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1 Introduction

Enhancing the visual appearance of plain objects by applying definitions
of fine structures to surfaces is called Texturing [3, 4]. Different material
properties may be simulated:

• Color

• Reflection

• Gloss
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Figure 1: Texture deformations: size, shape, and density.

• Transparency

• Bump

The application of textures yields a more natural and realistic appear-
ance of objects. It also enhances the 3D-impression of objects. The texture
gradient defines the amount of deformation of the texture pattern due to the
spatial position in 3D-space. Three properties may be controlled:

• Size

• Shape

• Density

Figure 1 shows examples for these variations. The procedure of applying
a texture to an object is called mapping. Two steps are used to define the
mapping: texture coordinates (u, v) are mapped into object space coordinates
(x, y, z), which are defined on the surface of the object. Finally object space
coordinates are mapped to image space coordinates (x, y). Figure 2 depicts
the procedure. Textures usually are of rectangular shape in texture space.
After the mapping transformation, they have been deformed to non-planar
patches, bounded by four curves.

Figure 3 shows an example. The mapping procedure is usually defined in
the opposite direction: for each pixel on the image plane, the color values of
the according texture position have to be derived. Let (x, y, z) = O(u, v) be
the mapping from texture space to object space (respectively x = Ox(u, v)
and y = Oy(u, v)). The shading influence in image space for position (x, y)
is defined by S(x, y) = T (u, v), using the texture value of position (u, v) in
texture space. Therefore the inverse mapping S(x, y) = T (O−1(x, y, z)) has
to be found.

The parametrizaton O defines the mapping of the texture onto the ob-
ject. A proper definition is vital (refer to Figure 4). The definition of
the parametrization is discussed using the example of a simple triangle.
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Figure 2: Texture mapping.

Figure 3: Texture space vs. image space.

Mapping parameters for each vertex of the triangle are defined in terms
of texture coordinates (u, v). All points within the area of the triangle can
be described by barycentric coordinates: (x, y, z) = a0 ∗ (x0, y0, z0) + a1 ∗
(x1, y1, z1) + a2 ∗ (x2, y2, z2). (a0, a1, a2) are the barycentric coordiantes. The
according texture coordinates (u, v) for point (x, y, z) are easily derived by
(u, v) = a0 ∗ (u0, v0) + a1 ∗ (u1, v1) + a2 ∗ (u2, v2) (also refer to Figure 5).

A parametrization for patch-surfaces is realized in a straight forward way
by utilizing the patch parameters as texture coordinates (u, v) (refer to Fig-

Figure 4: Definition of parametrization.
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Figure 5: Parametrization for a triangle.

Figure 6: Parametrization of a patch.

ure 6).

2 Type of textures

The most commonly used way of specifying a texture is by the definition of
a regular 2D grid storing texture information just like an image bitmap. In
analogy to the pixels of bitmaps, the term texels is used for the elements of
such a texture. Nevertheless, general texture definitions may be one-, two-,
or three-dimensional [6].

2.1 Scanline oriented mapping

Scanline oriented rendering methods are calculating images line by line [12].
With the usage of textures, the inverse mapping function S(scanline) is
needed. If S is not available, the texture itself has to be dealt with in a line
by line way. This technique is referred to as texture scanning. It may result
in holes in the calculated image or multiple evaluations of the same image
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Figure 7: Pyramid cone with solid wood texture.

regions. A better approach is 2-pass Scanning. The mapping transformation
is split into two one-dimensional shear mappings, which makes this method
only suitable for affine and perspective transformations.

2.2 Procedural and solid texturing

Three-dimensional textures are usually defined as a function T (x, y, z) in
object space [9, 10]. Nevertheless it is possible to specify the texture in 3D-
parameter space like T (u, v, w). This approach eliminates the parametriza-
tion step, yielding an undeformed texture. This type of texturing, when a
texture is generated in a procedure instead of sampling a raster image, is
called procedural texturing. Solid texturing is a process where the texture
generating function is evaluated over R3 at each visible surface point of the
model.

Solid objects with inner structure of a material (like wood or marble) can
be easily simulated with procedural textures. Here is an example for a wood
texture definition:

0 ≤ x2 + y2 ≤ 1, z arbitrary → lightbrown
1 ≤ x2 + y2 ≤ 2, z arbitrary → darkbrown
2 ≤ x2 + y2 ≤ 3, z arbitrary → yellow
etc.
Figure 7 shows the influence of this texture on an object. Another ap-

proach of procedural texturing which results in a solid texture is called bomb-
ing. A number of spheres with random size and location is defining an ap-
pearance of the texture similar to a swiss cheese. Figure 8 shows an example.
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Figure 8: Bombing.

