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1 Introduction

One very important area of computer graphics is signal processing. People nor-
mally only have a rough idea of what it is and what possibilities this area offers.
The aim of this document is to give a brief description of uniform sampling and
reconstruction, which basically is the most common way of signal processing.
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The reader should get an overview about how it works and which problems can
occur.

First an overview on signals and functions will be given and the difficulties of
signal processing will be explained. Next we put our focus on the basic sampling
process using convolution for merging signal and filters. There we will see what
Nyquist Frequency is and what it is used for. Aliasing will then be discussed
with an example. For structuring the already stated concepts we will introduce
the 1D sampling theorem. Then basic filters will be explained and our main
interest will move on to the Convolution Theorem and the Fourier Transform.
The basics of the Fourier Transform will be discussed and we will see how the
Fourier Transform helps us doing sampling and reconstruction. The second part
of this paper mainly deals with reconstruction.

1.1 Signals and Functions

The basic concept from the field of signal processing is the concept of a signal.
The signal is a function that conveys information. Signals are often thought of
as functions of time (signals in the temporal domain) or as functions of spatial
coordinates (signals in the spatial domain). Most of the signals in computer
graphics are in the spatial domain. For example, we can think of images and
3D volumes as intensity variations over space. An example of a 1D signal in the
spatial domain is given in Figure 1.

(a)

α α

(b)

(c) (d)

Figure 1: Image. (a) Graphical primitives. (b) Mandrill. (c) Intensity plot of
scan line α in (a). (d) Intensity plot of scan line α in (b). (Taken from [1])

Signals can be additionally classified as continuous or discrete. A continuous
signal is defined at a continuum of positions in space; a discrete signal is defined
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at a set of discrete points in space. The functions of most analog signals, which
come from the real world, are mainly continuous. The functions of most digital
signals are discrete.

Looking at the definitions above and comparing them with the possibilities
of computers, which means digital representation of information, we mainly see
two problems:

1. Functions are continuous

2. Functions are infinite

The problems we deal with are quite old: Since the digital world was devel-
oped, people tried to convert analog signals into digital ones and vice versa in
order to be able to transfer and modify them in an easy way. Problems started
with the invention of telegraph system some hundred years ago. At that time
the Morse code was used to encode messages in a reasonable way. The system
had quite big advantages: low costs, easier transport and a cheap opportunity
to modify. But also disadvantages remained: transferring signals at reasonable
costs always means a loss of information. But we have a possibility to influence
which information will be lost in order to keep the most useful information.

A continuous signal may contain arbitrarily fine detail in the form of very
rapid (high-frequency) variations in its value as its continuous parameter is
changed. Since a discrete signal can change value only at discrete points, it
clearly has a maximum rate of variation. Therefore, converting a continuous
signal to a finite array of values may result in a loss of information. The main
goal is to ensure that as little information as possible is lost. The process of
selecting a finite set of values from a signal is known as sampling, and the selected
values are called samples. Once we have selected these samples, we must then
display them using a process, known as reconstruction, that attempts to recreate
the original continuous signal from the samples.

Taking things back to computer graphics a common example might be draw-
ing a line in a screen matrix or processing a monitor scan-line. To sum it up
digitizing an analog signal is what we do by sampling and turning a digitized
signal back to its analog representation will be done by reconstruction.

2 Sampling

As stated above, we are talking about processing aperiodic continuous signals
representing an image to make display and computation possible. Digital image
processing is very expensive; mainly because all the information has to be rep-
resented properly in order to make any processing possible. All transformations
to achieve these aims are costly to compute, create a large amount of data and
will always be a compromise between cost and quality.

What happens to the signal is the following: We decide to use a certain
sampling interval (uniform sampling) and take samples there. This way of
sampling often leads to big errors in the results because we leave out parts of
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our functions which do not influence the output at all. What we can do to avoid
this is building an average over an interval of our function just to let all parts
of the original function influence the result, which actually should represent the
whole function. To get an idea about this we will now take a look at an example.

2.1 The Basic Sampling Process

First we introduce two functions we would like to have a closer look at:

f1(x) = −x
4

3
+
x3

2
− 3x+ 30

and

f2(x) = 6x sin
√
|x5|+ 20

Looking at the plotted functions, we see that f1(x) varies less over time than
f2(x) does. Functions may consist of many different frequencies as explained
with the Fourier Transform. Going back to the above mentioned difference
between f1(x) and f2(x), this is a quite important fact because it determines
our sampling frequency. We will get back to this later.
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Figure 2: The function plots for f1(x) and f2(x).

