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Topics

= Parametric curves and surfaces
= Polynomial curves

= Rational curves

= Tensor product surfaces

m Triangular surfaces

Parametric Curves
x(u)
¢ cu)=|yW)|; uelabl=:1cIR
2(u)

- x(u), y(u), z(u) are differenti able functions inu

- Tangent vector : t(u):dic(u)
u

- cregularinc(u,) < t(u,) #o0
- cregular < ccanbe parametrizedinaway that all curve
points are regular.
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Parametric Surfaces
x(u,v)

s: osuV)=|yuv) | (uv)elablxc,d]=1xJ cIR?
z(u,v)

- x(u,v), y(u,v), z(u,v)are differenti able functions inuand v

- Tangent plane :ty(l,m) = s(uy,Vy) +15,(Ug,Vo)+ms,(Ug,Vy)

- Normal vector : n(ug,Vy) =5,(Ug,Vo )% Sy(Ug,Vo)

- sregular ins(uy,V,) < n(Ug,V,)#0

- sregular < scanbe parametrizedinaway that all surface
points are regular.
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Bézier Curves: The de Casteljau Algorithm

Given n+1points by,...b, € IE*and anarbitrary te IR.
Set
bl = (Lt)b "+ tbl; with b} = b;,.

Then by isacurve point on the corresponding Bézier curve.

The points by ™ and b; ™ determine the tangent line of the curve at point b?.
by
by b
b? by

b3
The de Casteljau scheme

Bézier Curves and Bernstein Polynomials

Bézier curve with respect to Bézier points b, i =0,...,n:

b) = YbB/()

Bernstein polynomial s:

B?a):[?j(l—tr*v




Properties of Bézier Curves

= Affine invariance

= Convex hull property

= Endpoint interpolation

= Linear precision

= Variation diminishing property

= Disadvantages
+ Only pseudo local control
¢ High degree L

Important Algorithms for Bézier Curves

= Degree elevation
+ to increase flexibility

» Subdivision
+ to increase flexibility
+ to approximate the curve

The subdivision is a byproduct of the de
Casteljau algorithm

Evaluation/Approximation of Bézier Curves

m The de Casteljau algorithm is numerical
stabil, but inefficient for evaluation

= Horner scheme like evaluation is more
efficient

b(t) = (...(((g]sbo +G]tb1)s +[2]tzbz)s s +(:]t”bn with =1

= Repeated subdivision gives in a fast way a
good approximation of the curve

. #

B-Spline Curves

= B-Spline curves

= are piecewise polynomial curves of degree

k-1
= have a degree (almost) independent of
number of control points

the

= allow local control over the shape of a curve

B-Spline Curves: Definition

Given:
-n+1control points d; € IE?, i=0,...,n
- knot vector U = (ug,...,Up,, )

B - spline curve :
s(u) = ZdiNik (u), uelugu,,)
i=0

with the B - spline basis functions N} (u) of order k.
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B-Spline Basis Functions

k=0. NO(U)= 1 ue[ui'ui+1)
o 0 sonst

u

k>0 N (u)=——— N u) + N

itk-1 Y i+k i+1

Properties of the basis functions :

ikﬁl (u)

- partition of unity : > Nfu)=1 l;m‘« é g
) ‘ i r
2x 2

-positivity : Nj(u)>0

| o o o o |

-local support : Nfu)=0 ifuely,u,,)

1

#




Properties of B-Spline Curves

n Affine invariance

= Strong convex hull property

= Variation diminishing property

= Local support

= Knot points of multiplicity k are coincident with one of
the control points.

= A B-Spline curve of order k which has only knots of
multiplicity k is a Bézier curve

Evaluating B-Spline Curves: The de Boor Algorithm

Given
n+1control points d,,....d, € IE® aknot vector U =(U,,...,U,, )
and an arbitrary te [Uy,U,.,)- <,

Set o @
r r r-1 r r-1 dlz dg
di = (Ia)di;+ af df &b
d;
t-uy, @

u. The de Boor scheme
i

with d’ = d, and o =
ik—r

Then d¥* is the point for x(t, ), t, €[t,,, t,..,] on the corresponding

B-spline curve. ﬂ

The points d¥2 and d¥? determine the tangent line of the curve at point b,

Direct Evaluation of B-Spline Curves
» Find the knot span [uj;,u;,,) in which the
parameter value t lies
m Compute all non zero basis functions

= Multiply the values of the nonzero basis
functions with the corresponding control points
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Special B-Spline Curves
= open:
Uy =.. = Uy <Upyy <o <Uy =.o=Upy,
m closed:

d,,=d,,...,d., =d,_, and

U= (UO"""un+k’""un+2k—2)

Important Algorithms for B-Spline Curves

= Knot insertion
+ to increase flexibility
+ to compute derivatives
+ to split curves (subdivision algorithms)

+ to evaluate the curve (see de Boor Z j
algorithm)