Figure 9: Environment mapping.

2.3 Environment mapping

With this approach, the texture is defined as a surrounding environment,
which is shrink-wrapped to the object [1]. In a preprocessing step, an envi-
ronment map is defined. The desired texture is projected to a surrounding
hull or sphere of the object. As the surrounding sphere is much larger as
the object to be mapped to, it is sufficient to trace viewing rays from the
center of the object to the sphere in order to determine texture entries. If the
texture is defined in polar coordinates, the according texels can be accessed
conveniently. For reflective surfaces, the intersection point of the reflected
rays with the environment sphere can be used to determine the texture infor-
mation. For diffuse surfaces the environment map has to be lowpass filtered
beforehand, in order to account for the scattered light transport of diffuse
reflection.

The environment may be shaped like a cube, sphere, or cylinder. The
projection step for generating the environment map from a surrounding scene
is different for each type. For the cube the map is generated with a rendering
method taking perspective distortion into account. Raytracing can be used
to generate the map for the sphere, where just viewing rays are considered,

6



Figure 10: Environment map generation for cube and cylinder maps.

Figure 11: Bump mapping.

but no reflected rays. Figure 10 shows the difference.

2.4 Bump mapping

Bump mapping is able to simulate minor imperfections of surfaces [2]. As
modeling the bumps geometrically would be too resource consuming, the
bumps are just simulated by shading the surface a little differently. Figure 11
shows the principle.

As the lightness of a certain point depends on the surface normal-vector at
this spot, bump mapping manipulates the normal vector. Texture is usually
specified as a height field, where the new normals can be derived easily.
Figure 12 shows the mapping procedure.

Bump mapping does not change the geometry of objects, but only the
way, they are shaded. This means, that the outline of the objects still are
rendered smoothly, as they are.

2.5 Horizon mapping

Horizon mapping tries to simulate bumps in a more sophisticated way than
standard bump mapping [8]. For each texel eight horizon values are calcu-
lated, which are interpolated before shading. A point in object space is only
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Figure 12: Bump mapping.

Figure 13: Horizon mapping.

directly lit, if the direction to the light source is higher than the pre-computed
horizon. Figure 13 shows a sketch of the application of this technique, Fig-
ure 14 shows an object rendered with this technique. With horizon mapping
two visual effects are possible that are not available with bump mapping:
bumps are casting shadows and bumps just below the shadow horizon are
not falsly lit.

2.6 Parallax mapping

Parallax mapping is implemented by displacing the texture coordinates at
a point on the rendered polygon by a function of the view angle in tangent
space (the angle relative to the surface normal) and the value of the height
map at that point [7]. At steeper view angles, the texture coordinates are
displaced more, giving the illusion of depth due to parallax effects as the
view changes, as shown in Figure 15.
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Figure 14: Two cylinders rendered with horizon mapping (right hand side)
and without (left hand side).

Figure 15: Displacement based on sampled height field and current view
direction.

2.7 Relief mapping

Relief mapping is an alternative texture mapping technique to parallax map-
ping that is much more accurate, and can support self-shadowing and normal
mapping [11]. It can be quite simply described as short-distance raytracing
done in a pixel shader (shown in Figure 16). Various techniques can be
implemented to speed up the raytrace by taking variable step sizes. Relief
texture mapping supports the representation of 3D surface detail, produc-
ing self-occlusion, self-shadowing (see Figure 17), view-motion parallax, and
silhouettes.

3 Perspective correctness

Texture coordinates are specified at each vertex of a given triangle, and these
coordinates are interpolated using an extended Bresenham’s line algorithm.
If these texture coordinates are linearly interpolated across the screen, the
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Figure 16: Ray intersection with a height-field surface using binary search.
Starting with A and B, the numbers indicate the sequence of computed mid-
points.

Figure 17: Shadow computation. One needs to decide if the light ray in-
tersects the height-field surface between point C and the point where the
viewing ray first hits the surface.

result is affine texture mapping. This is a fast calculation, but there can be
a noticeable discontinuity between adjacent triangles when these triangles
have different angles to the view plane. In Figure 18 center the texture (the
checker boxes) appear bent.

Perspective-correct texturing accounts for the vertices’ positions in 3D
space, rather than simply interpolating a 2D triangle. This achieves the
correct visual effect, but it is slower to calculate. Instead of interpolating
the texture coordinates directly, the coordinates are divided by their depth
(relative to the viewer), and the reciprocal of the depth value is also interpo-
lated and used to recover the perspective-correct coordinate. This correction
causes that in parts of the polygon which are closer to the viewer the differ-
ence from pixel to pixel between texture coordinates is smaller (stretching
the texture wider), and in parts which are farther away this difference is
larger (compressing the texture).
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Figure 18: Affine texture mapping does not take into account the depth
information of a polygon’s vertices. If a polygon is not perpendicular to the
viewer it produces a noticeable defect.

