Sphere

Computergrafik UE
186.831
SS2015



Team

Name

Matr.Nr.

eMail

Hufler

Andreas 0626345

e0626345@student.tuwien.ac.at

Moser Valentin 0757786

moser.valentin@gmail.com

Table of Contents

Team
Table of Contents

Changes (!!
itations

Lim
Har

dware

Lau

nching the Game

Imp

lementation Details

Libraries & 3rd party content

Free movable camera:

Moving objects / complex objects:

Lighting / Shadow:
Transparency:
View-Frustum-Culling:
Bloom / Glow:
Controls:

Gameplay:
Collision detection:

Avrtificial intelligence aka. enemies:

Chan

ges (!!)

The following changes have been made since the original submission 2:
The game works only on AMD for now.

The spotlight has an inner and outer angle between which the light will have a falloff.
Frustum Culling should be working but has no positive effect on FPS (see details below).
Glow: in addition to Bloom, certain meshes will have a similar effect that makes them
seem to glow. This also counters the hard edges of bloomed parts of these meshes (see

details below).

Glow also has a sort of flickering effect (see glow below).

Shadows will now consider the opacity of the object they are drawn onto. Shadow on

glass will obviously be less strong than on a metal surface.




The level has been completely reworked.

When the player dies or wins, a message will appear on the screen to inform the player.
FPS should have increased tremendously.

Memory leaking should not happen anymore.

Additional key bindings have been added (see below).

Key G activates Godmode which will allow you to leave the sphere. Also NPCs will
ignore you.

e Many other minor fixes of various things (too many/can’t remember exactly).

Limitations
e Playing the game while AMD Gaming Evolved is running will result unforeseen
consequences.
e The launcher will not work if the path to the current directory contains any space
characters.

e The game only displays correctly with AMD cards.

Hardware
We tested the game using an AMD Radeon HD 7950 and the VisLab computer.

Launching the Game

You can launch the game by either using the Launcher (Launcher.jar) or starting the game

directly.

The Launcher will let you chose the command line options that are available with a GUI, but
requires Java 8 to be installed.

Launching the game directly will use the following default settings:
width = 1280
height = 800
frameRate = 60

fullScreen = false

When launching the game via command line you can use these options:
Sphere.exe (int)width (int)height (0/1)fullScreen (double)frameRate

Note: All four options have to be present or defaults will be used! Values must be positive.



Implementation Details

The following effects were implemented:

Effect Points
Deferred Shading 1
Shadow Maps 1.5
Spotlights 0.5
Bloom 1

4

Free movable camera:

You can move around the scene as you like unless you collide with an object or try to leave the
arena. There is a limit though on the maximum angle you may pitch the camera up and down.

Moving objects / complex objects:

There are computer controlled “drones” in the arena which you’ll have to fight. They try to move
around and catch you. You will notice that they have an antenna attached to them that is
rotating. (sort of)

Lighting / Shadow:

We are able to render one Ambient light and “infinite” numbers of directional-, point- or
spotlights. Directional lights and point lights also cast shadows.

The depth map for shadow calculations is generated in two steps.
Step A: Each light has its own FBO for caching the depth information of all static objects that
will never move. This is generated once after loading the scene.

Step B: When actually calculating shadow and lighting, the cached depth map gets copied over
to the actual depth map. Then, only the dynamic objects that can move get rendered to further
populate the depth information.

This technique saves a lot of power since most of our scene is static anyway and therefore the
depth information will never change.

The spotlight has an inner and outer angle between which the light will have a falloff as
requested by the submission 2 feedback.



Transparency:
Most of the sphere that resembles the arena is made of transparent “glass”.

View-Frustum-Culling:

Frustum Culling is working but has no positive effect on FPS. We think this is caused by the
huge amount of meshes that get generated by Maya when exporting the whole level as one
object.

Bloom / Glow:

Bloom will kick in, when the light calculation finds that a pixel has a brightness that is over a
certain threshold. These pixels are also written into the bloom buffer FBO. After that, the
blooming parts get blurred using a gaussian blur filter and are then blended with the actual
picture on the screen.

Glow is implemented in a way that makes use of the already ongoing bloom. In the geometry
pass, pixels (diffuse texture) that belong to glowing meshes get stored in a separate texture of
the FBO. After that, this texture gets copied over into the bloom buffer. So we see, the bloom
buffer will not be empty when it gets filled by the actual bloom, though the glowing parts will be
missing their lighting and be less bright than blooming parts. Gauss does the rest.

Another thing you may notice, is, that glow on our obstacles will sometimes flicker. We think this
effect looks quite good apart from the fact that we can only enable/disable flickering on a per
mesh base. This is due to the level hierarchy and would need a redesign of the 3d models. To
individually handle the glowing “triangles” we’d have had to redo the whole level in Maya.

Controls:
W Move forward
A Strafe left
S Move backward
D Strafe right
Left Shift / X Lose height
Spacebar Gain height
Mouse (move) Move camera
Mouse (left button) | Fire




ESC exit game

G toggle GodMode

F2 toggle FPS

F3 toggle Wireframe

F4 toggle Texture-Sampling

F5 toggle Mip Mapping

F8 toggle Frustum-Culling

F9 toggle Transparency

numpad + /. increase ambient light

numpad -/, decrease ambient light

L toggle directional lights

ENTER display current position

1 render final picture

2 bloom buffer with copied
glow

3 gbuffer: world positions

4 gbuffer: diffuse

5 gbuffer: normals

6 gbuffer: glow




Gameplay:
Welcome to the arena where gravity is... well.. off. Use your gun to defeat the vicious drones
that roam around. But be careful, they might fire back!

Collision detection:

We use Bullet for collision detection between NPCs/ the Player and the arena’s obstacles. To
keep the player inside the arena we simply calculate the distance from the center. Bullets fired
from the NPC/the Player will do their own collision detection to determine if they hit.

Artificial intelligence aka. enemies:

Enemies are not really smart. They will go from waypoint to waypoint until they find a player.
When they do, they will try to chase and shoot him.

Libraries & 3rd party content
Bullet

collision detection

Freelmage

loading images for use as textures

Assimp 3
loading model data (meshes / materials)

GLM

class implementation and functions for 3d math

GLEW
wrapper library for opengl|

Model/Mesh loaders are based on tutorials from:

http://www.learnopengl.com/

Models are created by us in Autodesk Maya, Textures are selfmade but might contain
downloaded texture parts (e.G. metal brush).


http://www.learnopengl.com/
http://www.learnopengl.com/

