
Lunacy
CGUE SS2015

Ulrik Schremser (0728034)
Patrick Mayr (1226745)

June 22, 2015



1 Remarks

Please, do not call 911!

2 Implementation

The game engine is implemented as a component based game engine. That means, that
every GameObject in our scene is able to store components, which will handle different
things that the GameObject needs to do.

1. A subtype of InputComponent will handle the user input respectively other input
(e.g. an autorotation of a cube arround its center)

2. A subtype of PhysicsComponent will handle the physics

If a GameObject does not need all components, you can simply set them to a nullptr (e.g.
a static light source will be represented as GameObject(nullptr, nullptr, Model),
because there is no need to move or apply physic to it).

The rendering is done by using a subtype of RenderSytem, which will use one or more
subtypes of RenderPass to render the scene and do the post processing.

2.1 Freely movable camera

As our game is first-person, the player not only interacts with the character (represented
as an invisible sphere), but also with the camera itself, which would represent the players
head: Turning left and right is accomplished by rotating the character around her height-
axis, Turning up and down is implemented as rotating the camera in model space.

For better control we clamped the possible up and downward movement to ±90 degrees
(i.e. looking straight downwards and looking straight upwards). Please also note that
when Luna uses her skill ”Gravity Swap” the camera turns together with the player.
The result is a gameplay that is consistent between moving on the ground and moving
on the ceiling.

2.2 Moving objects

1. Player:
Input, which gets all user input, is attached to PlayerInputComponent, which
processes the user input further (e.g. adjusting time delta or gravity direction).
PhysicsComponent, so Bullet, will do all the calculations and returns a new model
matrix for the Model player.

2. Other objects:

a) InputComponent:
It is possible to attach an InputComponent with a predefined movement (e.g.
an autorotation of a cube arround its center). Even hierarchical transforma-
tions are possible, if other GameObject are attached as children.

2



b) PhysicsComponent:
If you attach a PhysicsComponent to a GameObject, Bullet will do all the
calculations and returns a new model matrix for the Model.

2.3 Texture Mapping

Every Gameobject stores the Model which got imported from a .dae-file by using
Assimp. Model is the representation of an imported model and holds e.g. the mesh data
in Mesh for a regular game object. Mesh stores the textures and its vertex data using
Texture respectively Vertex.
DefaultRenderSystem respectively its passes, which are subtypes of RenderPass, will

finally pass the texture and vertex data to the shader to do the texture mapping. The
vertex shader pass the UV data straight through to the fragment shader, which will get
the color data from the texture per fragment using the GLSL function texture(Texture,

UV).

2.4 Simple lighting and materials

See Illumination and Texturing [4]

2.5 Controls

You control Luna by using the typical first-pony-shooter controls.

3



Key Effect

W move forward

S move backward

A move left

D move right

1 use gravity swap

2 use slow motion

SPACE jump

LEFT SHIFT run

R restart game (only available on lose/win screen)

ESC quit game

MOUSE camera control

F1 Help

F2 Frame Time [on/off]

F3 Wire Frame [on/off]

F4 Textur-Sampling-Quality [Nearest Neighbor/Bilinear]

F5 Mip Mapping-Quality [Off/Nearest Neighbor/Linear]

F6 Catch mouse [on/off]

F7 -

F8 Viewfrustum-Culling [on/off]

F9 Transparency [on/off]

2.6 Gameplay

The goal of the demo scene we prepared is to get to the exit without walking into
traps or getting yourself hurt by sudden earthquakes (which are currently indicated by
a countdown timer and invisible triggers. In addition to normal movement (WASD),
jumping (spacebar) and running (left shift modifier pressed while walking) there are two
special abilities which might come in handy to beat the game:

1. Gravity Swap (Key 1): Luna swaps her own gravity: She is now able to walk on
the ceiling.

2. Slow Motion (Key 2): Luna uses her magic powers to extremely slow down time.

Some challenges might also require you to use things in your environment (e.g. moving
objects).

2.7 Effects

2.7.1 Glow

1. RenderPass1 with its shaders pass1.vert and pass1.frag is creating the glow
source texture and renders the scene in another color texture.

