VU Rendering SS 2014 186.101

Thomas Auzinger Károly Zsolnai

Institute of Computer Graphics and Algorithms (E186)
Vienna University of Technology

http://www.cg.tuwien.ac.at/staff/ThomasAuzinger.html
http://www.cg.tuwien.ac.at/staff/KarolyZsolnai.html

VU Rendering SS 2014

Unit 07 – Participating Media

So far...

Light interaction with surfaces:

$$L_o(x,\vec{\omega}) = \underbrace{L_e(x,\vec{\omega})}_{emitted} + \underbrace{\int_{\Omega} L_i(x,\vec{\omega}') f_r(\vec{\omega}, x, \vec{\omega}') \cos\theta \ d\vec{\omega}'}_{reflected \ incoming \ light}$$

So far...

Light interaction with surfaces:

$$L_o(x,\vec{\omega}) = \underbrace{L_e(x,\vec{\omega})}_{emitted} + \underbrace{\int_{\Omega} L_i(x,\vec{\omega}') f_r(\vec{\omega}, x, \vec{\omega}') \cos\theta \ d\vec{\omega}'}_{reflected \ incoming \ light}$$

Assumes:

- Interaction directly at the surface (true for metals)
- No interaction with the volume in between (true for vacuum)

Fog

Water

Scope

Surface approxiation not always valid \rightarrow need to extend our model of light transport for materials that

- allow perceivable light penetration and
- perceivably interact with light.

Possible interactions:

absorption

- absorption
- emission

- absorption
- emission
- out-scattering

- absorption
- emission
- out-scattering
- in-scattering

- absorption
- emission
- out-scattering
- in-scattering

- absorption
- emission
- out-scattering
- in-scattering

$$\vec{\omega} = (1, 0, 0) : \frac{L(x + (\Delta, 0, 0), \vec{\omega}) - L(x, \vec{\omega})}{\Delta}$$

$$\begin{split} \vec{\omega} &= (1,0,0): \quad \frac{L(x+(\Delta,0,0),\vec{\omega}) - L(x,\vec{\omega})}{\Delta} \\ &= \frac{dL(x,\vec{\omega})}{dx_1} \quad \text{for} \quad \Delta \to 0 \end{split}$$

$$\vec{\omega} = (\omega_1, \omega_2, \omega_3) = (1, 0, 0) : \frac{dL(x, \vec{\omega})}{dx_1} = ?$$

$$\vec{\omega} = (\omega_1, \omega_2, \omega_3) = (1, 0, 0) : \frac{dL(x, \vec{\omega})}{dx_1} = ?$$

$$\vec{\omega} = (\omega_1, \omega_2, \omega_3) = (0, 1, 0) : \frac{dL(x, \vec{\omega})}{dx_2} = ?$$

$$\vec{\omega} = (\omega_1, \omega_2, \omega_3) = (1, 0, 0) : \frac{dL(x, \vec{\omega})}{dx_1} = ?$$

$$\vec{\omega} = (\omega_1, \omega_2, \omega_3) = (0, 1, 0) : \frac{dL(x, \vec{\omega})}{dx_2} = ?$$

$$\vec{\omega} = (\omega_1, \omega_2, \omega_3) = (0, 0, 1) : \frac{dL(x, \vec{\omega})}{dx_3} = ?$$

$$\left(\omega_1 \frac{dL(x,\vec{\omega})}{dx_1}, \omega_2 \frac{dL(x,\vec{\omega})}{dx_2}, \omega_3 \frac{dL(x,\vec{\omega})}{dx_3}\right) = ?$$

$$\left(\omega_1 \frac{d}{dx_1}, \omega_2 \frac{d}{dx_2}, \omega_3 \frac{d}{dx_3}\right) L(x, \vec{\omega}) = ?$$

$$\left(\omega_1 \frac{d}{dx_1}, \omega_2 \frac{d}{dx_2}, \omega_3 \frac{d}{dx_3}\right) L(x, \vec{\omega}) = ?$$

$$\nabla = \left(\frac{d}{dx_1}, \frac{d}{dx_2}, \frac{d}{dx_3}\right)$$

$$\left(\omega_1 \frac{d}{dx_1}, \omega_2 \frac{d}{dx_2}, \omega_3 \frac{d}{dx_3}\right) L(x, \vec{\omega}) = ?$$

$$\nabla = \left(\frac{d}{dx_1}, \frac{d}{dx_2}, \frac{d}{dx_3}\right) \qquad \boxed{(\vec{\omega} \cdot \nabla)L(x, \vec{\omega}) = ?}$$

