

2nd Submission :: Documentation

 Anna Frühstück :: 0626930 :: 066 ⋅ 932

 Stefanie Prast :: 0727540 :: 033 ⋅ 532

 Markus Rumpold :: 0525647 :: 033 ⋅ 534

1) Implementation Description

1.1 Architecture
The architecture of Lumis is based on a multi-tier architecture concept, as dependencies

on other components are only allowed in one direction, from top to bottom. This being

the case, the components are split into two basic parts: Rendering and Game Logic.

Transformations and rendering are performed by the class RenderingPipeline and

the classes it is depending on. Both parts are being called by a game class, which controls

the workflow of the main game loop.

We split up the development of our game into several projects:

SimpleLogging: responsible for Logging

Rendering: responsible for all the matrix transformations as well as the

Rendering pipeline

Model: responsible for Model loading & storage

Lumis: responsible for Game play, game loop & initialisation

Architecturally we have separated the game logic from the rendering pipeline using con-

troller classes.

We have implemented rotations using rotation matrices or, in some cases, quaternions,

wherever they were necessary.

Input and controls are caught with the input catching methods defined by glfw. Move-

ment is calculated time independently.

Camera movement – especially during the jumping sequence – was quite tricky to real-

ize, but rotating the player object with quaternions and orienting the camera dependent

to the forward vector of the player did the trick.

1.2 Complex Objects:

Loading complex objects has been realized by loading collada models (vertices, normals

and texture coordinates) using the assimp loader library.

1.3 Camera
The descriptive data (position, initial viewing direction, FOV,...) of the camera is stored

internally in the Camera object. This object calculates the transformation matrix needed

to transform models in world space to camera space.

1.4 Game Objects and Models
There are two classes separating the data storage needed to draw a game object.

While the Model class stores the vertices, normals, texture coordinates and indices of

the object’s visual representation, the GameObject class contains the position, rotation

and various other attributes of the object in the world.

1.5 Moving Objects
The player is supposed to be able to navigate the main character freely around a spheri-

cal planet; hence the object describing it contains references to the planet the player is

currently moving around on.

The planets, which are parts of a planetary system, are moving on elliptic planes in

space. The calculations needed for these position changes are performed by game play

components and the results are then stored in GameObject objects.

1.6 Texture Mapping
Texture mapping for the planets and the characters is calculated with simple UV Map-

ping. As the objects holding the mesh data for the simple game objects we currently use

are generated programmatically in our code, the appropriate texture coordinates are

being generated in the process.

1.7 Lighting and Materials
Lighting is implementing using gauss lighting for point lights. We have multiple light

sources in our scene as the Lumis bugs are emitting light.

The light consists of an ambient, diffuse, and a specular portion which are calculated and

applied to the objects in the fragment shader.

For the simulation of different materials, several fragment shaders have been imple-

mented. These fragment shaders differ through their spectral material colour and their

spectral coefficient.

1.8 Controls
Player Controls have been implemented using the provided functions from the glfw

framework.

The W A S D - keys are used to move the player character. The mouse can be used to tilt

the camera to a certain angle.

1.9 Game Play
Game Play is parted from the rendering code by the architectural structure.

The player can move around the planet freely, navigating with mouse movement and the

WASD keys. Using the Space key, the player can jump to other planets that are within his

range.

The Lumis bugs are placed onto the planets surfaces randomly and disappear and reap-

pear at random.

1.10 View Frustrum Culling
The perspective projection matrix used for frustrum culling has been created by using

the glm framework, specifically the glm::projection method.

1.11 Transparency
Transparency has been used for the post processing effects (glow and depth of field).

1.12 Experimenting with OpenGL
We are using VBOs and VAOs for transferring model data (vertices, normals, texture co-

ordinates) to the shaders.

FBOs are used for the various effects (glow, depth of field, shadow mapping)

A UBO is used for transferring lighting data to the shaders.

2) Effects

2.1 Glow
Glow is realized by using 4 render steps. The first step renders the scene to the depth map and to a

FBO color attachment. The second and third step blur the image by a two step blur. The fourth step

renders the blurred glowing images to the screen and blends them with the original picture.

2.2 Depth Of Field
The depth of field effect is implemented by using a 4 pass rendering process with a two step blur.

First the image data is rendered to a color attachment and the depth values are mapped to -1 to 1

space with player position at 0. And then the blur strength is determined by the distance to the play-

er object. The blurring happens in step 2 and 3 just as seen in the glow effect, and the final step

blends the glow image and the depth of field blurred image to one output image.

2.3 Shadow Mapping (coming soon)
Shadow Maps are created in a multi pass rendering process. First the shadow maps are created by

rendering only to the depth attachment of the FBO of the viewpoint of the light source. Then the

map is projected into the camera space and by comparing the depth values the shadow value is gen-

erated.

3) Features

3.1 In This Version
 Freely moveable main character

 Ability to jump for main character

 Ability to collect Lumis bugs for main character

 Textured and illuminated Game Objects

 Multiple light sources (Lumis bugs emit light)

 Detailed moving planetary system with multiple planets

 Depth of Field effects

 Glow Effect

 Shadow Mapping (coming very soon)

 Frame rate independent update loop

 Background music & sound effects

4) Additional Libraries
 glfw OpenGL framework library (glfw.org)

 glm OpenGL Mathematics (glm.g-truc.net)

 FreeImage (freeimage.sourceforge.net)

 assimp Open Asset Import Library (assimp.sourceforge.net)

 fmodex Audio Toolkit (fmod.org)

5) Links to Implementation Papers
Glow:

http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html

Depth of Field:

http://developer.amd.com/media/gpu_assets/Scheuermann_DepthOfField.pdf

Shadow Mapping:

http://http.developer.nvidia.com/GPUGems/gpugems_ch12.html

6) Tools used for Model Creation
Autodesk Maya

