
Advanced Modeling 2

Katja Bühler, Andrej Varchola, Eduard Gröller

April 4, 2011

1 Parametric Representations

A parametric curve in E3 is given by

c : c(t) =

 x(t)
y(t)
z(t)

 ; t ∈ I = [a, b] ⊂ R

where x(t), y(t) and z(t) are differentiable functions in t. The vector ċ is
called tangent vector. A curve point c(t0), t0 ∈ I is called regular if ċ(t0) 6= o.

A parametrization is called regular, if ċ(t) 6= o for all t ∈ I. Any dif-
ferentable change of the parameter τ = τ(t) does not change the curve.
Moreover, if τ̇ 6= 0 in I then d(t) = c(τ(t)) is also a regular parametrization.
A curve which admits a regular parametrization is called regular.

A parametric surface is given by

s : s(u, v) =

 x(u, v)
y(u, v)
z(u, v)

 , (u, v) ∈ [a, b]× [c, d] = I × J ⊂ R2

where x(u, v), y(u, v) and z(u, v) are differentiable functions of the parame-
ters u and v.

The lines s(u, v0) with v0 ∈ J fixed and s(u0, v) with u0 ∈ I fixed are
called isoparametric lines of the surface (see Figure 1). The tangent plane of
a surface point is defined by the two tangent vectors su and sv, the surface
normal vector at this point is n = su × sv. A surface point is called regular
if n 6= 0.

1



For a good introduction to differential geometry see e.g. the book by
Aumann and Spitzmueller [1]. A detailed discussion of the following topics
can be found in the literature listed at the end of this summary. Almost all
pictures are generated with the help of a collection of CAGD-Java applets
written by the Geometric Design Group at the University of Karlsruhe:

http ://i33www.ira.uka.de/applets/mocca/html/noplugin/inhalt.html

Figure 1: Surface with Isolines

2 Bézier Curves

2.1 The Constructive Approach: The de Casteljau Al-
gorithm

First described by de Casteljau it is probably the most fundamental algorithm
in the field of curve and surface design, not least because it is so easy to
understand. ”Its main attraction is the beautiful interplay between geometry
and algebra: a very intuitive geometric construction leads to a powerful
theory”[2].

The Algorithm
Given n+ 1 points b0, ..., bn ∈ E3 and an arbitrary t ∈ R. Then

bri = (1− t)br−1
i + tbr−1

i+1 , i = r, ..., n (1)

2



and b0i = bi, defines the point bn0 with parameter value t on the so called
Bézier curve b(t). The points bi are called Bézier points.

Equation 1 describes a repeated linear interpolation whose intermediate
coefficients can be written into the triangular de Casteljau scheme (see Figure
2):

b00
b10

b01 b20
b11 b30

b02 b21
b12

b03

Figure 2: De Casteljau scheme

2.2 The Analytical Approach: Bézier Curves and Bern-
stein Polynomials

The de Casteljau algorithm gives a recursive definition of Bézier curves in
terms of an algorithm. For further theoretical development it is also necessary
to have an explicit parametric representation for them. Based on the de

3



Casteljau recursion it can be shown by mathematical induction, that a Bézier
curve b(t) with respect to the Bézier points bi, i = 0, ..., n is given by

b(t) =
n∑

i=1

biB
n
i (t)

where Bn
i (t) =

(
n
i

)
(1− t)n−1ti are the Bernstein Polynomials of n-th degree

with the following important properties

� partition of unity:
∑n

i=0B
n
i (t) ≡ 1

� positivity: Bn
i (t) > 0

� recursion: Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i+1 (t)

2.3 Some Properties of Bézier Curves

� Affine invariance: An affine transformation of the Bézier points is equiv-
alent to an affine transformation of the whole curve.

� Convex hull property: A Bézier curve lies inside the convex hull of its
Bézier points.

� Endpoint interpolation: The first and last Bézier points lie on the curve.

� Linear precision: If all Bézier points lie on a straight line, the corre-
sponding Bézier curve is identical to this line.