Affine texture mapping directly interpolates a texture coordinate uα be-
tween two endpoints u0 and u1:

uα = (1− α)u0 + αu1; 0 ≤ α ≤ 1

Perspective-correct mapping interpolates after dividing by depth z, then
uses its interpolated reciprocal to recover the correct coordinate:

uα =
(1− α)u0

z0
+ αu1

z1

(1− α) 1
z0

+ α 1
z1

(1)

4 Texture anti-aliasing

Whenever textures are applied to objects, aliasing artifacts appear. Due to
the deformation in terms of size, Moire-patterns or pixelization artifacts will
show up. Figure 19 shows one of the problematic regions when mapping a
texture to a sphere.

The reason for aliasing is to be found in the mapping process due to the
parametrization and/or projection. If the projection of an image-space pixel
covers more than one texel in texture space, it is not an appropriate strategy
to choose just one of the covered texels for color evaluation. A better way
to do it would be to use a weighted average of the covered texels. Figure 20
depicts the mapping situation. This averaging can either be done during tex-
ture evaluation (direct convolution) or in a preprocessing step (prefiltering).
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Figure 19: Very fine structures at the pole of the sphere will yield artifacts.

Figure 20: The origin of artifacts is to be found in the mapping procedure.
If more than one texel is covered by the projected pixel, a weighted average
of the texels should be used.

4.1 Direct convolution

Due to the limited time constraints during rendering, just approximations of
the projected pixels are used. Simple shapes like rectangles of ellipsoids are
evaluated for generating the average of the covered texels. Figure 21 gives
examples. This approach may be computationally expensive, yet it yields
superior quality, as nearest neighbour sampling.

4.2 Mip-mapping

A more efficient method is the prefiltering approach called mip-mapping [13].
In a preprocessing step different resolutions of the texture are precalculated,
each reduced version being half the size in each dimension. The coarsest
representation features a single texel. Figure 22 shows the reduction process.
The prefiltered textures can be efficiently stored illustrated on a scheme,
which separates the RGB channels, shown in Figure 23. The additional
storage requirement is one third of the initial texture. In order to map the
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Figure 21: Direct convolution: simple shapes are used to approximate the
averaging of the covered area.

Figure 22: Mip-mapping texture downsampling.

prefiltered texture to an object, the level of the mip-map D to be used has
to be determined first. The maximum of the projected diagonals is used to
approximately calculate this level: D = ld(max(|d1|, |d2|)) (see Figure 24).
Usually D will not be an integer number, therefore interpolation between the
according smaller and larger maps is done:

color of pixel = (D1−D)∗W0+(D−D0)∗W1 = (D1−D)∗(W0−W1)+W1

whereW0 is the value from mapD0 = trunc(D) andW1 is the value from map
D1 = D0 + 1, derived by linear interpolation. If the original resolution is too
small (D < 0), the texture has to be enlarged (upsampling) by interpolating
the finest resolution map. A better quality cannot be achieved, as the texture
is not defined more accurately (refer to Figure 25):

T (u+ du, v + dv) = du ∗ dv ∗ T (u+ 1, v + 1) + du ∗ (1− dv) ∗ T (u+ 1, v) +

(1− du) ∗ dv ∗ T (u, v + 1) + (1− du) ∗ (1− dv) ∗ T (u, v)
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Figure 23: Mip-mapping texture storage scheme.

Figure 24: Mip-mapping texture level derivation by length of diagonals.

4.3 Summed area table method

Another prefiltering method is precaculating and storing the sum of all texels
in the square (0, 0)− (u0, v0) (refer to Figure 26) [5]:

S(u0, v0) =
∑

u≤u0,v≤v0

T (u, v)

This allows to approximate texture footprints with corresponding axis-
aligned rectangular areas (see Figure 21). Whenever a sum of a certain
rectangular region in texture space is needed, it can be derived from the
precalculated sums with constant effort:

Sum = S(u+, v+)− S(u−, v+) + S(u−, v−)− S(u+, v−)

Just four memory accesses and additions are necessary to compute the sum.
The obviuos drawback of the method is decreasing precision for high-resolution
textures (when the sum becomes too big to be stored in the texel). Figure 27
shows an example of summed area table usage.
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Figure 25: Mip-mapping texture enlargement interpolation.

Figure 26: Summed area table generation.
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