
YATCER

Description
YATCER is an Endless Runner set in Space. The player controls a Moon rolling along the
rings of Saturn. Points are gained by collecting shiny cogwheels, but colliding with a rock
ends the game.

Start the game by double-clicking on YATCER.bat You can also edit the 'YATCER.bat' file,
to adjust screen size by changing the parameters after 'YATCER.exe' accordingly:

width height fullscreen

Controls

A, D Move left/right

Space Jump

Esc End Game

P Pause Game

R Rotate Obstacles

F2 Frametime toggle

F3 Wireframe toggle

F6 Camera switch

F7 Toggle Normal Mapping

F9 Transparency toggle

Features
• endless gameplay

• reel-feel rocky obstacles are randomly placed

• shiny cogwheels are randomly placed

• additional free camera mode

• space feeling

Illumination
Only one directional light, coming from the sun, is used to illuminate the scene. All
objects are lit. The cogwheels use a shiny material.

We use the Phong Illumination model, all lightening calculations happen in the Shader
stage and depend on the fragment normals. Specular factors are determined by object
materials and diffuse and ambient values set for the light source.

Effects

Normal Mapping
Normal Mapping is used to make the rocky surfaces of our obstacles look rockier and its
edges sharper. First of all we needed to generate a normal Map with per-Fragment
normals given in the RGB channel in Mudbox for our low-resolution mesh and a Collada
File where next to UV-, Vertex-, and Normal-coords, all our tangets and bitangents
reside. (The Tangents and Bitangents are calculated by ASSIMP!)

Since we only use Normal Mapping for the Obstacles, the stone-normal Map texture was
generated directly in our Renderer class. Also a new Shader “NormalMap” has been
written, which takes this normal map texture as an uniform. At the Vertex Shader Stage
the provided vertex normals, tangents and bitangents were transformed into world
coordinates and packed together to the notorious TBN-Matrix (Tangent, Bitangent,
Normal) which is given to the frament shader.

If normal mapping is enabled, the normal (which is in tangent space) will be grabbed
from the texture and by applying the TBN Matrix, is transformed into world space,
where we can perform our usual lighting.

Shadow Maps
We implemented the use of one Shadow Map, since we only have one directional light
source. For that we created a FBO with a depth texture (with the texture comparison
Settings enabled for PCF) attached. In the first shader pass, with a little Polygon Offset
factor of 4, we draw into this depthFBO the depth Values as seen from our light source
with the LightSpace-Matrix – an orthogonal projection.

The depth texture is now correctly drawn and can be used for the second shader pass,
where we draw our scene as always and actually calculate shadows. We use the previous
LightSpace Matrix, with a little Bias of 0.5 (for UV lookup) and apply it to the vertex at

the vertex shader stage, to get our vertex position in this light space and pass this light
space position to the fragment shader.

While shading the fragment, we can use the texture which is sampled with
sampler2DShadow (with this OGL calculates PCF automatically thank god) and perform a
comparison of the depth in the Texture with the depth of our fragment in light space.
From this comparison we get an output between 0 and 1. If it is 1, the fragment lies
completely in shadows and only gets ambient lighting.

Bloom
To create a bloom effect, the scene is rendered into a FBO with a smaller texture size to
speed up the process. The image is first split into two textures, the scene itself and an
image of only the parts exceeding a brightness threshold. The texture containing only
the bright parts is blurred horizontally and vertically by rendering it repeatedly in two
FBOs. The blurred texture is then added onto the scene image to create a bloom effect.

Lens Flare
To create the lens flare effect, we first render only the sun and the saturn with a black
texture into a seperate FBO. This creates a texture which is mostly black, except for the
sun (if it is visible). By doing this, we avoid having to determine whether the sun is visible
or occluded by another object, since a lens flare created while the sun is not visible will
be black and therefore not visible on the final scene.

In the lensflare shader, we partly invert texture coordinates and use a few preset
variables to create ghosts along a vector from the sun to the camera. We also create
halo effects and use chromatic distortion (i.e. multiply the texture rgb-values with
modifiers < 1) to make our flare effects prettier.

Submission Requirements

Complex Objects
Both the obstacles (rocks) and the goodies (cogwheels) are complex objects. There is an
ObstacleLoader class that generates a VAO from the loaded collada files. Seperate
obstacles and goodies are structs with a model matrix and a pointer to their vao.

Animated Objects
To implement animated objects, we added a small moon orbiting the player controlled

moon, called Moonmoon. Moonmoon's position is calculated by first translating by a set
distance (so that the moonmoon is not drawn inside the moon) and then rotating to
create an orbiting effect. Then, we get the moon's position and translate the moonmoon
accordingly, so that moonmoon correctly orbits the moon.

Transparency
The rings of Saturn the moon is rolling on are transparent. To achieve this, we created a
material with an alpha value of 0.5. We avoided most possible issues with transparency
by ensuring that the transparent rings are always rendered after all other objects in the
scene.

Tools used to create Models
We used Blender, Mudbox and Maya to create our object models.

Additional Libraries and References
• assimp – for loading object models

• freeImage – for loading images

• glm – for handling matrices and vectors

• freetype – for displaying text

• glfw – for window creation and input handling

• https://www.opengl.org/wiki/Framebuffer_Object_Examples - fbos

• http://learnopengl.com/ - for a lot of stuff: displaying text, fbos, normal
mapping, shadow mapping, bloom, skybox

• http://www.c-
jump.com/bcc/common/Talk3/OpenGLlabs/c262_lab10/c262_lab10.html -
skybox

• http://www.tomdalling.com/blog/modern-opengl/05-model-assets-and-
instances/

• http://john-chapman-graphics.blogspot.co.at/2013/02/pseudo-lens-
flare.html – lens flare

• https://github.com/daanvanhasselt/lensflare – lens flare
• http://www.tomdalling.com/blog/modern-opengl/06-diffuse-point-

lighting/ - for lighting

https://www.opengl.org/wiki/Framebuffer_Object_Examples
http://www.tomdalling.com/blog/modern-opengl/06-diffuse-point-lighting/
http://www.tomdalling.com/blog/modern-opengl/06-diffuse-point-lighting/
http://www.tomdalling.com/blog/modern-opengl/06-diffuse-point-lighting/
https://github.com/daanvanhasselt/lensflare
http://john-chapman-graphics.blogspot.co.at/2013/02/pseudo-lens-flare.html
http://john-chapman-graphics.blogspot.co.at/2013/02/pseudo-lens-flare.html
http://www.tomdalling.com/blog/modern-opengl/05-model-assets-and-instances/
http://www.tomdalling.com/blog/modern-opengl/05-model-assets-and-instances/
http://www.c-jump.com/bcc/common/Talk3/OpenGLlabs/c262_lab10/c262_lab10.html
http://www.c-jump.com/bcc/common/Talk3/OpenGLlabs/c262_lab10/c262_lab10.html
http://learnopengl.com/

• http://www.mbsoftworks.sk/index.php?
page=tutorials&series=1&tutorial=11 – for lighting

http://www.mbsoftworks.sk/index.php?page=tutorials&series=1&tutorial=11
http://www.mbsoftworks.sk/index.php?page=tutorials&series=1&tutorial=11