+ to approximate the curve

= Degree elevation
+ to adapt curve degrees U@

= uniform:
U =(up,Uy+d,....u, + (n+k)d)
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Rational Curves

Rational curve :

x(u)
c(u):ﬁ yu)| uelclIR Q
z(u)

Example : conic section

Homogeneou s representation: o) = 1 (a(1l-u?)
w(u) 1+u*| b2u
2
cy(u)= X , uelclIR Lru
y(u) ¢, (U) =| a(l-u?)
z(u) b 2u




Rational Bézier Curves

A rational Bézier curve is defined as
2:10 w;b; B (u)
Zinzo w;B;'(u) ’

The w, >0,i=0,..,n are called weights.

b(u) = uelclIR

Homogeneou s representation:
by(u)=>" by B'(U), uelcIR
with the homogeneou s Bézier points

bu~{ b
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Rational Bézier Curves: Properties and Algorithms

= Properties:
+ the same properties like polynomial curve, and
4 projective invariance
+ the weights are an additional design parameter

= Algorithms

+ All algorithms of polynomial Bézier curves can
be applied without any change to the
homogeneous representation of rational Bézier
curves.
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Non Uniform Rational B-Splines

ANURBS curve with respect to the control points d;, i =0,...,n
and the knot vector U = (U,,...,U,., ) is defined as

Zin:owidiNik (u)
2o WN(U)

The w; >0,i=0,..,n are called weights.

n(u) =

, uelug,u,)cIR

Homogeneou s representation:

n,(u) = zir\:onHi Nik(u)r uefug,u,, )<= IR
with the homogeneou s B - Spline points

(WW] . ¥

NURBS: Properties and Algorithms

= Properties:
+ the same properties like polynomial curve,
and
+ projective invariance
+ changing the weight w; affects only the
interval [u;, Uy,

= Algorithms

+ All algorithms of B-spline curves can be
applied without any change to the
homogeneous representation of NURBS
curves.

Tensor-Product Surfaces

= "A surface is the locus of a curve that is moving
through space and thereby changing the shape"

Given acurve
fW=3cFW)., uclcik
moving t;g control points yields
c;(v) =Zm:aijGj(V), velclIR
j=0
Combinir:g both yields a tensor - product surface

s(u,v) =iiaijﬁ WG;(v), UV)elxJcIR?

i=0 j=0 *
22 -

Tensor-Product Bézier Surfaces

A tensor -product Bézier surface is given by

b(u,v) :Zn:ibijBi“(u)B;"(v), (uv)elxJcIR?

i=0 j=0
The Bézier points b;; form the control net of the surface.




Tensor-Product Bézier Surfaces

m Properties:
analogue to that of Bézier curves

m Algorithms:
Apply algorithms for curves in two steps:
¢ Apply to i
bi(v):ZbiiB;“(v), i=0,..,n
+ Apply to "

b(uv) = 3, (1)B! ()

Tensor-Product B-Spline Surfaces

A tensorprod uct B - spline surface with respect to the knot vectors
U =(Ugonlyi )V = (VorreVr)
isgiven by
d(u,v) = D dyNFUINGV),  (U,v) €U, Uy ) X[V, V) < IR
i=0 j=0
The control points d;; form the control net of the surface.

Properties and Algorithm s are analogue to the description for
Bézier tensor product surfaces.

Bézier Triangles

A triangular Bézier patch is defined by
b(u,v,w)= > by, B (u,v,w)

i+jrk=n
i,jk>0

The u,v,ware barycentri c coordinates of
the triangular parameter domain.

Generalize d Bernstein polynomials:

n I L
Bijk(u,v,w)——i!j!k!u viw

Bézier Triangles: Properties and Algorithms

= Properties:
+ the same as in the univariate case
= Algorithms:
4 De Casteljau:

| 1 -1 I
ik = UBLpj + VB + Wiy

4 Subdivision
# Degree elevation
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Subdivision Surfaces

= Polygon-mesh surfaces generated from a base
mesh through an iterative process that smoothes the
mesh while increasing its density

= Represented as functions defined on a parametric
domain with values in R®

= Allow to use the initial control mesh as the domain
= Developed for the purpose of CG and animation

Subdivision Surfaces: The Basic Idea

= In each iteration
¢ Refine the initial control mesh
+ Increase the number of vertices / faces
= The mesh vertices converge to a limit surface
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Loop’s Scheme (‘87) Catmull-Clark Scheme '78
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Comparison of the Loop and the Catmull-Clark Scheme Subdivision Surfaces: Classification

Loop subdivision scheme. = The type of refinement rule
¢+ Vertex insertion
+ Corner cutting

m The type of generated mesh
¢ Triangular
¢ Quadrilateral

Catmull-Clark subdivision scheme:

&

Andrej Var ﬁ 33 i

= Approximating vs. Interpolating

Subdivision Surfaces: Comparison

Loop Bunenfc Loop Bureefy

[http://www.cs.technion.ac.il/~cs236716/]




