
S.C.A.R.  

 

Controls 

Key Effect 

W Move forward 

A Move left 

S Move back 

D Move right 

Space Jump 

Q Fly up (cheating, at least try without) 

E Fly down (cheating, at least try without) 

Mouse Rotate First Person Camera 

LMB Recording Start/Stop (only on Timefield) 

RMB Play back Start/Stop 

ESC Exit Game 

F1  Helpscreen 

F2 Show FPS 

F3 Wireframe On/Off 

F4 Texture Sampling Quality 

F5 Mipmap Qality 

F8 Viewfrustrum Cilling On/off 

F9 Tranparency On/Off 

F11 Music On/Off 

F12 Reset Current Level 

 

 

 

Gameplay 

S.C.A.R is a game about timing and planning. The goal in each level is to exit 

through the door to paradise. It isn't as simple as it sounds though. All door-

buttons have to be activated at the same time for the door to open and you 

can not stand on a button and go through the door at the same time. This is 

where the recording fields come into play. They allow you to record your 

actions within a time limit. After that you will be teleported back to the 

recording field. You can later recall those actions and thus help youself to reach 

paradise. Each recording field can store one recording. Somtimes more than 

one recording may be necessary to finish a level. To make your task more 

difficult there are pits of lava and an enemy robot that will kill you in an instant. 

Furthermore you will find different buttons that can activate elevators or 

bridges. 



3-D Models 

All assets used in this game have been modelled by us using a software called 

Blender (https://www.blender.org/) including uv unwrapping. We have also 

experimented with texturepainting an baking normal maps. The results may 

not used in the current game, but can be found in the texture folder. 

The models are exported to the .OBJ format and loaded using assimp. 

Both the enemy robot and the ghost have animations hard coded using 

tranformation matricies. 

Effects 

We have implemented: 

Shadowmaps (directional light, PCF) 

CPU Particle System (Instanced rendering, depth ordering, transparent 

textures) 

Bloom (we render the scene to an FBO, blurr the bright regions using 2x1D 

gauss filter and add the images together) 

Procedural Animated Noise Texture 

Normal Mapping(tangents are precomputed, bitangents calculated in the 

shader) 

Infinite Zoom Mandelbrotshader (just for fun, Mandelbrotset rendered in real 

time) 

Lighting 

We have a Pointlight in every level. It is circling around the position specified in 

the level file and works especially good with the normal mapping. Then we 

have a directional light that can also cast shadows. 

The lava shader only displays a texture. 

The diffuse shader uses the point light to calculate the diffuse reflection. 

The specular shader calculates diffuse and specular reflections using the point 

light. 

The shadow shader draws pixels in the shadow darker(shadowmap) 

https://www.blender.org/


The shader may combine several of these tecniques as (pretty consistantly) 

indicated by their name. 

Other 

To improve performance we have implemented view frustrum culling. We 

calculate the bounding box when we load the meshes. Before drawing a mesh 

we check if any part of it can be visible using the corners of the bounding box. 

We use VBO's and VAO's for all our meshes. We also use FBO's for post process 

filtering (bloom). 

For the recordings the position and rotation of the player is saved each frame 

into a vector, along with a timestamp. To play back the actions the entry with 

the closest timestamp to the current time is selected and a ghost will appear at 

that location. This is also used for collision detection with buttons etc. 

We use a custom level loader to read in shaders, textures meshes and initialize 

all objects. 

Librarys 

We use GLEW, GLFW for the window, freeimage to load the images, assimp to 

load the models, bulletphysics for the collision detection, glm for vector and 

matrix math, SFML for the audio, Freetype for text rendering. 

Walkthrough 

<!---SPOILERS---!> 

Please, at least try first. 

Level 1 

This is a simple level, step on the yellow timefield right in front of you, start 

recording and try to jump on the platform and reach the end of the tunnel, 

make a left turn and step on the door opener as fast as possible. The time is 

rather short so you should hurry. Afterwards complete the level by starting the 

playback of the ghost and wait at the door for the ghost to open it. 

Level 2 

First step on the red timefield, start recording, run downstairs and activate the 

elevator button for some time. Afterwards jump down the hole on the left of 

the elevator button and activate the first door button. After completing the 

recording step on the blue timefield, run to the elevator in the same room, wait 



for it to lift. Afterwards step on the bridge button in the 1st floor for some time 

and in the last few seconds step on the door opener. After finishing the second 

record you have to start the playback of the ghosts (RMB), go with the same 

elevator in the 1st floor, step on the bridge (attention you have to walk while 

the bridge is moving) and go through the door. 

(Hint) Level three has no exit so far, but try hitting F10 to see some of our 

experimental shader/failed attempts  

!!! If you have epilepsy or are sentitive to flashing lights you should probaply 

not try this !!! 

References/Links 

http://wiki.delphigl.com/index.php/Hauptseite 

http://www.opengl-tutorial.org/ 

http://www.tomdalling.com/blog/category/modern-opengl/ 

http://developer.download.nvidia.com/SDK/10.5/direct3d/samples.html 

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-

mapping/ 

http://bulletphysics.org/mediawiki-1.5.8/index.php/Tutorial_Articles 

http://www.learnopengl.com/#!In-Practice/Text-Rendering 

http://www.learnopengl.com/#!Model-Loading/Model 

http://soundbible.com/ 

http://youtube.com/ 

http://opengameart.org/content/50-free-textures-4-normalmaps 

and our best friends Google and Wikipedia. 

 

Awesome Music: The Battle of Lil' Slugger 

Original Game: Super Meat Boy 

Composer: Danny Baranowsky 

Probably Copyright Infringement, please do NOT distribute. 

http://wiki.delphigl.com/index.php/Hauptseite
http://www.opengl-tutorial.org/
http://www.tomdalling.com/blog/category/modern-opengl/
http://developer.download.nvidia.com/SDK/10.5/direct3d/samples.html
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
http://bulletphysics.org/mediawiki-1.5.8/index.php/Tutorial_Articles
http://www.learnopengl.com/#!In-Practice/Text-Rendering
http://www.learnopengl.com/#!Model-Loading/Model
http://soundbible.com/
http://youtube.com/
http://opengameart.org/content/50-free-textures-4-normalmaps

