolkit (VTK) is a widely used package for vari-
ous visualization tasks. It offers an object-oriented API which can
be integrated in many common development environments. Lan-
guage bindings for popular interpreted languages (currently TCL,
Python and Java) allow rapid-prototyping while C++ can be used to
develop high-performance applications.

A main feature of the toolkit is its simple and well-structured
nature which incorporates popular object-oriented design patterns.
Since VTK is open-source it is easy for developers to extend its
functionality and add new components [1].

This paper examines VTK’s object model and gives examples for
taking advantage of it.

In Section 2 VTK’s visualization pipeline is introduced. The dif-
ference between process and data objects is discussed and VTK’s
data structures are examined. Section 3 gives practical examples
for using VTK. The paper is concluded in Section 4.

2 Visualization Model

2.1 Overview

The Visualization Toolkit uses a data-flow approach to transform
information into graphical data. This architecture is commonly re-
ferred to as a visualization network.

A network is essentially a graph that defines the flow of data
through a series of modules that process the data into a picture that
can be viewed on the screen.

At the top of all networks is some kind of data input module
that reads data files into the network. Next may come a series of
filter modules that preprocess the data (e.g., extract a single scalar
element from a vector of data values, crop or thin out the data to a
more manageable size, take a single 2D plane from a 3D volume,
etc.). This is followed by one or more mapper modules that turn the
data into a picture or write data to a file or stream.

Similar to other data-flow based systems, such as AVS [2] and
Data Explorer [3], the VTK visualization model consists of two ba-
sic types of objects: process objects and data objects.

Process objects: Process objects are the algorithmic portions of
the visualization network. They are further characterized as
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Figure 1: Process and data objects (Data-flow chart)

source objects (e.g., a file containing geometric data), filter
objects (e.g., triangulation of the input data) and mapper ob-
jects (e.g., rendering the triangulated data).

Data objects: Data objects represent the actual data that flow
through the visualization network. The basic data object in
VTK is a dataset which is composed of cells. Cells are topo-
logical organizations of points and form the atoms of the
dataset.

Building a visualization network involves setting up and con-
necting process and data objects. The process objects perform al-
gorithmic operations on data as it flows through the network. The
main advantage of this architecture is its flexibility and the ability
to easily add new algorithms and data representations.

2.2 Process objects

Process objects can be one of three types: sources, filters, and map-
pers. Source objects are found at the beginning of the pipleline.
They generate one or more output datasets. A source object may
be a reader for a particular file type or it may even generate its own
data, such as a sphere source. The output of this source object is
then connected to the input of another process object. The act of
connecting the input of one process object to the output of another
process object is how the pipeline is built (Figure 1). For instance,
to connect the output of filter A to the input of filter B, a construct of
the following form is used: B.SetInput(A.GetOutput());

Each process object has only one output. However, fanning of
the output is allowed since multiple process objects can set their
input to be the output of the same process object. The pipeline ter-
minates with mappers. A mapper ”maps” its input to the screen
(renders it). The mapper itself is one component of an object called
a vtkActor. A vtkActor represents a geometrical object and
its attributes. Other information in a vtkActor includes the ob-
ject’s appearance attributes (vtkProperty), and its location in
space. As a result, the user will instantiate a vtkActor for each
mapper in the VTK pipeline. The user will then set any attributes
of each vtkActor and add each vtkActor to what is called a
vtkRenderWindow. The vtkRenderWindow will then dis-
play all of its actors in a window on the screen.

Building VTK pipelines is simple, but one also needs to under-
stand how a VTK pipeline executes. VTK uses a model that has an
implicit control of execution. Execution only occurs when output is



requested from an object (i.e., demand-driven). This scheme is im-
plemented with two key methods: Update() and Execute().

Each process object keeps track of its last modification time. If
output is requested from the object and the object or its input has
been modified since it last executed, then the process object should
re-execute. The process of executing the pipeline begins with a call
to a process object’s Update() method. This typically happens
when it is time to render and the mapper wants to update itself be-
fore rendering. The process object that receives the Update()
message will recursively invoke the method on its input. This con-
tinues until a source object is encountered. The source object com-
pares its modification time to the last time it executed. If it has
been modified, then it will re-execute itself using the Execute()
method. As mentioned previously, data objects ”live” between pro-
cess objects. If the source object has not been modified, then its
output (a data object) is still valid. The recursion then backtracks
with each successive process object comparing its input time and
its own modification time with the time that it last executed. If nec-
essary, the process object re-executes itself using the Execute()
method. This process ends when control is returned to the object
that initiated the Update() [4].