� Variation diminishing property: A Bézier curve has no more intersec-
tions with a plane than its Bézier polygon.

Disadvantage of Bézier curves:

� Pseudo local control: changing one of the control points changes the
shape of the whole curve, although, if for instance bi is changed, it is
mostly affected around the point corresponding to the parameter value
i/n, if n denotes the algebraic degree of the parametrization.

� The degree of a Bézier curve depends directly on the number of control
points. Thus, higher flexibility through more control points is equiva-
lent to a higher degree of the curve, which means higher computational
cost and less control on the behavior of the curve.

4



2.4 Derivatives

It can be easily shown, that

� the lines b0b1 and bn−1bn are the tangent lines at the curve points b0
and bn

� the intermediate points bn−1
0 and bn−1

1 of the de Casteljau algorithm
determine the tangent line at the position bn0 (t).

2.5 Important Algorithms

� Degree elevation: Adding new control points to increase flexibility
without changing the shape of the curve (see Figure 3).

Figure 3: A curve of degree 3 displayed as curve of degree 5

� Subdivision: Subdivision of a Bézier curve increases its flexibility
without increasing its degree and repeated subdivision converges very
fast toward the curve. The subdivision algorithm is a byproduct of the
de Casteljau algorithm: The two new generated sides of the triangle
contain the Bézier points of the two parts of the subdivided curve (see
Figure 4). For a detailed description of the algorithms see e.g. book
by Hoshek and Lasser [3].

2.6 Algorithms to Evaluate Bézier Curves

Following the same idea like the Horner scheme, a Bézier curve can be written
in the nested form

b(t) = (...((

(
n

0

)
sb0 +

(
n

1

)
tb1)s+

(
n

0

)
t2b2)s+ ...)s+

(
n

n

)
tnbn

5



Figure 4: The subdivision algorithm with the de Casteljau scheme

with s = 1− t, which leads to a more efficient algorithm.
Like mentioned above, repeated subdivision gives a good approximation

for the curve.

3 Splines

The use of B-Splines to define curves and surface for CAGD was first proposed
by Gordon and Riesenfeld in the early 70’s, but its theory goes back to the
early 19th century. B-Splines are a very common tool in CAD-Systems for the
design of curves and surfaces and have two advantages over Bézier techniques:

� The degree of a B-spline polynomial can be set independently of the
number of control points (with certain limitations).

� B-splines allow local control over the shape of a spline curve or surface.

3.1 B-Spline Curves

Given a set of n+ 1 control points, called de Boor points, di, i = 0, ..., n and
a knot vector U = (u0, ..., un+k). The corresponding B-spline curve s(u) is a
piecewise polynomial curve of order k (of degree k − 1) with 1 ≤ k ≤ n+ 1
of the form

s(u) =
n∑

i=0

diN
k
i (u)

6



The Nk
i (u) are the normalized B-spline basis functions of order k with respect

to U with the following recursive definition (see Figure 5):

N0
i (u) =

{
1 if u ∈ [ui, ui+1),

0 else.

N r
i (u) =

u− ui
ui+r−1 − ui

N r−1
i (u) +

ui+r − u
ui+r − ui+1

N r−1
i+1 (u); r = 1, ..., k

Properties of the basis functions:

� partition of unity:
∑n

i=0N
k
i (u) ≡ 1

� positivity: Nk
i (u) > 0

� local support Nk
i (u) = 0 if u /∈ [ui, ui+k)

Figure 5: A B-spline curve with all related information

3.2 Some Properties of B-Spline Curves

� Affine invariance

7



� Strong convex hull property: The curve segment corresponding to the
parameter values [ui;ui+1) lies inside the convex hull of the control
points di−k, ..., di.

� Variation diminishing property.

� Local support: Moving di changes s(u) only in the parameter interval
[ui;ui+1).

� Multiple knot points ui = ... = ui+s are possible. If s ≥ k the curve
goes through the control point di. Furthermore if n = k − 1 and
U = (u0, ..., u0, u1, ..., u1) then s(u) is a Bézier curve.

