
Advanced Modeling

Andreas H. König, Peter Rautek

March 9, 2011

1 Introduction

Nowadays (triangle) meshes are by far the most commonly used representa-
tion for modeling geometric objects in computer graphics. However, in many
situations meshes are not well suited. For instance the creation of convincing
models for fluids, smoke, fire, organic structures, repetitive structures, etc.,
is very tedious and sometimes impossible using meshes. There are several
reasons why meshes are not well suited for these tasks:

Fuzzy object boundaries: Many real world phenomena do not have
clearly defined object boundaries. Therefore it is impossible to model them
with a surface representation approach (like meshes). The modeling of these
phenomena requires volumetric representation approaches.

Large deformations of the surface: Modeling of objects that deform
over time (such as wave fronts in a wave propagation simulation) are very
hard to model using meshes. These objects are often modeled and rendered
more conveniently using particle or grid based methods.

Changing topology: Meshes have only limited use for models that
change their topology over time (i.e., holes are introduced or removed, they
split and merge, etc.). Meshes are mainly not very well suited for this sit-
uations because they are tedious to model and many algorithms on meshes
were developed assuming that the topology is constant. In some situations
(often in combination with physical simulations) topology changes are better
handled with alternative modeling techniques.

High geometric complexity: Certain phenomena exhibit huge geo-
metric complexity. Although it is possible to model them with meshes, it is
often more convenient to model them with an alternative method. In many

1



(a) Water (b) Sea (c) Smoke

Figure 1: Examples of complex phenomena that: exhibit large surface defor-
mations (a), quickly changing topology (b) and fuzzy object boundaries (c).
Images taken from [4, 5]1.

cases the resulting models can afterwards be converted to triangle meshes for
rendering.

Figure 1 shows examples of complex phenomena that are typically not
modeled with meshes.

To overcome the limitations of meshes a wide variety of advanced mod-
eling techniques were invented. In this Chapter we will review the basics of
frequently used techniques. In Section 2 an introduction to particle systems
is given. Particles are very useful for modelng fuzzy objects or phenomena
such as smoke, and fire. In Section 3 we review implicit modeling techniques
that are in computer graphics mainly used to render fluids. Apart from the
applications in computer graphics the introduced methods do have a wide
area of applications including image segmentation, fluid simulation, etc. In
Section 4 we will review procedural methods that are mainly applicable for
objects with very high geometric complexity. These objects include hair
and fur, as well as organic structures like roots of plants, trees, grass, etc.
Finally, Section 5 deals with structure deforming transformations, that are
themselves not modeling techniques. However, they are applicable to many
representations of geometric objects, yielding results that are sometimes hard
to achieve with other modeling techniques.

1There is lots of additional information on Ronald Fedkiw’s homepage at Stanford:
http://physbam.stanford.edu/~fedkiw/

2



2 Particle Systems

Particle systems are a method for modeling natural objects, or other ir-
regularly shaped objects, that exhibit fluid-like properties. This method is
particularly good for describing objects that change over time by flowing, bil-
lowing, spattering, or expanding. Objects with these characteristics include
clouds, smoke, fire, fireworks, waterfalls, water spray, and clumps of grass.
For example, particle systems were used to model the planet explosion and
expanding wall of fire due to the genesis bomb in the motion picture Star
Trek II: The Wrath of Khan.

Random processes are used to generate objects within a defined region
of space and to vary their parameters over time. After a random time, each
object is deleted. During the lifetime of a particle, its path and surface
characteristics may be color-coded and displayed. Particle shapes can be
small spheres, ellipsoids, boxes, or other shapes. The size and shape of
particles may vary randomly over time. Also, other properties such as particle
transparency, color, and movement can vary randomly. In some applications,
particle motion may be controlled by specified forces, such as a gravity field.