We want both functions sampled which means that we take values at certain
positions based on a regular interval. In our example we sample at an interval
(also called sampling frequency) of 1. The positions we sample at are [-3; -2; -1;
0; 1; 2; 3]. The result can be seen in Figure 3.

Now we have two sampled functions from which we may guess the original
function. If we do so with f1(x) we can at least very easily imagine that we
might come quite dose to the original function whereas doing so with f2(x)
results in a completely different function. The reason for this is that for f2(x)
we took too few samples. We have to increase the sampling density for being
able to better reconstruct this function. This raises the question for the best
sampling frequency.

The sampling works best with sampling at two times the highest frequency of
the function. This is called Nyquist frequency FN(f) = 2u. Sampling theory tells
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Figure 3: Results of sampling functions f1(x) and f2(x).

us that a signal can be properly reconstructed from its samples if the original
signal is sampled just above the Nyquist frequency. An example of sampling at
the Nyquist frequency is given in Figure 4. Here we can see that the frequency
of the signal is captured correctly, but the amplitude depends on the sampling
positions. Sampling has to be above the Nyquist frequency to fully recover the
analog signal.

Figure 4: Sampling at the Nyquist frequency (a) at peaks, (b) between peaks,
(c) at zero crossings. (Taken from [1])

An example of sampling below the Nyquist frequency is given in Figure 5.
Here we can see that the frequency of the signal is captured incorrectly like we
are sampling a lower-frequency signal. We will discuss the Nyquist frequency
later when talking about reconstruction.
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Figure 5: Sampling below the Nyquist frequency. The reconstructed signal has
a lower frequency than the original signal.(Taken from [1])

2.1.1 Aliasing

The phenomenon of high frequencies masquerading as low frequencies in the re-
constructed signal is known as aliasing : The high-frequency components appear
as though they were actually lower-frequency components. Aliasing happens be-
cause of the reduction of continuous information to periodic samples trying to
provide the same information. A common example for this is a movie where a
continuous movement is reduced to 24 frames per second. Imagine a western
movie with a stagecoach seen from the side. At a certain speed wheels seem to
rotate backwards.

To sum it up at sampling time we have to care for sampling frequency which
should be at least just above the Nyquist Frequency. Due to this fact it is a
good idea to apply a low-pass filter before starting the sampling process. This
will normally reduce the Nyquist Frequency and therefore make sampling less
expensive to compute. Also the amount of data resulting from the sampling will
be reduced.

2.2 The Sampling Process in Computer Graphics

Sampling processes are wide-spread in computer graphics. A continuous signal
is defined at a continuum of positions in space: a discrete signal is defined at
a set of discrete points in space. Before scan conversion, the projection of 3D
objects onto the view plane may be treated as a continuous 2D signal whose
value at each infinitesimal point in the plane indicates the intensity at that
point. In contrast, the array of pixel values in the graphics system’s frame
buffer is a discrete 2D signal whose value is defined only at the positions in
the array. The rendering algorithms must determine the intensities of the finite
number of pixels in the array, so that they best represent the continuous 2D
signal defined by the projection. Now lets consider some examples of sampling
used in computer graphics.

2.2.1 Point Sampling

A straightforward way to select each pixel’s value is known as point sampling.
In point sampling, we select one point for each pixel, evaluate the original signal
at this point, and assign its value to the pixel. The points that we select are
typically arranged in a regular grid, as shown in Figure 6.
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Figure 6: Point-sampling process. Samples are shown as dots. (Taken from [1])

Some important features of the signal, however, may be missed (objects B
and D in Figure 6). Sampling at a higher rate (supersampling), we can generate
images with more pixels representing each portion of the picture.

2.2.2 Area Sampling

The problem of objects falling between samples and being missed suggests an-
other approach: integrating the signal over the area of a square centered on each
grid point and selecting its average intensity as that of the pixel. This technique
is called unweighted area sampling. Unweighted area sampling has drawbacks:
a small black object wholly contained inside of one of the pixels and surrounded
by a white background may move freely inside the pixel, and for each position
the value computed for the pixel remains the same. Thus, the object causes
the image to change only when it crosses pixel boundaries. The object’s contri-
bution to the pixel’s intensity can be weighted by its distance from the pixel’s
center: the farther away it is, the less it should contribute. This technique
is called weighted area sampling. This allows us to assign different weights to
different parts of the pixel.

