
Illuminator	
Implementa.on	
Free	movable	camera	
Every	frame	the	camera	is	updated	from	keyboard	and	mouse	and	creates	a	view	matrix.	In	normal	
camera	mode	player	movement	follows	rules	of	gravity	(camera	a?ached	to	rigid	body	–	Bullet	
Physics)	and	collides	with	other	objects.	In	Ghost	Mode	(toggle	with	[G])	gravity	and	collisions	are	
disabled.	View	frustum	culling	is	already	implemented.	

Moving	objects		
The	posi.on	of	the	All-seeing	Eyes	and	Lasers	are	updated	every	frame.	In	addi.on	the	view	direc.on	
of	All-seeing	Eyes	will	match	their	movement	direc.on	aNer	a	few	frames.	

Texture	Mapping		
An	All-seeing	Eye	contains	two	textures,	one	for	the	eye	and	one	for	the	stones.	The	level	mesh	uses	
3	textures.	One	for	the	floor,	one	for	the	ceiling	and	one	for	the	walls.		

Simple	ligh.ng	and	materials		
Currently	there	is	only	one	light	source.	A	point	light	posi.oned	in	the	middle	of	the	room.	Each	
object	has	a	material	that	influences	its	shininess.	Normals	are	also	included,	but	are	only	rendered	
flat	at	the	moment.	

Controls		
WSAD	–	move	

Mouse	movement	–	look	around	

Space	–	jump/Ghost	mode:	move	up	

LeN	Control	–	Ghost	mode:	move	down	

LeN	Click	–	shoot	laser	

Right	Click	and	hold	–	grappling	hook	(at	the	moment:	flying)	

E	–	Open	doors	

R	–	Reset	Game	

ESC	–	End	game	

1	–	Deac.vate	Enemy	Movement	

2	–	Disable	Normal	Mapping	

G	–	toggle	Ghost	mode	

F2	–	Sta.s.cs	on/off	

F3	–	Wire	Frame	on/off	

F4	–	Textur-Sampling-Quality:	Nearest	Neighbor/Bilinear	

F5	–	Mip	Mapping-Quality:	Off/Nearest	Neighbor/Linear	

F8	–	Viewfrustum-Culling	on/off	



F9	–	Transparency	on/off	

Gameplay		
Shoot	an	All-Seeing	Eye	to	convert	it	(make	it	shoot	other	All-Seeing	Eyes).	Converted	All-Seeing	Eyes	
also	convert	enemies	they	hit.	Currently	you	only	have	10	shots	(except	for	when	you	enable	the	
“rapid	fire”-power-up.	If	an	converted	All-Seeing	Eye	is	hit	3	.mes	it	vanishes.	If	you	get	hit	3	.mes	
you	lose.	There	is	no	win	condi.on	at	the	moment.	

Effects	
Shadow	Mapping	with	PCF	
Shadow	Mapping	was	implemented	for	direc.onal	perspec.ve	light	(a	spotlight).	It	uses	a	perspec.ve	
projec.on	matrix	based	on	the	spotlight’s	angle	and	the	maximum	shadow	distance.	With	my	
implementa.on	the	light	could	easily	be	moved	every	frame,	but	we	do	not	use	this	feature	in	our	
game.	I	used	the	tutorials	by	ThinMatrix	(h?ps://www.youtube.com/channel/
UCUkRj4qoT1bsWpE_C8lZYoQ)	as	a	reference.	

Normal	Mapping	
Normal	mapping	was	implemented	by	using	normal	maps	from	Total	Textures.	Ligh.ng	calcula.on	
was	changed	from	world	space	to	eye	space.	Addi.onally	some	calcula.ons	are	performed	in	tangent	
space.	I	used	the	tutorials	by	ThinMatrix	(h?ps://www.youtube.com/channel/
UCUkRj4qoT1bsWpE_C8lZYoQ)	as	a	reference.	

Bloom	
Bloom	was	implemented	by	using	an	addi.onal	render	target.	Our	fragment	shader	renders	two	
textures	into	a	frame	buffer	object,	one	containing	the	rendered	scene	and	one	containing	all	the	
pixels,	which	brightness	exceeds	a	certain	threshold.	The	texture	containing	all	the	bright	values	is	
then	blurred	using	a	2-pass	gaussian	blur,	implemented	with	two	addi.onal	shaders.	The	original	
scene	texture	and	the	blurred	brightness	texture	are	then	blended	together	to	create	a	glowing	effect	
for	all	bright	objects	in	the	game	(lasers,	shining	enemies	aNer	death,	ceiling	on	top	floor	of	level).	For	
the	implementa.on	I	used	the	following	tutorial:	