� Differentiability: s(u) is k− l− 1 times differentiable at a knot ui, if ui
is of multiplicity l ≥ 1.

3.3 Some Special Types of B-Spline Curves

The form of the knot vector determines three special cases of B-spline curves
(see Figure 6):

� open: u0 = ... = uk−1 and un+1 = ... = un+k

� closed: dn+1 = d0, dn+2 = d1, ...

� uniform: If the spacing between knot values is constant, the resulting
curve is called a uniform B-spline curve. Uniform B-spline curves have
periodic basis functions and therefore many algorithms have a simpler
and more effective implementation.

Figure 6: An open and a closed B-spline curve.

8



3.4 Evaluating B-Spline Curves

3.4.1 The de Boor algorithm

The de Boor algorithm is a generalized de Casteljau algorithm and works
following the same principles as linear interpolation. To evaluate s(u) at
u = ū, ū ∈ [ul;ul+1) the following recursion has to be done:

dri = (1− αr
i )d

r−1
i−1 + αr

id
r−1
i , i = l − k + 1, ..., l; r = 0, ..., k − 1

with

αr
i =

ū− ui
ui+k−r − ui

where d0i = di and s(ū) = dk−1
l . The de Boor scheme has the same form

like the de Casteljau scheme. The de Boor algorithm allows the evaluation
of the curve, without any knowledge of the basis functions and proposes an
effective method.

3.4.2 The direct evaluation

A second possibility to evaluate a B-Spline function for a parameter value ū
is given by the following algorithm.

1. Find the knot span [ui, ui+1) in which ū lies.

2. Compute the non zero basis functions.

3. Multiply the values of the nonzero basis functions with the correspond-
ing control points.

3.5 Algorithms

Knot insertion and knot refinement
The knot insertion algorithm inserts a knot one or multiple times into the

knot vector (see Figure 7). Knot insertion does not change the shape of the
curve, but refines its segmentation. This algorithm is used to increase the
flexibility of a curve, to compute derivatives, to split curves and to evaluate
a curve for a certain parameter value: The de Boor algorithm is a repeated
knot insertion algorithm that inserts this parameter value k + 1 times into
the knot vector. There exist special algorithms that insert several different
knots simultaneously (knot refinement).

9



Figure 7: An example for knot refinement.

Degree elevation:
Adapts curve degrees without changing the shape to build combined

structures, like tensor product surfaces or to connect curves and surfaces.
For a detailed description of the algorithms see e.g. book by Piegel and
Tiller[4].

4 Rational Curves

Although polynomials offer a lot of advantages, there exist a number of im-
portant curve and surface types which cannot be represented precisely using
polynomials, conic sections and quadrics that have a rationally parametriza-
tion. In general a rational parametrized curve has the form:

c(u) =


x(u)
w(u)
y(u)
w(u)
z(u)
w(u)


A more elegant and very useful representation is the one using homogeneous
coordinates: the curve c is represented as a polynomial curve in E4.

c(u) =


w(u)
x(u)
y(u)
z(u)


The original curve has to be interpreted as a projection of this curve onto the
hyperplane w(u) = 1 of E4. A homogeneous representation p = (w, x, y, z)T

of a point can be converted back to the euclidean representation in the fol-
lowing way: p = (x/w; y/w; z/w)T .

10



4.1 Rational Bézier Curves

A rational Bézier curve is defined as

b(u) =

∑n
i=0wibiB

n
i (u)∑n

i=0wiBn
i (u)

The wi, i = 0, ..., n are called weights and are assumed to be positive. If all
wi = 1, b(u) denotes a polynomial Bézier curve. Writing b(u) in terms of
homogeneous coordinates yields the following representation:

b(u) =
n∑

i=0

biB
n
i (u)

with the homogeneous Bézier points bi = (wi, wib
T
i )T .

Properties Rational Bézier curves have the same properties as non-
rational ones, but they

� are even projective invariant,

� do not lie inside the control polygon if negative weights are allowed,
and

� have the weights as additional design parameter: increasing the weight
wi causes an attraction of the curve towards the Bézier point bi.