2.3 Sampling Theory

Sampling theory provides an elegant mathematical framework to describe the
relationship between a continuous signal and its samples. So far, we have con-
sidered signals in the spatial domain; that is, we have represented each of them
as a plot of intensity against spatial position. A signal may also be considered
in the frequency domain; that is, we may represent it as a sum of sine waves,
possibly offset from each other (the offset is called phase shift), and having
different frequencies and amplitudes. Each sine wave represents a component
of the signal’s frequency spectrum. We sum these components in the spatial
domain by summing their values at each point in space. An example of peri-
odic and nonperiodic signals represented as the sum of phase-shifted sine waves
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whose frequencies are integral multiples (harmonics) of the signal’s fundamental
frequency is given in Figure 7.

Figure 7: A signal in the spatial domain is the sum of phase shifted sines. Each
component is shown with its effect on the signal shown at its right. (Taken from
[1])

Determining which sine waves must be used to represent a particular signal is
the central topic of Fourier analysis [2]. The Fourier transform (FT) is used as a
tool to switch from spatial to frequency domain and vice versa. In the frequency
domain a function is considered to be a sum of sine and cosine waves. The FT
does not change the function in any way. It is just seen from a different point
of view. The FT of f is called F (u), whose argument u represents frequency.
The value F (u), for each frequency u, tells how much (i.e., the amplitude phase
shift) of the frequency u appears in the original signal f(x). The function F (u)
is therefore called the representation of f (the signal) in the frequency domain;
f(x) is called the representation of the signal in the spatial domain. The FT of
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a continuous, integrable signal f(x) is defined by

F (u) =

∫ +∞

−∞
f(x)[cos 2πux− i sin 2πux]dx,

where i =
√
−1 and u represents the frequency of a sine and cosine pair. For

each u, the value of F (u) is a complex number R(u) + iI(u). This is a clever
way of encoding the phase shift and amplitude of the frequency u component of
the signal. The amplitude (or magnitude) of F (u) is defined by

|F (u)| =
√
R2(u) + I2(u),

and the phase shift (or the phase angle) is given by

φ(u) = tan−1 [
I(u)

R(u)
].

The inverse FT (IFT) transforms the signal from frequency to spatial domain

f(x) =

∫ +∞

−∞
F (u)[cos 2πux+ i sin 2πux]du.

The discrete version of the FT is

F (u) =
∑

0≤x≤N−1

f(x)[cos(2πux/N)− i sin(2πux/N)], 0 ≤ u ≤ N − 1,

and the inverse discrete FT is

f(x) =
1

N

∑
0≤u≤N−1

F (u)[cos(2πux/N) + i sin(2πux/N)], 0 ≤ x ≤ N − 1.

By choosing a sufficiently high sampling rate for the discrete FT, a good ap-
proximation to the behavior of the continuous FT is obtained for most signals.
The discrete FT may also be computed more efficiently by using a clever refor-
mulation known as the fast FT [3].

The FT is not the only way to transform the signal from spatial to frequency
domain and vice versa. Alternatives are the Hartley transform and the wavelet
transform. The FT is the most commonly used frequency transform.

2.4 Low-Pass Filtering

If we could create a new signal by removing problematic high frequencies from
the original signal, then the new signal could be reconstructed exactly from a
finite number of samples. The more high frequencies we remove, the lower the
sampling frequency is needed, but the less the signal resembles the original one.
This process is known as bandwidth limiting or band limiting the signal. It is
also known as low-pass filtering. The interesting question is what a low-pass
filter does and how we can apply it to a function.
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2.4.1 Convolution and Convolution Theorem

To filter one function with another function we use convolution. The convolved
function is a sliding weighted average of one function using the other one for
providing the weights. The convolution of two signals f(x) and g(x), written
as f(x)∗g(x), is a new signal h(x) defined as follows. The value of h(x) at
each point is the integral of the product of f(x) with the filter function g(x)
shifted such that its origin is at that point. So, h(x) is a weighted average of
the neighborhood around each point of the signal f(x), weighted by filter g(x)
centered at the point. The size of the neighborhood (or filter’s support) is the
size of the domain where the filter g(x) is nonzero.

h(x) = f(x)∗g(x) =

∫ +∞

−∞
f(τ)g(x− τ)dτ.

