Interactive Visual Analysis of Multi-faceted Scientific Data

Johannes Kehrer
VRVis Research Center
Vienna, Austria

[joint work with Helwig Hauser, University of Bergen, Norway]
Multi-faceted Scientific Data

- **Spatiotemporal data**
- **Multi-variate data**
 (multiple data attributes, e.g., temp. or pressure)
- **Multi-modal data**
 (simulation, satellite imagery, weather stations, etc.)
- **Multi-run simulations**
 (simulation repeated with varied settings for model parameters)
- **Multi-model scenarios**
 (e.g., coupled climate model)
Categorization

- Literature review of about 200 papers on scientific data
- How are vis., interaction and comput. analysis combined?

how to represent the data

interaction concepts (linking & brushing, zooming, panning, view reconfiguration, etc.)

what are main characteristics / features

visual mapping ---**interactive visual analysis**--- **comput. analysis**

- visual data fusion
- relation & comparison
- navigation
- focus+context & overview+detail
- interactive feature spec.
- data abstraction & aggregation

[compare to Keim et al. 2009; Bertine & Lalanne 2009]
Visual vs. Computational Analysis

- **Interactive Visual Analysis**
 - user-guided analysis possible
 - detect interesting features without looking for them
 - understand results in context
 - uses power of human visual system
 - human involvement not always possible or desirable (expensive!)
 - limited dimensionality
 - often only qualitative results
 - (still) often unfamiliar

- **Automated Data Analysis**
 - needs precise definition of goals
 - limited tolerance of data artifacts
 - result without explanation
 - computationally expensive
 - hardly any interaction required (after setup)
 - scales better w.r.t. many dimensions
 - precise results
 - long history (mostly statistics)
Fusion at different stages of vis. pipeline [Fuchs & Hauser 2009]

- visual properties (e.g., glyphs, texture, color)
- layering techniques / transparency
- feature-based approaches (e.g., visual styles)

Helix glyphs [Tominski et al. 05]
Layering [Kirby et al. 99]
Feature-based vis. [Viola et al. 05]
Visual Fusion

Layering techniques [Wong ‘02]

- opacity modulation
- filigreed
- colormap enhancement
- 2D heightmap

colormap + square wave modulation
Preattentive Graphical Attributes

Textures and Colors [Healey & Enns 02]

- temperature \rightarrow color
- wind speed \rightarrow coverage
- pressure \rightarrow size
- precipitation \rightarrow orientation
Glyph-based Visualization [Lie et al. 09]

Glyph color: Normalized Temperature

Glyph Rotation (-45°, 45°): Flow Velocity

Pressure

Vapor
- Investigate similarities & differences
 - linking & brushing
 - repositioning

- **Taxonomy** [Gleicher et al. 2011]
 - side-by-side comparison
 - overlay in same coord. system
 - explicit encoding of computed differences / correlations
Comparison of Time-oriented Data

Theme river [Havre et al. 01]

Helix glyphs [Tominski et al. 05]

two-tone color [Saito et al. 05]
Comparison using Difference Views
[Daee Lampe et al. 2010]
Interactive search, zooming and panning

Grand tour [Asimov 85]

Quality metrics for high-dimensional data visualization [Bertini et al. 2011]
- **why**: ranking, view optimization, etc.
- **what**: clustering, correlations, outliers, image quality, etc.
- **where**: data vs. image space
Scatterplot Matrix Navigation [Elmqvist et al. 2008]

3D transition between 2 scatterplots

Scatterplot matrix
- **Focus+context visualization**
 - different graphical resources (space, opacity, color, etc.)
 - focus specification (e.g., by pointing, brushing or querying)

- **Clustering & outlier preservation**

Outlier-preserving focus+context [Novotný & Hauser 06]
- Brushing in multiple linked views
- Tight integration with supervised machine learning

Visual human+machine learning [Fuchs et al. 09]

User hypothesis
Selection attributes

Fitness

65%

71%

J. Kehrer
Select function graphs based on similarity

- pattern sketched by user
- similarity evaluated on gradients (1st derivative)

Advanced brushing [Muigg et al. 2008]
Algorithmically extract values & patterns

- dimensionality reduction (PCA, SOM, MDS)
- aggregation, summary statistics
- outliers, clustering, etc.

Glyph-based overview [Kehrer et al. 11]
[Andrienko & Andrienko 11]
Cluster Calendar View [vanWijk & van Selow ’99]

time series clustered by similarity (K-means)
Open Issues

- **Scientific data are getting multi-faceted**

- **How to deal with data heterogeneity?**
 - majority of methods only address one facet of data
 - coordinated multiple views with linking & brushing
 - investigation of features across data sets & levels of abstraction

- **What are vis., interaction & comput. analysis good for?**
 - analytical methods can control steps in visualization pipeline (e.g., visualization mapping or quality metrics)
 - interactive feature specification + machine learning
Thank you for your attention!

Acknowledgements