Magnosphere, 2nd submission

Documentation

Gameplay:

Click mouse left/right to activate or deactivate magnetism. Roll around with WASD. Try to push the
triggers (red cubes) to open doors, so that you can reach the goal with the big sphere and win the
game.

Complex Objects:

We use assimp to load collada-files into our game. The objects are mainly spheres and boxes, but to
show that we can import all kind of complex objects, we also included the CG2-rubberduck©. To
provide a curved surface (and to make the leveldesign more interesting...) there is also a pipe, which
was constructed using a simple boolean operation on two cylinders.

With exception of the rubberduck, the level was entirely self-modeled in blender.)

Animated Objects:
The rotation of the windmill is a hierarchical animation. (Parent and children are defined in Blender.)

View Frustum Culling:

View frustum culling is implemented via bounding boxes, because these are best suited for our
(mainly cubic...) objects. This was implemented with help of the lighthouse-3D tutorial and also the
tutorial by Mark Morley. (http://www.lighthouse3d.com/tutorials/view-frustum-culling/ and

http://www.crownandcutlass.com/features/technicaldetails/frustum.html)

Transparency:
The ramp that’s going up to the pipe is our (only) transparent object.

Experimenting with Open GL:
FBOs, VBOs, and VAOs are used in the game (in the SceneObjects, for the Effects etc.)

Lightning/lllumination and materials:
We have one big point light source in the scene, all objects in the scene are illuminated with this bulb
light. All the objects use a simple texture shader.

Features:

-Some hand-drawn textures!

-Textured Objects

-Usage of PhysX to simulate the physics, to do collision detection, to generate/load bounding objects
right from the meshes we have in the collada files.

-Object loader (loading colladafiles, based on assimp). Game Logic for Triggers/doors works
automatically if the objects are given the right names in the .blend file before exporting it as collada-
file.

-lllumination by point light, texture shading

-Freely moveable camera

-Magnetism realized via distance between the spheres

-Clever logic to assign action objects to triggers.

-Controls implemented with polling

-Creating our own view-matrix (without glm::lookAt)
-Glow effects and particle systems

Effects:

Glow (1P):The glow effect was implemented based on what was said in the repetitorium and the
article from GPUGems(http://http.developer.nvidia.com/GPUGems/gpugems _ch21.html) as
additional reading. The bluring in the shader for the alpha-texture was taken from DelphiGL(
http://wiki.delphigl.com/index.php/shader blur2), they use one shader for the horizontal and the
vertical pass, the direction can be used via the uniform uShift — this was quite an elegant way to
handle the two passes. The blending in the shader is a simple additional alpha blending, which is only
executed when the uniform “blend” is set to 1.

If you want to see only the alphatexture, you can set the variable “colorRender” to “colorAlpha” (last
commented line in the shader, was handy for debugging). The alpha texture for each object is saved
in the alpha-channel of each .png-texture.

GPU-Particle System (1P):The GPU-based particle System was made with help of this tutorial:
http://ogldev.atspace.co.uk/www/tutorial28/tutorial28.html, although some changes had to be
made because the tutorial was for OpenGL 4.0+. (For example, the command
“glDrawTransformFeedback” is not existent in OpenGl 3.0, you have to use
“glBeginTransformFeedback” and also use a query to keep track of the particlecount).

Omni-directional shadow maps with PCF (2P):

Because we use just one point light to illuminate the whole scene, we’re using omni-directional
shadow maps. The shadow mapping was implemented with the help of Peter Houskas slides for the
RTR Repetitorium
(http://www.cg.tuwien.ac.at/courses/Realtime/repetitorium/2011/OmnidirShadows.pdf) with a
slight modification: We’re using a cubemap with six render calls instead of the geometry shader — it
was not possible (even after approx. 2 weeks of debugging) to get the geometry shader working with
the cube map. This causes of course a loss of performance.

Modeling: The modeling and UV-Mapping was done in Blender, the only object that’s not self-made
is the rubberduck. The textures were created with photoshop.

Additional libraries used:

Nvidia PhysX (https://developer.nvidia.com/physx)
Assimp (http://assimp.sourceforge.net/)
Freelmage (http://freeimage.sourceforge.net)

Step-by-step walkthrough:

- Touch the first trigger in first room, small door opens.

-> Roll out of the room, pass the bridge and hit the trigger at the other side of the thorns.

- Small door next to the first room opens, roll through and up the ramp. Push the next trigger up
there, the big door opens and you can get the big sphere out of the first room.

-> Roll outside of the second room to the part of the level with the pipe. Roll up the ramp, pass the
pipe and hit the next trigger.

- Another door opened and you can roll the second sphere to the goal-area next.

- Hit the big goal-trigger with the *big* sphere > WIN!