2.3 Data objects

2.3.1 Datasets

Data in the visualization pipeline are referred to as datasets. A
dataset consists of an organizing structure and the associated at-
tribute data. It has geometric and topological properties and con-
sists of points and cells. Topology is the set of properties invariant
under certain geometric transformations (here only rotation, trans-
lation, and non-uniform scaling are considered). Geometry is the
specification of position - the instantiation of the topology. Topol-
ogy is specified by cells while geometry is represented by points.
Points are located where data is known and the cells are used for
interpolation between these points. Datasets are characterized to
whether their structure is regular or irregular. Regular means, that
there is a single mathematical relationship within the composing
points and cells. If a dataset’s points are regular, we call the dataset
regular. If the topological relationship of its cells is regular, then the
topology of the dataset is regular. Regular data can be implicity rep-
resented, thus requiring less computational and memory resources
than unstructured data.

The toolkit provides the following dataset types (Figure 2):

Polygonal data: Polygonal data (1) are used frequently. Modern
graphics hardware permits rendering these kind of data at very
high speed, which makes them attractive for real-time visual-
ization tasks. The topology and geometry of polygonal data
is unstructured and the composing cells vary in topological
dimension.

Structured points: Structured points datasets (2) are collections
of points and cells arranged on a regular grid, a rectangular
lattice parallel to the global coordinate system. If the points
and cells are arranged on a plane they are referred to as an
image or bitmap, if they are arranged as a stack of grids the
dataset is called a volume.

Structured grids: Structured grid datasets (3) are regular in topol-
ogy and irregular in geometry. The topology is represented
implicitly by specifying a vector of dimensions. The geome-
try is represented explicitly by maintaining a list of point co-
ordinates.

Rectilinear grids: A rectilinear grid dataset (4) is a collection of
points and cells arranged on a regular lattice parallel to the
global coordinate system. The dataset’s topology is regular

(1) Polygonal data (2) Structured points

(3) Structured grid (4) Rectilinear grid

(5) Unstructured points (6) Unstructured grid

Figure 2: Dataset types

but its geometry is only partially regular (i.e., spacing between
points may vary).

Unstructured points: Unstructured points (5) are points irregu-
larly located in space. Unstructured point datasets have no
topology. Their geometry is completely unstructured.

Unstructured grids: An unstructured grid (6) is the most general
form of a dataset. Topology and geometry are completely un-
structured. Arbitrary combinations of all cell types are possi-
ble.

2.3.2 Cells

Cells can be thought of as the atoms that form a dataset. They form
a topological organization of the dataset points. Cells are specified
by a type in combination with a list of points (often referred to as
connectivity list). The cell structure is a compact and general data
structure for representing cell topology. Cell topology consists of
points plus and a particular ordering of points (i.e., a cell). One
or more cells may share a given point as well as other topological
features such as edges and faces. The most important feature of the
cell structure is that it represents adjacency, or topological neigh-
borhood information, with minimal memory requirement. The cell
structure has also been designed with access methods that support
a wide variety of visualization algorithms [5].
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Figure 3: Cell types

The Visualization Toolkit supports the following cell types (Fig-
ure 3):

Vertex: A vertex (1) is a pimary zero-dimensional cell. It is de-
fined by a single point.

Poly-vertex: A poly-vertex (2) is a composite zero-dimensional
cell. It is defined by a list of points.

Line: A line (3) is a primary one-dimensional cell. It is defined by
two points, the direction along the line is from the first to the
second point.

Poly-line: A poly-line (4) is a composite one-dimensional cell. It
consists of one or more connected lines. It is defined by a
ordered list of points.

Triangle: A triangle (5) is a primary two-dimensional cell. A tri-
angle is defined by a counter-clockwise ordered list of points.

Triangle strip: A triangle strip (6) is a composite two-dimensional
cell consisting of one or more triangles. It is defined by an
ordered list of points.

