
Gameplay:
The player can move by using the wasd keys and jump by pressing space.

Effects:

Shadow Maps:

For Shadow Maps two separate passes are rendered, the first pass renders into the

depthbuffer from the view of a directional light and then creates a texture. The second pass

is a normal renderer. The fragment shader now uses the shadowMap and calculates if the

objects are shadowed or lighted. To account for the movement of the player, the light is

given a virtual position to render the shadowMap for objects near the player.

Source: https://www.learnopengl.com

GPU Particle System (Compute Shader, Instancing):

Particles are implemented as small yellow cubes suggesting fireflies. The compute-shader

calculates random values for their movement, but keeps them in a fixed range around the

spawning point. Every work group has a starting position as a n instanced attribute for that

particular work group. This effect was implemented by using the following links as reference

and using a mixture of ideas of the two implementations:

https://www.cg.tuwien.ac.at/courses/Realtime/repetitorium/rtr_rep_2014_ComputeShader.pdf

http://web.engr.oregonstate.edu/~mjb/cs557/Handouts/compute.shader.1pp.pdf

Cel Shading + Contours (Edge Detection):

A standard toon shader with 3 levels is being used. The diffuse value is being calculated by

level numbers. A 5 by 5 Laplace-filter is used with 24 as the center detecting the edges. At

first only the player character is being rendered into a framebuffer. The points with a higher

summed-up color-value than 0.9 after the laplace-filtering are set to 0 (black), the others are

set to transparent. After the final scene was drawn the edge detected image is being

rendered over the whole scene. This feature was implemented by using the following link as

a reference for the laplace filter and the tips of feedback talk 2:

http://r3dux.org/2011/06/glsl-image-processing/

https://www.learnopengl.com/
https://www.cg.tuwien.ac.at/courses/Realtime/repetitorium/rtr_rep_2014_ComputeShader.pdf
http://web.engr.oregonstate.edu/~mjb/cs557/Handouts/compute.shader.1pp.pdf
http://r3dux.org/2011/06/glsl-image-processing/

Complex Objects:
Assimp is being used as the model loader library. One of the complex objects is, for instance,

the starting island.

View-Frustum-Culling:
View-Frustum-Culling is implemented by checking the boundaries of the physx objects if the

object is in bounds of the frustum.

Transparency:
A plant is visible that has a quad on the top. Parts of it are transparent, that’s why it looks like

a leaf.

Lighting and Textures:
A directional light is being used. FreeImage is being used to load the image-files for the

textures.

Models were created using Maya.

Experimenting with Open-GL:
A variety of Opengl functionalities and containers are being used. Including Vertex-Buffer-

Objects, Vertex-Array-Objects, Frame-Buffer-Objects etc.

Resources:
http://www.assimp.org/

http://freeimage.sourceforge.net/

http://www.lighthouse3d.com/tutorials/

www.learnOpenGL.com.

http://www.autodesk.de/products/maya/overview

http://learnopengl.com/#!In-Practice/Text-Rendering

http://www.assimp.org/
http://freeimage.sourceforge.net/
http://www.lighthouse3d.com/tutorials/
http://www.learnopengl.com/
http://www.autodesk.de/products/maya/overview
http://learnopengl.com/#!In-Practice/Text-Rendering