Algorithms All algorithms for polynomial Bézier curves can be applied
in the same way to the homogeneous representation of a rational Bézier curve.

4.2 Non Uniform Rational B-Spline Curves (NURBS)

NURBS are the most important and flexible design elements provided in
CAD systems. Polynomial and rational Bézier curves and B-spline curves
are subsets of NURBS. A NURBS with respect to the control points d0, .., dn
and the knot vector U = (u0, ..., un+k) is defined as

n(u) =

∑n
i=0widiN

n
i (u)∑n

i=0wiNn
i (u)

The wi, i = 0, ..., n are called weights and are assumed to be positive. If all
wi = 1, n(u) denotes a polynomial B-Spline curve. Writing n(u) in terms of

11



homogeneous coordinates yields the following representation:

n(u) =
n∑

i=0

diN
k
i (u)

with the homogeneous control points di = (wi, win
T
i )T .

Properties: NURBS have the same properties as polynomial B-spline
curves, but they

� are even projective invariant

� do not lie inside the control polygon if negative weights are allowed and

� have the weights as additional design parameter: changing the weight
wi affects only the curve in the interval [ui, ui+k)

Algorithms All algorithms for polynomial Bézier curves can be applied
without any change to the homogeneous representation of a NURBS curve.

5 Surfaces

5.1 Tensor Product Surfaces

A surface is the locus of a curve that is moving through space and thereby
changing its shape. Let

f(u) =
n∑

i=0

ciFi(u)

be a curve in E3 with Fi(u), i = 0, ..., n as basis functions (e.g., Bernstein
polynomials or B-spline basis functions). Moving f through space while
deforming it, is equivalent to continuously changing the control points ci
which can be described by

ci(v) =
m∑
j=0

aijGj(v)

where the Gj(v), j = 0, ...,m are basis functions too. Combining both equa-
tions yields the definition of a tensor product surface:

s(u, v) =
n∑

i=0

m∑
j=0

aijFi(u)Gj(v).

12



Figure 8: A Bézier tensor product surface

Bézier Surfaces
A tensor product Bézier surface (see Figure 8) is given by

b(u, v) =
m∑
i=0

n∑
j=0

bijB
m
i (u)Bn

j (v).

The Bézier points bij form the control net of the surface. Tensor product
Bézier surfaces have properties analogue to that of Bézier curves. All algo-
rithms for Bézier curves can be applied in two steps to the surface b(u, v):

1. Apply algorithm on the curves bi(v) =
∑n

j=0 bijB
n
j (v).

2. Apply algorithm on the curves b(u, v) =
∑m

i=0 bi(v)Bm
i (u).

B-Spline Surfaces
A tensor product B-spline surface with respect to the control points dij

and the knot vectors U = (u0, ..., um+k) and V = (v0, ..., vn+l) is given by

s(u, v) =
m∑
i=0

n∑
j=0

dijN
k
i (u)Bl

j(v).

Tensor product B-spline surfaces have properties analogue to that of Bézier
curves. All algorithms for B-spline curves can be applied in the same two
steps to the surface s(u, v) like the algorithms for Bézier curves on tensor
product Bézier surfaces.

13



5.2 Bézier Triangles

A triangular Bézier patch is defined by

bp(u, v) =
∑

i+j+k=n

bi,j,kB
n
i,j,k(u, v, w)

where i, j, k ≥ 0 and u, v, w are barycentric coordinates of the triangular
parameter domain. The Bn

i,j,k are generalized Bernstein polynomials of degree
n:

Bn
i,j,k(u, v, w) =

n!

i!j!k!
uivjwk

The Bézier net of the surface is formed by the 1/2(n+1)(n+2) Bézier points
bi,j,k (see Figure 9). The triangular Bézier patch inherits many properties
from the univariate Bézier curve.