Quadrilateral: A quadrilateral (7) is a primary two-dimensional-
cell. It is defined by a counter-clockwise ordered list of four
points lying in a plane. It is convex and its edges must not
intersect.

Pixel: A pixel (8) is a primary two-dimensional cell. It is defined
by a ordered list of four points. In addition to a quadrilateral
it has the geometric constraints that each edge of the pixel is
perpendicular to its adjacent edges and that it lies parallel to
one of the coordinate axes. Also, the ordering of the points
is different from the quadrilateral cell. The points are ordered
in the direction of increasing axis coordinate (starting with x,
then y, then z).

Polygon: A polygon (9) is a primary two-dimensional cell. It is
defined by a counter-clockwise ordered list of three or more
points lying in a plane.

(1) Scalar (2) Vector

(3) Normal (4) Texture coordinate

(5) Tensor

Figure 4: Attribute types

Tetrahedron: A tetrahedron (10) is a primary three-dimensional
cell. It is defined by a list of four non-planar points.

Hexahedron: A hexahedron (11) is a primary three-dimensional
cell. It is defined by an ordered list of eight points. It consists
of six quadrilateral faces, twelve edges and eight vertices. The
faces and edges must not intersect any other faces and edges,
and the hexahedron must be convex.

Voxel: A voxel (12) is a primary three-dimensional cell. It is ge-
ometrically equivalent to the hexahedron with additional ge-
ometric constraints. Each face of the voxel is perpendicular
to one of the coordinate axes. A voxel is defined by a list of
points ordered in the direction of increasing coordinate value.

2.3.3 Attributes

In VTK data attributes can be associated with points, cell attributes
are not supported explicitly. However, cell attributes can be repre-
sented by assigning the attribute value to each of the cell’s points.
Although this may result in some overhead in certain cases, this
choice was made by the designers of VTK in order to simplify both
implementation and usage.

The following attribute types are available (Figure 4):

Scalars: Scalar data (1) are single values at each location in the
dataset. Scalars are used to represent temperature, density,
pressure, etc.

Vectors: Vectors (2) have a magnitude and a direction. Examples
of vector data include velocity and gradient function.

Normals: Normals (3) are vectors with a magnitude of 1. They are
usually used to control the shading of objects.

Texture coordinates: Texture coordinates (4) are used to map a
point from Cartesian space into texture space. They are regu-
lar arrays of color, intensity and/or transparency used for ren-



Figure 5: Resulting image for program 3.1

dering objects. Textures are used to add detail to objects with-
out requiring a vast number of graphics primitives.

Tensors: Tensors (5) are mathematical generalizations of vectors
and matrices. They are commonly used to represent stress
and strain at a point in an object under load. In VTK, only
real-valued, symmetric 3x3 tensors are suppored.

3 Examples

Program 3.1 provides an example for setting up the visualization
pipeline. Polygonal input data is read from a file. Then the dataset is
decimated using the vtkDecimatePro filter. Next, the polygo-
nal data are smoothed using the vtkSmoothPolyDataFilter.
Normals are then calculated with the vtkPolyDataNormals
filter, which serves as an input for a vtkPolyDataMapper.
A vtkActor is created, which uses this mapper. The output
of the vtkPolyDataNormals also serves as an input for a
vtkGlyph3D filter, which generates glyphs from a transformed
vtkCone data source. The output of the vtkGlyph3D filter is
then connected to a vtkPolyDataMapper, which is used by the
mySpikeActor object. The result is an image where glyphs are
used to depict surface normals (Figure 5). Figure 6 shows a data-
flow chart for this example. Note that in this example, only polyg-
onal data travels through the pipeline [6].

Program 3.2 shows a transformation between dataset types.
Volumetric data is read from a file. A vtkContourFilter
is used the extract the surface of the volume. It takes
a vtkStructuredPoints dataset as input and outputs a
vtkPolyData dataset. Figures 7 shows the resulting image [7],
figure 8 depicts the data-flow chart for this example.

Usually, as shown in the previous examples, datasets are not ac-
cessed directly as filter outputs just serve as input for other filters.
However, when implementing a filter, datasets and cells have to be
manipulated. The next examples solely show how VTK’s dataset
and cell interfaces are used and do not serve any purpose - all data
values used in program 3.3 and 3.4 were chosen at random.