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = ?$$

Possible interactions:

$$(\vec{\omega} \cdot \nabla)L(x, \vec{\omega}) = ?$$

absorption

$$= -\sigma_a(x)L(x,\vec{\omega})$$

$$(\vec{\omega} \cdot \nabla)L(x, \vec{\omega}) = ?$$

- absorption
- emission

$$= -\sigma_a(x)L(x,\vec{\omega})$$

$$=\varepsilon(x)$$

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = ?$$

- absorption
- emission
- out-scattering

$$= -\sigma_a(x)L(x,\vec{\omega})$$

$$= \varepsilon(x)$$

$$= -\sigma_s(x)L(x,\vec{\omega})$$

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = ?$$

Phase Function

For incoming direction $\vec{\omega}'$ how much radiance is scattered into direction $\vec{\omega}$?

Phase function: $p(x, \vec{\omega}, \vec{\omega}')$

- Depends on the material
 - Size of particles
 - Geometry of particles
- Normalized, i.e., $\int_{4\pi} p(x,\vec{\omega},\vec{\omega}') d\vec{\omega}' = 1$

Phase Function

- Henyey-Greenstein
 - Interstellar dust
 - Analytic
 - Anisotropy g

Schlick Approxim.
$$p(\theta) = \frac{1}{4\pi} \frac{1 - k^2}{(1 - k\cos(\theta))^2}, k = 1.55g - 0.55g^3$$

- Lorenz-Mie Scattering
 - Spherically homogeneous particles
 - Full electrodynamic computation

Phase Function

- Rayleigh Scattering
 - Small particle approximation of Lorenz-Mie
 - Covers scattering by pure air
 - Depends on the light's wavelength

Possible interactions:

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = ?$$

Phase function: $p(x, \vec{\omega}, \vec{\omega}')$

$$(\vec{\omega} \cdot \nabla)L(x, \vec{\omega}) = ?$$

- absorption
- emission
- out-scattering
- in-scattering

$$= -\sigma_a(x)L(x,\vec{\omega})$$

$$=\varepsilon(x)$$

$$= -\sigma_s(x)L(x,\vec{\omega})$$

$$= \sigma_s(x) \int_{4\pi} p(x, \vec{\omega}, \vec{\omega}') L(x, \vec{\omega}') d\vec{\omega}'_{\bullet}$$

Radiative Transfer Equation

Also known as Radiative Transport Equation

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = -\underbrace{\sigma_a(x) L(x, \vec{\omega})}_{\text{absorption}} - \underbrace{\sigma_s(x) L(x, \vec{\omega})}_{\text{out-scattering}} + \underbrace{\varepsilon(x)}_{\text{emission}} + \underbrace{\sigma_s(x) \int_{4\pi} p(x, \vec{\omega}, \vec{\omega}') L(x, \vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}}$$

Radiative Transfer Equation

Also known as Radiative Transport Equation

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = -\underbrace{\sigma_t(x) L(x, \vec{\omega})}_{\text{extinction}} + \underbrace{\varepsilon(x)}_{\text{emission}} + \underbrace{\sigma_s(x) \int_{4\pi} p(x, \vec{\omega}, \vec{\omega}') L(x, \vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}}$$

Volume Rendering Equation

$$L(x,\vec{\omega}) = \int_0^s \underbrace{\int_{\text{extinction}}^s L(x_s,\vec{\omega})}_{\text{extinction}} dt + \underbrace{\int_{\text{extinction}}^s L(x_s,\vec{\omega})}_{\text{extinction}} dt$$

$$L(x,\vec{\omega}) = \int_0^s \underbrace{T_r(x,x_t)}_{\text{extinction}} \underbrace{dt + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})}_{\text{extinction}}$$

Radiative Transfer Equation

Also known as Radiative Transport Equation

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = -\underbrace{\sigma_t(x) L(x, \vec{\omega})}_{\text{extinction}} + \underbrace{\varepsilon(x)}_{\text{emission}} + \underbrace{\sigma_s(x) \int_{4\pi} p(x, \vec{\omega}, \vec{\omega}') L(x, \vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}}$$

$$L(x,\vec{\omega}) = \int_0^s \underbrace{T_r(x,x_t)}_{\text{extinction}} dt + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

$$T_r(x, x_s) = \exp\left(-\int_0^s \sigma_t(x + t\omega)dt\right)$$
 (solution of $y'(x) = -f(x)y(x)$)