(a) Simulated growing grass (b) Simulated waterfall

Figure 2: Particle systems used for simulation of complex phenomena like
grass or waterfalls. Images taken from [3]

As each particle moves, its path is plotted and displayed in a particu-
lar color. For example, a fireworks pattern can be displayed by randomly
generating particles within a spherical region of space and allowing them
to move radially, outward. The particle paths can be color-coded from red
to yellow, for instance, to simulate the temperature of the exploding par-

3



Figure 3: An effect known as particle dispersion or disintegration2.

ticles. Similarly, realistic displays of grass clumps have been modeled with
trajectory-particles that are shot up from the ground and fall back to earth
under gravity. In Figure 2(a) the particle paths originate within a tapered
cylinder, and might be color-coded from green to yellow.

Figure 2(b) illustrates a particle-system simulation of a waterfall. The
water particles fall from a fixed elevation, are deflected by an obstacle, and
then lash up from the ground. Different colors are used to distinguish the
particle paths at each stage.

Special effects for motion pictures also frequently employ particle systems.
A frame of an animation, simulating the disintegration of an object is shown
in Figure 3 . The object disintegrates into the particle distribution from left
to right.

3 Implicit Modeling

Implicit equations (in contrast to eplicit equations) do not express one vari-
able in terms of another one. Equation 1 is an example of an implicit equa-
tion:

f(x, y) = −(x2 + y2) = T (1)

2A tutorial about particle dispersion can be found at: http://forcg.com/tutorials/
particle-system/particle-dispersion-effect-using-3ds-max/

4



(a) 2d equation (b) intersection with plane T (c) result

Figure 4: (a) The equation −(x2 + y2) is plotted, (b) The intersection with
plane T is shown, (c) The resulting 2d model.

where x and y are variables, and T is a constant. In contrast Equation 2
is an example of explicit equations (i.e., a function) that does express one
variable (in this case y) with the help of another one (in this case x):

f(x) = y = kx+ d (2)

where k and d are constants.
Implicit modeling refers to a technique that makes use of implicit equa-

tions. The surface of an implicit model is defined as the set of points, that
fullfill the given equation. Figure 4 shows a plot of Equation 1. T is a
threshold that can be interpreted as a plane intersecting the surface. T can
be changed to alter the radius of the resulting iso-circle. Implicit models are
also called level curves, iso contours, or contour lines in 2D; level surfaces or
iso surfaces in 3D and level hypersurfaces in nD. Specific implicit equations
and the corresponding models have specific names such as blobby objects,
soft objects, metaballs, superquadrics, etc.

3.1 Blobby Objects

Some objects do not maintain a fixed shape, but change their surface charac-
teristics in certain motions or when in proximity to other objects. Examples
in this class of objects include molecular structures, water droplets and other
liquid effects, melting objects, and muscle shapes in the human body. These
objects exhibit a certain blobbiness and are often simply referred to as blobby
objects, since their shapes show a certain degree of liquidity. A molecular
shape, for example, can be described as spherical in isolation but the shape
changes when one molecule approaches another one. Distortion of the shape

5



(a) 2d model (b) 3d model

Figure 5: Molecular bonding. As two molecules move away from each other,
the surface shapes stretch, snap, and finally contract into circles 5(a) or
spheres 5(b).

Figure 6: Gaussian bump centered at position 0, with height b and standard
deviation a.

of the electron density cloud is due to the bonding that occurs between the
two molecules.

Figure 5 illustrates the stretching, snapping, and contracting effects on
molecular shapes when two molecules move apart. These characteristics can-
not be adequately described with spheres or elliptical shapes. More informa-
tion on modeling with Blobby objects can be found in the work of Wyvill et
al. [6].

Several models have been developed for representing blobby objects as
distribution functions over a region of space. One possibility is a combination
of Gaussian density functions:

f(x, y, z) = be−ar
2

(3)

6



is the Gaussian density function (see Figure 6 for a plot of the 1D version
of the Gaussion density function). r is the distance to the center point
(x0, y0, z0) of the Gaussian function:

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 (4)

If k Gaussian bumps are placed at the k control points (xk, yk, zk) and
are combined, the surface function of the combined model is defined as

f(x, y, z) =
∑
k

bke
−akr2k − T = 0 (5)

where
r2k = (x− xk)2 + (y − yk)2 + (z − zk)2 (6)

Parameter T is a threshold, and parameters ak and bk are used to adjust the
shape of the individual blobs.

