Visual Analytics
Theory and Application Examples

Harald Piringer
VRVis Research Center
Vienna, Austria
Overview

- VRVis – Overview

- Part 1: Visual Analytics – Theory
 - Definition
 - Motivation
 - Process

- Part 2: Application Examples
 - Statistical modeling of natural gas consumption
 - Process optimization
 - Anomaly detection in facility management data
 - Tunnel surveillance
VRVis – Research Center for Virtual Reality and Visualization

- Founded in 2000
- Located in TechGate, 1220 Vienna
- Staff approx. 70 researchers
- **Mission**: application-oriented research in Visual Computing for linking science to industry
- **Research focus**: Computer graphics, Scientific Visualization, Visual Analytics
- Close cooperation with national and international universities and companies
- **Students welcome!!** (Praktika, Diplomarbeiten)
Part 1: Visual Analytics
Definition: Visual Analytics

- ... is the science of **analytical reasoning** facilitated by **interactive visual interfaces** [Thomas 2005]
- ... combines **automated analysis** techniques with **interactive visualizations** for an effective understanding, reasoning and decision making on the basis of very **large and complex datasets** [Keim et al. 2010]
Why Visual Analytics?

...complex tasks require all abilities!
Tasks – Some Examples

- **Data Preparation**
 - Detection of data quality issues
 - Selective export
 - Aggregation

- **Exploratory analysis**
 - Understanding data
 - Identify relationships
 - Detect structures

- **Model building**
 - Feature selection
 - Validation

- **Analysis and optimization of complex systems**
 - Sensitivity analysis
 - Multi-objective optimization

- **Surveillance and monitoring**
Comparing Manual and Automated Approaches

- **Interactive Visualization (~ InfoVis)**
 - user-guided analysis possible
 - possible for contradicting, unclean data
 - understand results in context
 - uses power of human visual system
 - human involvement not always possible or desirable (expensive!)
 - limited dimensionality
 - often only qualitative results
 - (still) often unfamiliar

- **Automated Data Analysis (~ Statistics)**
 - precise definition of goals necessary
 - limited tolerance of data artifacts
 - result without explanation
 - computationally expensive
 - (after setup): results without human involvement → often only viable app.
 - scales better w.r.t. many dimensions
 - precise results
 - long history (mostly statistics)
Visual Analytics: Summary

- Multidisciplinary and integrated approach combining
 - Computer graphics (*InfoVis*, also *SciVis* and *Rendering*)
 - Computation-based processing of data (*statistics*, *data mining*, *image processing*, *simulation*, etc.)
 - Human factors (*interaction*, *cognition*, *perception*, *collaboration*, etc.)
 - And more (*databases*, *distributed systems*, *knowledge-representation*, *GIS*, etc.)

- Highly interdisciplinary
Part 2: Application Examples
Example 1: Energy Data

- **Background**
 - Hourly measurements of natural gas consumptions over 5 years
 - Several meteorological quantities

- **Goals**
 - Primary: Build accurate prediction model for gas consumption
 - Secondary: Identify data quality issues
Excursus: Visplore

- **Software for exploratory data analysis developed at VRVis**

- **Flexible Visualization**
 - More than 10 visualization types for multivariate data
 - Freely configurable and combinable

- **Interaction**
 - Parameters adjustable at any time (e.g., scaling, coloring, ...)
 - Various ways of data selection for linking views in real time
 - Explicit support for building and validating regression models
 - Export data, images, etc.

- **Scalability**
 - Real time response also for millions of data values
Viplore – Technicals

- Written in C++
- OpenGL used for graphics
- gtk+ used for GUI
- Designed for large data
 - highly multi-threaded
 - quick preview during interaction
 - memory management
- Open architecture
 - views / importers / etc. are plugins
Applications of Visplore

- **Distribution partners**
 - **AVL**: Simulation-based optimization in automotive industry
 - **Plasmo**: Surveillance and optimization of production processes
 - **Hakom**: Building prediction models for the energy sector
 - **AI-MS**: Optimization of aviation infrastructure planning

- **Applied by**
 - **Austrian Power Grid**: Optimization prediction models (e.g., for renewable energy)
 - **Kapsch TrafficCom**: Calibration of telematics infrastructure
 - **IC-Consulenten**: Temporal analysis of malfunction messages
 - **Baxter**: Analysis of clinical trials
 - ... and several others
Interested...?

- Internship / diploma thesis
 - Contribute to visplore!
 - **Interesting topics** oriented towards practice
 - Large-scale real-world project
 - Help and supervision
 - Payment
 - Ask me or write me an email: hp@vrvis.at

- Questions?
Example 2: Production Process

- **Background**
 - Measurements from a welding seam
 - Parameters controlling the welding process

- **Goals**
 - Primary: Detect reason for insufficient quality
 - Secondary: Analyze quality development over time
Example 3: Simulation Data

- **Background**
 - 100 simulation runs of a bearing of a car engine

- **Goals**
 - **Primary:** Assess accuracy and plausibility of simulated data
 - **Secondary:** Identify problematic parameter combinations
Example 4: Facility Management

- **Background**
 - ~ 240,000 malfunction messages of a large infrastructure facility
 - Data contains time, functional unit, building, type of malfunction

- **Goals**
 - Primary: Detect undesirable trends
 - Secondary: Detect data quality issues
Example 5: Surveillance Calibration

- **Background**
 - Alarm messages from video-based tunnel surveillance

- **Goals**
 - **Primary:** Identify parameters to minimize wrong positives
 - **Secondary:** Better understand detection
Example 6: Surveillance of Road Tunnels

- **Background**
 - Video surveillance: cameras every 80 to 100 meters
 - Live detection of incidents (e.g., smoke, pedestrians, lost cargo)
Example 6: Surveillance of Road Tunnels

- **Current challenges**
 - Current systems do not (perceptually) scale to numerous events → information overload in disaster scenarios
 - Difficult to understand temporal development
 - No easy access to historic video material
Example 6: Surveillance of Road Tunnels

- Data

Realtime video analysis
Stream of raw events
Processing of events
Example 6: Surveillance of Road Tunnels

Our solution: overview

- Present View
- History View
- Future View
Conclusion

- Many application areas for Visual Analytics
- Suitable to address challenging tasks
 - Require intelligent algorithms AND human domain knowledge
 - Tight integration of visualization, interaction, computation
- Versatile tools are needed to provide this tight integration