Figure 9: An elliptic paraboloid as Bézier triangle

14



5.3 Algorithms

� The de Casteljau algorithm for triangular patches produces a tetrahe-
dral scheme. The recursion formula for the computation is:

blijk = ubl−1
i−1jk + vbl−1

ij−1k + wbl−1
ijk−1

where i + j + k = n− l, (i, j, k ≥ 0) and b0ijk = bijk. It is easy to show
that bp(u, v, w) = bn000.

� Degree elevation

� Subdivision: the subdivision of the patch into three subpatches can be
derived from the de Casteljau algorithm, like in the univariate case.

6 Subdivision Surfaces

Subdivision surfaces are polygon-mesh surfaces generated from a base mesh
through an iterative process that smooths the mesh while increasing its den-
sity (see Figure 10). It is convenient to represent subdivision surfaces as
functions defined on some parametric domain with values in R3. A simple

Figure 10: Illustration of the progressive smoothing of the mesh by a subdi-
vision scheme [5].

construction allows to use the initial control mesh, as the domain for the sur-
face. Complex smooth surfaces can be derived in a predictable way from sim-
ple initial control meshes. The subdivision surfaces are defined recursively.
The process starts with a given initial control mesh. In each iteration, the

15



subdivision process produces a increasing number of polygons [6]. The mesh
vertices converge to a limit surface through iteration step. Every subdivision
algorithm has rules to calculate the locations of new vertices. Subdivision
representations are suitable for many numerical simulation tasks which are
of importance in engineering and computer animation.

A vertex v is a 3D position which describes the corners or intersections
of geometric shapes. For example a triangle has three vertices. An edge
is a one-dimensional line segment connecting two adjacent zero-dimensional
vertices in a polygon. A planar closed sequence of edges forms a polygon
(face). A polyhedron is a geometric solid in three dimensions with flat faces
and straight edges. The valence of a vertex is the number of edges at the
vertex. Subdivision rules are often specified by providing a mask. The mask
is a visual scheme showing which vertices and weights are used to compute
a new vertex.

6.1 The Loop Scheme

Figure 11: Initial triangle mesh before the Loop subdivision scheme [5].

One of the simplest subdivision schemes is the one, invented by Charles
Loop. The Loop scheme defines the subdivision process for triangle meshes
only (see Figure 11). At each step of the scheme, each triangle is split into
four smaller triangles.

First, an edge vertex ve is constructed on each edge (see Figure 12). This
edge vertex is three eighths of the sum of the two vertices of the edge (v1,v2)
plus one eighth of the sum of the two other vertices (v3,v4) that form the two
triangles that share the edge in question:

16



Figure 12: Left: mask for the construction of edge vertices with the Loop
subdivision. Right: edge vertices constructed on each edge of polygons from
the initial control mesh [5].

ve =
3

8
v1 +

3

8
v2 +

1

8
v3 +

1

8
v4

Second, a new vertex vnew is constructed for each old vertex vold (see
Figure 13). If a given vertex has n neighbor vertices vj, the new vertex point
is calculated as:

vnew = (1− nβ)vold + β
n∑

j=1

vj,

where β is a scaling factor. Smoothness considerations lead to specific values
of β. For n = 3, β is 3/16. For n > 3:

β =
1

n
(
5

8
− (

3

8
+

2

8
cos

2π

n
)2).

Finally, each old triangle has three edge vertices, one for each edge, and
three new vertices, one for each old vertex. To form the new triangles these
points are then connected, creating four triangles (see Figure 14).

The cube in Figure 15 has been tessellated into triangles with a vertex
in the center of each original cube face. Four triangles after each subdivision
step correspond to each triangle in the prior level of subdivision.

6.2 The Catmull-Clark Scheme

The rules of the Catmull-Clark scheme are defined for meshes with quadrilat-
eral faces (see Figure 16).First, a face vertex vf is created for each old polygon

17



Figure 13: Left: mask for the construction of a new vertex with the Loop
subdivision. Right: a new vertex is constructed from each old vertex and the
weighted sum of neighboring vertices [5].

Figure 14: Final reconnection of the new triangles in the Loop subdivision
[5].

