SimVis: Interactive Visual Analysis of Large & Complex Time-Dependent Simulation Data

Philipp Muigg
SimVis GmbH & ICGA
Overview

• About SimVis GmbH
• Introduction to 3D/4D simulation data
• Visualization goals and related challenges
• SimVis overview
• Application example
• Demo
SimVis GmbH

- Spin-Off company founded 04-2008
- Task: further development of SimVis software & commercializing the software
- Office in Vienna, Austria
- Currently 4FTEs, planning to expand
- Tight collaboration with several research partners
3D-4D Simulation Data

- Generated by physical models
- Large number of application fields
 - Engineering
 - Medicine
 - Climate research
 - Meteorology
- Spatial simulation domain decomposed into cells
- If 4D: temporal decomposition into time steps
- For each cell at each time step different physical properties are simulated
3D-4D Simulation Data

• Simulation results
 – Grid geometry (may vary over time)
 – Scalar/Vector quantities per cell (per timestep)

• Data characteristics
 – multi-variate data
 – large data sets (cells * timesteps * dim.)
Visualization Goals

• numerical data visualization aims at supporting the tasks of
 – exploration
 • find certain characteristics about dataset
 • also check whether data appears to be valid
 • → tools should provide maximum flexibility
 – analysis
 • based on hypotheses
 • verification or falsification, further investigation
 • → tools must provide some sort of querying possibilities
 – presentation
 • present and communicate results and findings of analysis to others
 • usually reduces information to be shown
 • not interactivity, but high visual quality is major goal
Visualization Goals

- numerical data visualization aims at supporting the tasks of
 - exploration
 - find certain characteristics about dataset
 - also check whether data appears to be valid
 - tools should provide maximum flexibility
 - analysis
 - based on hypotheses
 - verification or falsification, further investigation
 - tools must provide some sort of querying possibilities
 - presentation

The SimVis approach presented here is mainly targeted towards interactive exploration and analysis tasks!
Challenges w.r.t. Simulation Data

• Occlusion/Cluttering because of spatiotemporal nature
• Many result dimensions (scalar/vector)
 – Difficult to explore/analyze
• Data size
 – Multiple gigabytes of data
 – Interactivity is important
Examples

- Large (25 Mio cells x 48 timesteps)
- Many Attributes
- Spatiotemporal

Interactive Visual Analysis of Simulated Hurricane Isabel

Video
Examples

• 2D time dependent
• Large number of timesteps (~1300)

Video
Examples

- Spatiotemporal
- Vector attributes

Video
Examples

• Complex unstructured grids
SimVis

• General features
 – Feature-based visualization
 – Attribute derivation

• InfoVis for scientific data
 – Focus+Context visualization
 – Interactive (smooth) brushing
 – Complex feature definition via
 – Multiple linked views
SimVis data

inter. feature spec.

DOI

feature-based visualization

F+C visualization
Feature-Based Visualization

- Selective rendering of interesting/salient structures in the data

Data Courtesy of Zuse Institut Berlin
Attribute Derivation

• Comprehensible ways to derive synthetic data dimensions from original data
 – data smoothing
 – derivative information
 – vortex extraction measures
 – local minima/maxima
 – gradient information

• Attribute derivation + brushing
 = access to complex features
Focus+Context Visualization

- Salient/interesting features as focus
- Remaining data as context for orientation
- Differentiation of focus and context via visual attributes
Focus+Context Visualization

Focus

temperature
Focus+Context Visualization

Context
Focus+Context Visualization

Focus + Context
Smooth Brushing

• In InfoVis data often categorical/discrete
• Simulation data distributed continuously over simulated domain
• Binary brushing frequently not suitable for smoothly distributed data
Smooth Brushing

Temperature $> 313.16 \text{ K}$
Smooth Brushing

Temperature > 313.1 K
Smooth Brushing

DOI Ramp Between 313.1 K and 313.16 K
Smooth Brushing
Smooth Brushing
Interactive Brushing and Multiple Views

• Move/alter/extend brush interactively
• Linked F&C views updated in real-time

Video
Feature Definition Language

- Used to represent an analysis session as a tree of boolean operations
- Store and reload sessions
- Apply to other data sets (comparison)

Compare to:
- Natural language
- DB query

In&out: XML

Example:
interesting are
flow regions where pressure is high AND velocity is high
Visual Exploration of Nasal Airflow

Stefan Zachow*, Philipp Muigg, Thomas Hildebrandt**, Helmut Doleisch, Hans Christian Hege*

*Zuse Institut Berlin, Germany
**Aklepios Clinic Birkenwerder, Germany
Nasal Airflow

• Ear, Nose, and Throat (ENT) specialists have to assess nasal breathing
• Direct measurements within the nose not possible without disturbing flow
• Rhinomanometry is the only objective measurement of nasal airflow
 – Integral information on pressure gradient
 – Total flow / flow resistance

→ Thus, physiological function of the nose cannot be assessed sufficiently and therapeutic concepts are difficult to derive
→ Use CFD to simulate air flow
CFD-Model Definition

- Available data
 - CT scans
 - Rhinomanometry
 - Visual inspection

- Volumetric Meshing
 - Based on surface extracted from CT
 - Unstructured tetrahedral mesh in the interior
 - Multiple layers of triangular prisms near surface

- Multiple mesh resolutions tested
 → ~3.5 million elements
CFD-Model Definition

- Simulated quantities
 - Air flow
 - two different turbulence models
 - one in boundary vicinity, one in free flow regions
 - Temperature
 - Humidity
 - Relative
 - Absolute
Exploratory Visualization

• Explore data
 – Look at single data attributes
 – Explore interrelations between attributes

• Facilitate hypothesis
 – Look at individual features
 – Observe interrelations between features
Exploratory Visualization

• Example:
 – Warm and cold air
 – Video vis2009-1021_divx.avi
Exploratory Visualization

• Explore data with multiple views
Exploratory Visualization

- Hypothesis generation
Exploratory Visualization

• Hypothesis generation

![Image of warm/slow vortex region and Inferior Meatus with color-coded temperature]
Live Demo
Summary

+ **general approach** *(works with data from different fields)*
+ **very flexible** *(analysis adapts to user interests)*
+ **user in the loop** *(visual feedback, iterative refinement)*
+ **useful for exploration** *(as well as for analysis)*
+ **smooth feature boundaries** *(agrees with the nature of continuous data)*
+ **comprehensible** *(analysis in the terms of the users)*
Thank You!
Questions?

www.simvis.at

Acknowledgements:
- colleagues at SimVis & VRVis
- many collaboration partners for various data sets

If interested in internship/ diploma thesis contact me at: muigg@simvis.at