4



2. RenderPass3 with its shaders pass3.vert and pass3.frag filters the glow source
texture vertically using a 1x64 gauss kernel.

3. RenderPass4 with its shaders pass4.vert and pass4.frag filters the glow source
texture horizontally using a 64x1 gauss kernel.

4. RenderPass5 with its shaders pass5.vert and pass5.frag is finally blending the
color texture with the blurred glow source texture scaled by a glow intensity factor.
Futhermore we using a max function on this effect to avoid that the objects center is
brighter than the border. Finally we spread the excess of the color before clamping
it.

2.7.2 Deferred Shading

1. RenderPass1 with its shaders pass1.vert and pass1.frag renders all necessary
informations for the illumination (position, diffuse color and normals of the model)
to different textures.

2. RenderPass2 with its shaders pass2.vert and pass2.frag uses the geometry of
the light source (sphere for a point light) to define which objects (fragments of an
object) will be illuminated by this specific light source. With this approach we do
not have to do unnecessary calculations of hidden points (depth test) or for points
that are far away from the light source (out of range of the light source geometry
means minimal influence to the result).
The fragment shader then simply applies the phong illumination model using the
data of the actual light source and the textures, which were genereted in the
previous pass.

2.7.3 Shadow Maps (with PCF) + Omni-Directional

For shadow mapping, we used a cubemap (which can be found in CubeMapFBO) and
the approach as described in RTR-Slides Omni-directional Shadows: The geometry is
duplicated and transformed by the corresponding view-projection matrix for each of the
6 sides of the cubemap in the geometry shader (see pass0.geom). This way, only one
instead of the usual 6 passes is needed. Furthermore as to improve the performance, we
decided to implement a culling phase, where all objects lying beyond the light-sphere
are not considered as they can’t cast shadows anyway. This was done in RenderPass0.

5

https://www.cg.tuwien.ac.at/~husky/RTR/OmnidirShadows-whyCaps.pdf


2.7.4 References

1. Glow: GPUGems Chapter 21
CGUE-Slides Bloom & Glow

2. Deferred Shading: Neuro Productions
OGLdev Tutorial 35

3. Shadow Maps (with PCF)
+ Omni-Directional: RTR-Slides Omni-directional Shadows

GPUGems Chapter 12
CGUE-Slides Shadow Mapping

2.8 Animated Objects

To apply a hierarchical animation to a GameObject you have to implement and assign a
subtype of InputComponent (e.g. AutorotateEverythingToParentInputComponent).
AutorotateEverythingToParentInputComponent will rotate every child recursively ar-
round its parent on a given axis. The rotation axis has to be encoded in the model name
in the .dae-file (e.g.

”
rot-z“). Subtypes of Level will then set the correct rotation

axis while assigning the models to the GameObject.

2.9 View Frustum Culling

For View Frustum Culling, all Meshes get a precalculated bounding box assigned during
setup. The culling of meshes takes place in RenderPass1 for regular scene objects
and in RenderPass2 for all light objects. All objects are called in clip space, i.e. the
bounding boxes get transformed by the MV P -matrix and then the clipping happens
in homogenous coordniates. If an object lies completely outside of one of the frustum
planes it gets culled. The mode of operation can e.g. be checked by pressing F2, which
displays besides other metrics also the number of triangles tr as well as the number of
lights drawn li.

2.10 Experimenting with OpenGL (Transparency, Texture Sampling,
MipMapping Quality)

Settings handle all the setting changes, which are activated by the user by pressing one
of the function keys from F1 to F9 (F7 has no function applied). Therefore Settings

has the constructor Settings(Input * const input, GLFWwindow * const window,

int window width, int window height) to handle the input and change some settings
of the GLFWwindow. Settings is simply setting flags according to the user input. In other
parts of the program Settings can be accessed by using the extern keyword.