In program 3.3, first a structured grid dataset
(vtkStructuredGrid) is created. Points are then inserted into
the dataset. Next, attribute data is associated with the points. Scalar
values are created and then assigned to the dataset’s point data. The
GetPointData() method returns a vtkPointData object
instance for the grid. This class provides important capabilities:
When a filter object executes, attribute data from its input is
operated on and passed to its output. These operations typically
involve copying input data from one point to an output point,
interpolating input data to generate output data, or passing entire
data objects from input to output. The vtkPointData class
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Figure 6: Data-flow chart for program 3.1

Figure 7: Resulting image for program 3.2
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Figure 8: Data-flow chart for program 3.2

is used to prevent filters from directly accessing underlying data
structures, thus making them independent of data representation.

Program 3.4 shows how to work with points and cells. We use
the structured grid dataset created in the previous example. First, a
cell is retrieved using its id. Each cell has a list of the points it con-
tains. In our example, the cells are of type vtkHexahedron and
therefore contain eight points. To retrieve all cells which contain a
point, the point’s id has to be looked up. This information is then
used to retrieve the list of cell indices.

4 Conclusion

The design of computer systems demands careful attention to the
balance between abstract and concrete systems. Visualization sys-
tems, in particular, must be carefully designed because they inter-
face to other data systems and data models. The design of VTK is a
well-balanced trade-off between design abstraction and simplicity,
thus making it powerful enough to be used in applications, but also
easy to use for prototyping of visualization methods.
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Program 3.1 Creating a decimated, smoothed, glyphed polygonal
mesh (Java code extract)

(...)

// Read polygonal data from file
vtkPolyDataReader myReader = new vtkPolyDataReader();
myReader.SetFileName("fran_cut.vtk");

// Create and setup the decimation filter
vtkDecimatePro myDecimatePro = new vtkDecimatePro();
myDecimatePro.SetInput(myReader.GetOutput());
myDecimatePro.SetTargetReduction(0.9);
myDecimatePro.PreserveTopologyOn();

// Create and setup the smoothing filter
vtkSmoothPolyDataFilter mySmoothFilter =

new vtkSmoothPolyDataFilter();
mySmoothFilter.SetInput(myDecimatePro.GetOutput());

// Create and setup normal calculation
vtkPolyDataNormals myNormals =

new vtkPolyDataNormals();
myNormals.SetInput(mySmoothFilter.GetOutput());
myNormals.SetFeatureAngle(60.0);

// Create and setup first mapper
vtkPolyDataMapper myFaceMapper = new vtkPolyDataMapper();
myFaceMapper.SetInput(myNormals.GetOutput());

// Create first actor and set its mapper and color
vtkActor myFaceActor = new vtkActor();
myFaceActor.SetMapper(myFaceMapper);
myFaceActor.GetProperty().SetColor(1.0,0.49,0.25);

// Create and setup masked points
vtkMaskPoints myMaskPoints = new vtkMaskPoints();
myMaskPoints.SetInput(myNormals.GetOutput());
myMaskPoints.SetOnRatio(5);
myMaskPoints.RandomModeOn();

// Create a cone data source
vtkConeSource myCone = new vtkConeSource();
myCone.SetResolution(6);

// Create a transformation used by the transform filter
vtkTransform myTransform = new vtkTransform();
myTransform.Translate(0.5,0.0,0.0);

// Create and setup transform filter
vtkTransformPolyDataFilter myTransformFilter =

new vtkTransformPolyDataFilter();
myTransformFilter.SetInput(myCone.GetOutput());
myTransformFilter.SetTransform(myTransform);

// Create and setup glyph generation
vtkGlyph3D myGlyph = new vtkGlyph3D();
myGlyph.SetInput(myMaskPoints.GetOutput());
myGlyph.SetSource(myTransformFilter.GetOutput());
myGlyph.SetVectorModeToUseNormal();
myGlyph.SetScaleModeToScaleByVector();
myGlyph.SetScaleFactor(-0.005);

// Create and setup second mapper
vtkPolyDataMapper mySpikeMapper = new vtkPolyDataMapper();
mySpikeMapper.SetInput(myGlyph.GetOutput());

// Create second actor and set its mapper and color
vtkActor mySpikeActor = new vtkActor();
mySpikeActor.SetMapper(mySpikeMapper);
mySpikeActor.GetProperty().SetColor(0.0,0.79,0.34);

(...)