Radiative Transfer Equation

Also known as Radiative Transport Equation

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = -\underbrace{\sigma_t(x) L(x, \vec{\omega})}_{\text{extinction}} + \underbrace{\varepsilon(x)}_{\text{emission}} + \underbrace{\sigma_s(x) \int_{4\pi} p(x, \vec{\omega}, \vec{\omega}') L(x, \vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}}$$

$$L(x,\vec{\omega}) = \int_0^s \underbrace{T_r(x,x_t)}_{\text{extinction}} \underbrace{\sigma_s(x_t) \int_{4\pi} p(x,\vec{\omega},\vec{\omega}') L(x_t,\vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}} dt + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

$$L(x,\vec{\omega}) = \int_0^s \underbrace{T_r(x,x_t)}_{\text{extinction}} \underbrace{\sigma_s(x_t) \int_{4\pi} p(x,\vec{\omega},\vec{\omega}') L(x_t,\vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}} dt + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

$$L(x,\vec{\omega}) = \int_0^s \underbrace{T_r(x,x_t)}_{\text{extinction}} \underbrace{\sigma_s(x_t) \int_{4\pi} p(x,\vec{\omega},\vec{\omega}') L(x_t,\vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}} \underbrace{dt} + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

$$L(x,\vec{\omega}) = \sum_{t=0}^{S-1} \underbrace{T_r(x,x_t)}_{\text{extinction}} \underbrace{\sigma_s(x_t) \int_{4\pi} p(x,\vec{\omega},\vec{\omega}') L(x_t,\vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}} \underbrace{\Delta_t}_{\text{extinction}} + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

$$L(x,\vec{\omega}) = \sum_{t=0}^{S-1} \underbrace{T_r(x,x_t)}_{\text{extinction}} \sigma_s(x_t) \int_{4\pi} p(x,\vec{\omega},\vec{\omega}') L(x_t,\vec{\omega}') d\vec{\omega}' \Delta_t + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

$$T_r(x_1, x_3) = T_r(x_1, x_2)T_r(x_2, x_3)$$
 compute incremetally

$$L(x,\vec{\omega}) = \sum_{t=0}^{S-1} \underbrace{T_r(x,x_t)}_{\text{extinction}} \underbrace{\sigma_s(x_t)} \underbrace{\int_{4\pi} p(x,\vec{\omega},\vec{\omega}') L(x_t,\vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}} \Delta_t + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

$$L(x,\vec{\omega}) = \sum_{t=0}^{S-1} \underbrace{T_r(x,x_t)}_{\text{extinction}} \underbrace{\sigma_s(x_t) \int_{4\pi} p(x,\vec{\omega},\vec{\omega}') L(x_t,\vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}} \Delta_t + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

Single scattering: compute $T_r(x_L, x_t)$ to light source

Conventional Rendering

Exponential Fog

Single Scattering

$$L(x,\vec{\omega}) = \sum_{t=0}^{S-1} \underbrace{T_r(x,x_t)}_{\text{extinction}} \underbrace{\sigma_s(x_t)} \underbrace{\int_{4\pi} p(x,\vec{\omega},\vec{\omega}') L(x_t,\vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}} \Delta_t + \underbrace{T_r(x,x_s)}_{\text{extinction}} L(x_s,\vec{\omega})$$

Multiple scattering: compute random walk

■ Sample phase function $p(x, \vec{\omega}, \vec{\omega}')$

e.g. Henyey-Greenstein
$$p(\theta) = \frac{1}{4\pi} \frac{1-g^2}{(1+g^2-2g\cos\theta)^{3/2}}$$

by inversion
$$\cos\theta = \frac{1}{2g} \left(1 + g^2 - \left(\frac{1 - g^2}{1 - g + 2g\xi} \right)^2 \right)$$

- For a given direction, choose a distance d to travel based on $T_r(\ ,\ ,\)$
 - If d is closer than the nearest surface \rightarrow scatter
 - If not, compute surface radiance

Distance d is given by the free-flight distance

Sample with
$$d=\frac{-\ln(1-\xi)}{\sigma_t}$$
 (homogeneous media)

Volumetric Path Tracing - Code


```
color VPT(o, \omega)
       s = nearestSurfaceDist(o,ω)
       d = -ln(1 - random()) / \sigma_{+}
       if (d<s)
              // Media scattering
              o += d*\omega
              return \sigma_s / \sigma_t * VPT(o, samplePhase())
       else
              // Surface scattering
              0 += S*W
               (\omega_i, pdf_i) = sampleBRDF(o, \omega)
              return BRDF(o, \omega, \omega_i) * VPT(o, \omega_i) / pdf<sub>i</sub>
```


Questions?