h?p://learnopengl.com/#!Advanced-Ligh.ng/Bloom	

Deferred	Shading	
Deferred	Shading	was	implemented	using	Mul.-Render-Targets	in	the	first	step.	I	discarded	the	
original	renderer	we	used,	which	was	a	forward	renderer	and	split	the	rendering	process	into	the	
scenes	geometry	and	the	ligh.ng	(geometry	pass	+	ligh.ng	pass).	With	the	scenes	geometry	we	
rendered	mul.ple	textures	into	a	FBO,	called	the	gBuffer,	containing	amongst	others,	a	posi.on	
texture,	a	normal	texture	and	a	diffuse/spec	texture.	Further	textures	needed	to	be	used	for	normal	
mapping	and	shadow	mapping	to	work	together	with	the	new	rendering	pipeline.	With	these	
textures,	which	we	acquired	in	the	previous	step,	called	the	geometry	pass,	we	then	took	in	our	light	
sources	and	in	this	last	step,	called	the	ligh.ng	pass,	calculated	the	final	result.	By	postponing	the	
ligh.ng	calcula.ons	to	the	end	of	the	pipeline,	the	calcula.ons	aren’t	performed	for	each	object	of	
the	scene,	but	rather	for	each	pixel	of	the	texture,	which	is	then	rendered	onto	the	screen	(post	
processing),	which	improves	the	performance	of	the	game	by	a	lot,	when	using	a	high	amount	of	light	
sources.		I	used	the	following	tutorials	for	the	implementa.on:	

h?p://www.codinglabs.net/tutorial_simple_def_rendering.aspx	

h?p://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html	

h?p://learnopengl.com/#!Advanced-Ligh.ng/Deferred-Shading	

https://www.youtube.com/channel/UCUkRj4qoT1bsWpE_C8lZYoQ
https://www.youtube.com/channel/UCUkRj4qoT1bsWpE_C8lZYoQ
http://learnopengl.com/#!Advanced-Lighting/Bloom
http://www.codinglabs.net/tutorial_simple_def_rendering.aspx
http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html
http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading


Special	Features	
Powerups	
The	game	features	a	rapid	fire,	a	hyper	jump,	a	shield	and	a	GODMODE	powerup.	(The	power	ups	
with	the	models	are	exis.ng,	however	they	aren’t	part	of	the	level	yet	and	can’t	be	collected)	

Ammo	
The	game	features	an	ammo	system.	You	have	10	shots,	as	displayed	in	the	bo?om	right	corner	of	the	
game	screen.	Once	you	are	out	of	ammo,	you	can’t	shoot	anymore.	

Material	changing	of	converted	enemies	
If	you	convert	a	pyramid,	by	shoo.ng	it	with	your	lasers,	it	will	start	to	shine	and	start	firing	at	other	
enemies	alongside	you.	

Ghost	Mode	
If	you	want	to	explore	our	amazing	level	without	being	shot	be	the	pyramids,	use	G	to	toggle	
between	the	ghost	mode,	which	will	make	you	invincible	and	also	allows	you	to	fly	and	go	through	
walls.	

Modeling	Tool	
Blender	

Complex	interac.on	sequences	
Press	E	to	open	the	door.	

Features	
• OBJ	loader	

• View	frustum	Culling	

• Physics	(Collision,	Gravity)	

• Ground	contact	check	with	Raycas.ng	(implemented	with	Bullet	Physics)	

• Font	Rendering	with	texture	atlas	(BMFont	format)	

• All-Seeing	Eyes	shoot	at	closest	hos.le	target	

• Rendering	images	to	HUD	

• Shadow	Mapping	with	PCF	

• Normal	Mapping	

• Deferred	Shading	

• Bloom	

Illumina.on	and	texturing	
There	is	one	red	spotlight	that	is	used	for	shadow	mapping.	The	All-Seeing	Eyes	and	the	level	cast	
shadows.	Everything	receives	shadows.	Addi.onally	there	is	one	point	light	on	the	top	floor	that	is	
used	to	light	up	the	whole	game	a	li?le.	Since	the	point	light	is	not	used	for	shadow	mapping	walls	
don’t	stop	it.	

An	All-seeing	Eye	contains	two	textures,	one	for	the	eye	and	one	for	the	stones.	The	level	mesh	uses	
3	textures.	One	for	the	floor,	one	for	the	ceiling	and	one	for	the	walls.	One	texture	is	used	for	the	
doors	and	one	for	the	gears.	



Libraries	
FreeImage	(h?p://freeimage.sourceforge.net/)	

Assimp	(h?p://www.assimp.org/)	

GLEW	(h?p://glew.sourceforge.net/)	

GLFW	(h?p://www.glfw.org/)	

GLM	(h?p://glm.g-truc.net/0.9.7/index.html)	

Bullet	Physics	(h?p://bulletphysics.org/wordpress/)	

http://freeimage.sourceforge.net/
http://www.assimp.org/
http://glew.sourceforge.net/
http://www.glfw.org/
http://glm.g-truc.net/0.9.7/index.html
http://bulletphysics.org/wordpress/

