
1

Advanced Modeling 2

Katja Bühler, Andrej Varchola, Eduard 
Gröller

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Topics

Parametric curves and surfaces

Polynomial curves

Rational curves

Tensor product surfaces

Triangular surfaces

1

Parametric Curves
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Parametric Surfaces
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Bézier Curves: The de Casteljau Algorithm
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Bézier Curves and Bernstein Polynomials
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Properties of Bézier Curves

Affine invariance
Convex hull property
Endpoint interpolation
Linear precision
Variation diminishing property

Disadvantages
Only pseudo local control
High degree
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Important Algorithms for Bézier Curves

Degree elevation
to increase flexibility

Subdivision
to increase flexibility
to approximate the curve

The subdivision is a byproduct of the de
Casteljau algorithm
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Evaluation/Approximation of Bézier Curves

The de Casteljau algorithm is numerical 
stabil, but inefficient for evaluation
Horner scheme like evaluation is more 
efficient

Repeated subdivision gives in a fast way a 
good approximation of the curve 
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B-Spline Curves

B-Spline curves

are piecewise polynomial curves of degree 
k-1

have a degree (almost) independent of the 
number of control points

allow local control over the shape of a curve
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B-Spline Curves: Definition
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B-Spline Basis Functions
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Properties of B-Spline Curves

Affine invariance

Strong convex hull property

Variation diminishing property

Local support

Knot points of multiplicity k are coincident with one of 
the control points.

A B-Spline curve of order k which has only knots of 
multiplicity k is a Bézier curve
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Evaluating B-Spline Curves: The de Boor Algorithm
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Direct Evaluation of B-Spline Curves

Find the knot span [ui,ui+1) in which the 

parameter value t lies

Compute all non zero basis functions

Multiply the values of the nonzero basis 

functions with the corresponding control points
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Special B-Spline Curves
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Important Algorithms for B-Spline Curves

Knot insertion
to increase flexibility
to compute derivatives
to split curves (subdivision algorithms)
to evaluate the curve (see de Boor 
algorithm)
to approximate the curve

Degree elevation
to adapt curve degrees
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Rational Curves
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Rational Bézier Curves
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Rational Bézier Curves: Properties and Algorithms 

Properties: 

the same properties like polynomial curve, and

projective invariance

the weights are an additional design parameter

Algorithms

All algorithms of polynomial Bézier curves can 
be applied without any change to the 
homogeneous representation of rational Bézier 
curves.
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Non Uniform Rational B-Splines
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NURBS: Properties and Algorithms 

Properties: 
the same properties like polynomial curve, 
and
projective invariance
changing the weight wi affects only the 
interval [ui, ui+k)

Algorithms
All algorithms of B-spline curves can be 
applied without any change to the 
homogeneous representation of NURBS 
curves.

21

Tensor-Product Surfaces

"A surface is the locus of a curve that is moving 
through space and thereby changing the shape" 
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Tensor-Product Bézier Surfaces

surface. the of net control the form  points Bézier The

by given is surface Bézier product-tensorA 
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Tensor-Product Bézier Surfaces
Properties and Algorithms

Properties: 
analogue to that of Bézier curves

Algorithms:
Apply algorithms for curves in two steps:

Apply to 

Apply to

nivBv
m

j

m
jiji ,...,0),()(

0




bb

)()(),(
0

uBvvu
n

i

n
ii



 bb

24

Tensor-Product B-Spline Surfaces
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Bézier Triangles
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Bézier Triangles: Properties and Algorithms

Properties:
the same as in the univariate case

Algorithms:
De Casteljau:

Subdivision

Degree elevation
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Subdivision Surfaces

Polygon-mesh surfaces generated from a base 
mesh through an iterative process that smoothes the 
mesh while increasing its density

Represented as functions defined on a parametric 
domain with values in R3

Allow to use the initial control mesh as the domain

Developed for the purpose of CG and animation
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Subdivision Surfaces: The Basic Idea

In each iteration
Refine the initial control mesh

Increase the number of vertices / faces

The mesh vertices converge to a limit surface
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SIGGRAPH 2000 Course Notes
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Loop’s Scheme (‘87)
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Catmull-Clark Scheme ’78
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Face vertex

Vertex

Edge vertex

( 3)2 p nQ R
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 Q – Average of face vertices

 R – Average of edge vertices

 v – new vertex

http://www.cs.technion.ac.il/~cs236716/

Comparison of the Loop and the Catmull-Clark Scheme

Andrej Varchola 32

Loop subdivision scheme:

Catmull-Clark subdivision scheme:

http://www.holmes3d.net/graphics/subdivision/

Subdivision Surfaces: Classification
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The type of refinement rule
Vertex insertion

Corner cutting

The type of generated mesh
Triangular

Quadrilateral

Approximating vs. Interpolating

Subdivision Surfaces: Comparison
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[http://www.cs.technion.ac.il/~cs236716/]