The filter function g(x) is often called the convolution kernel or filter kernel.
Two examples of convolution are given in Figure 8.

Figure 8: Examples of convolution.

If two functions in spatial domain are convolved their representations in fre-
quency domain are multiplied and vice versa. This is stated by the convolution
theorem. The FT of the convolution of two functions is equivalent to the product
of the FTs of both input signals, and vice versa.

f1 ∗ f2 ≡ F1F2

F1 ∗ F2 ≡ f1f2
Seen from the point of view of performance, the FT and the multiplication

in frequency domain can be much cheaper than doing the convolution in spatial
domain. The perfect low-pass filter in the frequency domain is multiplication
with a box filter, which corresponds to a convolution with the sinc function in
the spatial domain.

sinc =

{
sin(πx)
πx if x 6= 0

1 if x = 0
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But the sinc function is infinite (this filter has infinite support). Therefore we
use a truncated version of the sinc or other not perfect filter functions with
finite support for the filtering in the spatial domain. Common filter function
representations are shown in Figure 9.

Spaal Domain  f(x) Frequency Domain F(u)

Figure 9: (a) Sinc in spatial domain is box in frequency domain. (b) Truncated
sinc in spatial domain is ringing box in frequency domain. (c) Box in spatial
domain is sinc in frequency domain. (d) Tent in spatial domain is sinc2 in
frequency domain. (Taken from [1])

3 Reconstruction

After sampling is done, we have sampled functions represented by values at
certain positions. In uniform sampling these positions are located at regular
intervals. To make a function continuous we have to reconstruct it again. Ba-
sically this means to convert the digitized signal back into an analog one.

Corresponding to the sampling theory, the frequency spectrum of the sam-
pled functions look like that of the original signal, replicated at multiples of
the sampling frequency fs. Lets see how it works. Sampling a signal corre-
sponds to multiplying it in the spatial domain by a comb function (as shown
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in Figure 10(a)). The comb function has a value of 1 in the sample points and
a value of 0 everywhere else. In frequency domain sampling corresponds to a
convolution with the FT of a comb function. The FT of a comb function is
just another comb with teeth at multiples of fs (see Figure 10(b)). The height
of the teeth is fs in cycles per pixel. So the FT of a comb(fs) function results
in a comb( 1

fs
) function. Convolution of the FT of the comb function and the

FT of an original signal will replicate the original spectrum (see Figure 10(d)).
All the replications of the original spectrum (in the middle) are also called the
shadow spectra. The higher fs is the larger is the spacing between the spectra.
When fs approaches infinity there will be a single spectrum only. Selecting a
sufficiently high fs allows getting the replicated spectra which are located far
apart from each other. Sampling below the Nyquist frequency means that the
teeth of the comb(fs) are too far apart and the teeth of the comb( 1

fs
) are too

close together. Therefore the resulting shadow spectra will overlap, which will
cause aliasing artifacts. This makes error-free reconstruction not possible.

Nyquist frequency

Bandwidth

Figure 10: (a) Comb function in spatial domain. (b) Comb function in frequency
domain. (c) a FT of an original signal (d) Convolution of the FT of the comb
function and FT of an original signal. The spectrum of the sampled signal is
replicated. (Taken from [1])

The sampled signal at a finite sampling frequency has an infinite frequency
spectrum. In frequency domain reconstruction means: remove the shadow spec-
tra and retain only the original spectrum. Multiplying the spectrum with the
box filter in the frequency domain can be used for this purpose. This corre-
sponds to convolution of the sampled signal with a sinc function in the spatial
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domain. An example showing the influence of adequate and inadequate sam-
pling rates on the reconstruction results is shown in Figure 11(a). If the sampling
frequency is too low, the shadow spectra are overlaped (see Figure 11(b)). The
reconstruction then fails to remove overlapping spectra and separate them from
the original spectrum. This results in erroneous high frequency contributions
to the reconstruction result.