Example:
If the user has pressed F3 the wireframe-flag in Settings will be set. The draw-
method of DefaultRenderSystem will then check for every call, if the wireframe-

6

http.developer.nvidia.com/GPUGems/gpugems_ch21.html
https://lva.cg.tuwien.ac.at/cgue/wiki/lib/exe/fetch.php?media=students:bloom.pdf
http://www.neuroproductions.be/opengl/making-a-3d-game-with-opengl-deferred-shading-and-stuff/
http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html
https://www.cg.tuwien.ac.at/~husky/RTR/OmnidirShadows-whyCaps.pdf
http://http.developer.nvidia.com/GPUGems/gpugems_ch12.html
https://lva.cg.tuwien.ac.at/cgue/wiki/lib/exe/fetch.php?media=students:cgue_shadow_mapping.pdf


flag is set, by using extern lunacy::settings::Settings* game settings defined
in RenderSystem. Depending on that state it will enable or disable the wireframe mode.

3 Features

• single player

• various magic skills

• make use of physics

• challenging puzzles and obstacles

• glow effect

• collision detection

• more than one hundred light sources per scene

• omnidirectional shadows

4 Illumination and Texturing

Our game is illuminated by a multiude of small light sources hidden in glowing mush-
rooms, stones or orbs as well as an ambient light source. The lighting itself is applied
by the means of deferred shading system implementing a simple Phong shading. The
ambient light originates from one light source that stays and moves according to the
location of the camera. For the technical details please refer to the Section where we
describe the Deferred Shading in our game [2.7.2].

This illumination model will be applied for every Gameobject that should be rendered,
therefore

1. the player with its camera is stored separately to the other Gameobject

2. light sources have stored their light geometry different (it is part of Light and not
of Model) then the other mesh data of regular Gameobject

3. invisible triggers encode this in the model name (trigger-invisible)

so that they will not be part of the rendering.

Every Gameobject stores the Model which got imported from a .dae-file by using
Assimp. Model is the representation of an imported model and holds e.g. the mesh data
in Mesh for a regular game object. Mesh stores the textures and its vertex data using
Texture respectively Vertex.

7



If the importet model is a light source, there are no mesh data to store, but light
data. This is done by using Light as a container. All data that are necessary for the
rendering come together in Rendersystem, which will pass the data to the subtypes
of RenderPass with its vertex, geometry (optional) and fragment shader passX.vert,

passX.geom, passX.frag (X means shader 0 to 5) , which will do the actual shading.

5 Game Walkthrough

(a) Use
”
Gravity Swap“ to escape the cell through the hole in the ceiling

(b) Use
”
Gravity Swap“ to walk on the ceiling to cross the hole filled with acid

(c) Use
”
Gravity Swap“ to walk on the ceiling to reach the entry to tunnel at the side

(d) Throw the rocks in the hole filled with acid to cross it

(a) 1st obstacle (b) 2nd obstacle

(c) 3rd obstacle (d) 4th obstacle

8



6 Additional Libraries

1. Object-loader: Assimp(v.3.1.1)
2. Physics: Bullet (v.2.82)
3. Image-loader: DevIL (v.1.7.8)
4. Window-handling: GLFW (v.3.1)
5. Logging: spdlog (commit #11d4ae7)
6. OpenGL-loader: GLEW (v.1.12.0)
7. Math: glm (v.0.9.6.3)

7 Modeling

1. Modeling Tools: Blender
2. Models: Discord

other models are self-made

9

http://assimp.sourceforge.net/
http://bulletphysics.org/wordpress/
http://openil.sourceforge.net/
http://www.glfw.org/
https://github.com/gabime/spdlog
http://glew.sourceforge.net/
http://glm.g-truc.net/0.9.6/index.html
https://www.blender.org/
http://uncommented.deviantart.com/art/Completed-Discord-Model-358051040

	Remarks
	Implementation
	Freely movable camera
	Moving objects
	Texture Mapping
	Simple lighting and materials
	Controls
	Gameplay
	Effects
	Glow
	Deferred Shading
	Shadow Maps (with PCF) + Omni-Directional
	References

	Animated Objects
	View Frustum Culling
	Experimenting with OpenGL (Transparency, Texture Sampling, MipMapping Quality)

	Features
	Illumination and Texturing
	Game Walkthrough
	Additional Libraries
	Modeling

