Visual Analytics in Visplore

Harald Piringer
VRVis Research Center
Vienna, Austria
Part 1: Visplore
Background

- Software for exploratory data analysis developed at VRVis
- The beginning: analysis of multi-run simulations
 - Application context: Development of car engines
 - Collaborative project with AVL List GmbH
 - Distributed as part of their commercial software suite
- Now: general-purpose analysis for numerous applications
 - Extensions for time-dependent data, categorical data, etc.
 - Applied to data from finance, telecommunication, business, facility management, pharmaceutics, infrastructure, etc.
Supported Tasks

- **Exploratory analysis**
 - Get a feeling and understanding of large and complex data
 - Find patterns of any kind (e.g., clusters, outliers, trends, ...)
 - Find relationships

- **Black-box analysis**
 - Try „what-if“ scenarios concluding from input to output and vice versa without delay

- **Optimization**
 - Analyze trade-offs for multi-criteria objectives

- **Interactive statistics**
 - Statistically describe local features
Technicals

- written in C++
- OpenGL used for rendering
- gtk+ used for GUI
- designed for large data
 - highly multi-threaded
 - quick preview during interaction
 - memory management
- open architecture
 - views / importers / etc. are plugins
Interested...?

- Internship / diploma thesis
 - Contribute to visplore!
 - **Interesting topics** oriented towards practice
 - Large-scale real-world project
 - Help and supervision
 - Payment
 - Ask me or write us an email: kehrer@vrvis.at, hp@vrvis.at

- Questions?
Part 2: Application Scenarios
Application Background

- Development of powertrain systems
 - Computational Fluid Dynamics (CFD) simulations (1D)
 - based on physical equations
 - slow
 - Surrogate models
 - based on statistical regression
 - estimated results in real-time
- Identification of regression models
 - complex task
 - selection of training and validation data
 - selection of attributes as inputs
 - numerous training parameters
 - critical: involving engineers in identification process
Validation of Regression Models

- Important part of the model identification process

- Three levels of detail
 - L1: Global prediction quality
 - statistical summaries (e.g., maximal residual)
 - L2: Local prediction quality
 - derived attributes (e.g., residual for each validation point)
 - Identification without explanation
 - L3: Model in context of validation data
 - Most information (e.g., gradient)
 - Does not trivially scale to higher dimensionality
Validation of Regression Models

- **Combined visualization of regression model and validation data**
 - Model: scalar function \(y = f(x_1, x_2, ..., x_n) \)
 - Validation data: set of \(n+1 \)-tuples

- **Layout: projection to low-dimensional space**
 - Paraxial slices around focal point
 - Matrix of plots
 - Parameter plots
 - Surface plots
 - Parity plot

Harald Piringer
Visual Analytics in Visplore
Validation of Regression Models

- Different kinds of information
 - Fit by a model
 - Coverage by validation data
- → Relevant range around slice of each plot
- Changing relevant range
Sensitivity Analysis

- Sensitivity to changes of model parameters
- Variation graphs along range of active dimension
 - Grid lines as meaningful steps of variation
 - Coupled to color
 - Family of graphs
Thank you for your attention!

Questions welcome!
hp@vrvis.at