(1)

(2)

(3)

(4)

(5)

(6)

(a)

(5)

(6)

f(x) |F(u)|

(1)

(2)

(3)

(4)

(b)

Figure 11: (1) Shows the original signal (2) Sampled signal. (3) Sampled signal
before reconstruction using sinc filter. (4) Signal reconstructed with sinc. (5)
Sampled signal before reconstruction with tent filter. (6) Signal reconstructed
with tent filter. (Taken from [1])

If we have a band limited function sampled with its Nyquist frequency, then
this function can be perfectly reconstructed by using the sinc function. The
main problem with the usage of the sinc filter is that it is infinite. Just trun-
cating the sinc leads to strong reconstruction errors. Another technique is the
usage of a windowed sinc function. This basically means to use just a part of
the sinc filter at the most relevant region around the origin.

So far we discussed the perfect reconstruction filter sinc and stated that
a complete reconstruction of a function from its samples is possible if a band
limited function is sampled at its Nyquist frequency which is two times its
bandwidth. We did all this for the sake of simplicity in 1D. But exactly the
same can be done in 2D and 3D. The only difference is that every dimension

13



has its own bandwidth and Nyquist frequency. So we have 2 or 3 different
sampling distances.

Linear interpolation means that the discrete samples are connected by line
segments. In our terminology this means that the discrete signal is convolved
with a tent filter. The tent filter has a value of 1 at zero and is going down to zero
at position 1 and -l. The result of convolving the discretized function f2(x) with
the tent filter is given in Figure 12. The reason for this is the too low sampling
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Figure 12: Linear interpolation of f2(x) samples.

frequency. The side effects are called aliases. We can think of the reconstruction
process as described in the section about convolution: The tent is shifted in both
directions and a weighted average of both neighbor values is computed. This
can either be achieved analytically or by transforming both functions to the
frequency domain, multiplying them and transforming the result back.

Nearest neighbor interpolation means that at an arbitrary position x the in-
tensity value of the closest sample point is taken as reconstructed value. Nearest
neighbor interpolation produces a piecewise constant (discontinuous) result. In
our terminology this means that the discrete singal is convolved with the box
filter. An example of the nearest neighbor interpolation is given in Figure 13.

To summarize: The non-ideal reconstruction (i.e., using not the sinc in spa-
tial domain and the box filter in frequency domain) causes two types of aliasing
in the resonctruction:

• the original spectrum is not exactly recovered (e.g., high frequencies are
dampened)

• shadow spectra not fully eliminated (erroneous high frequency contribu-
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Figure 13: Nearest neighbor interpolation of f1(x) samples.

tions to the result)

4 Summary

Sampling a signal or image is a critical process. Errors done by sampling at
wrong frequencies can never again be corrected. Errors due to under-sampling
are called aliasing. Band-limited signals sampled at their Nyquist frequency can
be perfectly restored by using the ideal sinc filter.
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A Sampling At the Nyquist Frequency
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Sampling at Nyquist frequency

Sampling is multiplication with comb function in spatial domain

In frequency domain this corresponds to a convolution with the related comb
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B Sampling Below the Nyquist Frequency

FT
IFT

Spatial domain
f(x)

Frequency domain
|F(u)|

Nyquist frequency

frequency spectrum
signal

pixel

intensity

frequency

magnitude

FT
IFT

FT
IFT

shadow spectrashadow spectra

'Tcomb '/1 Tcomb

discrete signal

overlap of spectra = aliasing

tionmultiplica⋅

4 5

67

Sampling below Nyquist frequency

Sampling below Nyquist frequency means teeth of combT’ are too far apart

Teeth of comb1/T’ are too close together

Resulting shadow spectra overlap → aliasing results

4

5

6

Aliased discrete signal: error free reconstruction not possible7

nconvolutio∗

17



C Reconstruction

Reconstruction means: eliminate shadow spectra, retain original spectrum → 
multiplication with box filter

In spatial domain this corresponds to a convolution with the sinc filter 
(ideal reconstruction)

Original spectrum is recovered

Non-ideal reconstruction (i.e., using not the sinc in spatial domain and the box filter in 
frequency domain) causes two types of aliasing in the reconstruction

• original spectrum not exactly recovered (e. g., high frequencies are dampened)
• shadow spectra not fully eliminated (erroneous high frequency contributions to 
the result)
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