Program 3.2 Extracting a volume’s surface (Java code extract)

(...)

// Read volume data
vtkSLCReader myReader = new vtkSLCReader();
myReader.SetFileName("nut.slc");

// Create and initialize contour filter
vtkContourFilter myContourFilter =

new vtkContourFilter ();
myContourFilter.SetInput(myReader.GetOutput());
myContourFilter.SetValue(0,16.0);

// Create and initialize polygon mapper filter
vtkPolyDataMapper myPolyDataMapper = new vtkPolyDataMapper();
myPolyDataMapper.SetInput(myContourFilter.GetOutput());
myPolyDataMapper.ScalarVisibilityOff();

// Create an actor and set it’s mapper and color
vtkActor myActor = new vtkActor();
myActor.SetMapper(myPolyDataMapper);
myActor.GetProperty().SetColor(1.0,1.0,1.0);

(...)



Program 3.3 Creating a structured grid with attribute data (Java
code extract)

(...)

int i=0, j=0, k=0, l=0, m=0;

// Create a structured grid
vtkStructuredGrid myGrid = new vtkStructuredGrid();
myGrid.SetDimensions(20,20,20);

// Create a vtkPoints object
vtkPoints myPoints = new vtkPoints();

// Insert points
for (k = 0; k < 20; k++)

for (j = 0; j < 20; j++)
for (i = 0; i < 20; i++)

myPoints.InsertNextPoint(
(double) i,
(double) j,
(double) k);

// Associate points with the grid
myGrid.SetPoints(myPoints);

// Create a scalar array
vtkShortArray myScalarArray = new vtkShortArray();
myScalarArray.SetNumberOfComponents(3);
myScalarArray.SetNumberOfTuples(20*20*20);

// Insert scalar values
for (k = 0; k < 20; k++)

for (j = 0; j < 20; j++)
for (i = 0; i < 20; i++)
{

myScalarArray.InsertComponent(l,0,i);
myScalarArray.InsertComponent(l,0,j);
myScalarArray.InsertComponent(l,0,k);
l++;

}

// Associate scalar values with the points in the grid
myGrid.GetPointData().SetScalars(myScalarArray);

// Output grid data
System.out.println("myGrid:");
System.out.println(myGrid.Print());

(...)

Program 3.4 Accessing cells and points (Java code extract)

(...)

// Get a cell by id
i = 10; j = 15; k = 7;
int myCellId = k * (19 * 19) + j * 19 + i;
vtkCell myCell= myGrid.GetCell(myCellId);

// Output cell data
System.out.println("myCell:");
System.out.println(myCell.Print());

// Retrieves the cell’s point list
vtkIdList myPointIds = new vtkIdList();
myGrid.GetCellPoints(myCellId, myPointIds);

// Iterate through the list of point ids
for (m = 0; m < myPointIds.GetNumberOfIds(); m++)
{

// Retrieve a single point from list
double[] myCellPoint = myGrid.GetPoint(

myPointIds.GetId(m));

// Output point data
System.out.println("myCellPoint(" + m + ")");
System.out.println(

"x = " + myCellPoint[0] + ", " +
"y = " + myCellPoint[1] + ", " +
"z = " + myCellPoint[2]);

System.out.println();
}

// Look up point id
double[] myPoint = new double[3];
myPoint[0] = 10.5;
myPoint[1] = 12.1;
myPoint[2] = 14.7;
int myPointId = myGrid.FindPoint(myPoint);

// Retrieve list of cells containing the point
vtkIdList myCellIds = new vtkIdList();
myGrid.GetPointCells(myPointId,myCellIds);

// Iterate through the list of cell ids
for (m = 0; m < myCellIds.GetNumberOfIds();m++)
{

// Retrieve single cell from list
vtkCell myPointCell = myGrid.GetCell(

myCellIds.GetId(m));

// Output cell data
System.out.println("myPointCell(" + m + ")");
System.out.println(myPointCell.Print());

}

(...)