(see Figure 17), defined as the average of every vertex in the polygon:

vf =
1

4

4∑
i=1

vi

Second, an edge vertex ve is created for each old edge (see Figure 18), de-
fined as the average of the edge vertices and the face vertices for the polygons
that adjoin the old edge:

ve =
v1 + v2 + vf1 + vf2

4

18



Figure 15: The Loop subdivision of the tesselated cube with two successive
steps [7].

Figure 16: Initial quadrilateral mesh before the Catmull-Clark subdivision
scheme [5].

Finally, new vertices are defined (see Figure 19). For each old vertex vold,
there are n polygons sharing it. The new vertex vnew is given as:

vnew =
Q

n
+

2R

n
+
vold(n− 3)

n
.

Q is the average of the adjacent face vertices. R is the average of the
adjacent edge vertices. The new vertices are then connected to produce a
finer grid of quadrilaterals (see Figure 19). Each face of the cube in the
Figure 20 has been divided into four quadrilaterals.

6.3 Classification of Subdivision Schemes

Subdivision schemes can be classified based on:

� the type of refinement rule

– vertex insertion (Loop, Catmull-Clark, Modified Butterfly, Kobbelt)

19



Figure 17: Face vertices are created for each polygon in the first step of the
Catmull-Clark scheme [5].

Figure 18: Edge vertices are created for each old edge in the second step of
the Catmull-Clark scheme [5].

– corner-cutting (Doo-Sabin, Midedge)

� the type of generated mesh

– triangular (Loop, Modified Butterfly)

– quadrilateral (Catmull-Clark, Kobbelt)

� whether the scheme is:

– approximating (Loop, Catmull-Clark)

– interpolating (Modified Butterfly, Kobbelt)

There are two main approaches that are used to generate a refined mesh:
one is vertex insertion and the other is corner cutting. For vertex insertion,
each edge of a triangular or a quadrilateral mesh is split into two old vertices
of the mesh are retained, and new vertices inserted on edges are connected.
For quadrilaterals, an additional vertex is inserted for each face. For corner

20



Figure 19: New vertex (blue point) is created close to, but usually not pre-
cisely at, the old vertex [5].

Figure 20: In the last step of the Catmull-Clark scheme, the new vertices are
connected [5].

cutting, for each old face, a new similar face is created inside of it and the
newly created faces are connected. As a result, we get four new vertices for
each old edge, a new face for each edge and each vertex. The old vertices are
discarded.

Subdivision schemes can be classified based on the type of polygon they
operate on. Some schemes work for quadrilaterals (quads), while others
operate on triangles.

Interpolating schemes are required to match the original position of ver-
tices in the original mesh. Approximating schemes do not match the original
positions and they can and will adjust these positions as needed. In general,
approximating schemes have greater smoothness. Examples with different
subdivision schemes for simple initial meshes are shown on the Figure 21.

21



Figure 21: The Catmull-Clark subdivision of the cube with two successive
steps [7].

Figure 22: Examples with different subdivision schemes [5].

References

[1] G. Aumann and K. Spitzmüller. Computerorientierte Geometrie. BI-
Wissenschaftsverlag, Mannheim, 1993.

[2] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide. Academic Press, 1993.

[3] J. Hoschek and D. Lasser. Grundlagen der geometrischen Datenverar-
beitung. B.G. Teubner Verlag, 1997.

[4] L. Piegl and W. Tiller. The NURBS book (2nd ed.). Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

22



[5] O. Weber. Subdivision Surfaces. http://www.cs.technion.ac.il/

~cs236716/, 2011. [Online; accessed 04-March-2011].

[6] D. Zorin, P. Schröder, T. Derose, L. Kobbelt, A. Levin, and W. Sweldens.
Subdivision for Modeling and Animation. In SIGGRAPH Course Notes,
New York, 2000. ACM.

[7] R. Holmes. A Quick Introduction to Subdivision Surfaces. http://

www.holmes3d.net/graphics/subdivision/, 2011. [Online; accessed
04-March-2011].

23