Negative values for parameters bk can be used to produce dents instead
of bumps. Figure 5 shows examples of 2D and 3D blobs that move closer to
each other and finally merge.

Other methods for generating blobby objects use density functions that
fall off to 0 in a finite interval, rather than exponentially. The metaball model
describes composite objects as combinations of quadratic density functions
of the form

f(r) =


a(1− 3r2

b2
) if 0 < r ≤ b/3

3a
2

(1− r
b
)2 if b/3 < r ≤ b

0 if b < r

(7)

And the soft-object model uses the function

f(r) =

{
a(1− 4r6

9b6
+ 17r4

9b4
− 22r2

9b2
) if 0 < r ≤ b

0 if b < r
(8)

Figure 7 shows a plot of the above mentioned density functions.

3.2 Superquadrics

This class of objects is a generalization of quadric representations. Su-
perquadrics are formed by incorporating additional parameters into the quadric

7



Figure 7: Comparison of different density functions [1].

equations to provide increased flexibility for adjusting object shapes. The
number of additional parameters is equal to the dimension of the object: one
parameter for curves and two parameters for surfaces.

3.2.1 Superellipse

The implicit equation of the superellipse is

f(x, y) =

(
x

rx

) 2
s

+

(
y

ry

) 2
s

= 1 (9)

where rx and ry are the parameters of the ellipse and s is the parameter of
the superellipse. s can be assigned any real positive value (e.g., for s = 1, we
get an ordinary ellipse).

The corresponding parametric equations for the superellipse are expressed
as

x(κ) = rx coss κ (10)

y(κ) = ry sins κ (11)

for −π ≤ κ ≤ π.
Figure 8 illustrates supercircle shapes that can be generated using various

values for parameter s.

8



Figure 8: Superellipses plotted with different values for parameter s and with
rx = ry (i.e., a supercircle).

3.2.2 Superellipsoid

The implicit representation of a superellipsoid is obtained from the equation
of an ellipsoid by incorporating two parameters as exponents:

f(x, y, z) =

[(
x

rx

) 2
s2

+

(
y

ry

) 2
s2

] s2
s1

+

(
z

rz

) 2
s1

= 1 (12)

For s1 = s2 = 1, we have an ordinary ellipsoid. The corresponding
parametric representation for the superellipsoid is

x(κ1, κ2) = rx coss1(κ1) coss2(κ2) (13)

y(κ1, κ2) = ry coss1(κ1) sins2(κ2) (14)

z(κ1) = rz sins1(κ1) (15)

where −π
2
≤ κ1 ≤ π

2
, and −π ≤ κ2 ≤ π.

Figure 9 shows supersphere shapes that can be generated using various
values for parameters s1, and s2. These and other superquadric shapes can
be combined to create more complex structures.

4 Procedural Modeling

Procedural modeling is typically used when dealing with repetitive structures
of high geometric complexity. The models are given as simple primitives and
a program or a grammar that manipulates the shapes. Figure 10 shows an

3Sven Havemann’s dissertation deals with the generative modeling language (GML).
More information on GML can be found at http://www.generative-modeling.org/

9



Figure 9: Shapes of the supersphere.

Figure 10: Window of a cathedral with increasing geometric detail. Images
by Sven Havemann3 [2].

example of a geometric object that is modeled using a procedural approach.
The window of a cathedral is shown with different geometric complexity. The
model with the highest geometric complexity consists of 7 million triangles.
Stored as a procedural model it can be described with 126 KB of code. Pro-
cedural models often exhibit certain parameters that change the appearence
of the object. Figure 11 shows an exampe of a procedural model with sev-
eral parameters that define the final shape. Many objects can be modeled
changing the parameters of a chair-like model.

Complex gemometric modeling tecniques employ their own languages to
program the behaviour of the model generation (e.g., vegetation-, terrain sim-
ulation, etc.). A more simple example are sweeps that have fixed behaviour
but have changing geometric primitives and parameters.

10



Figure 11: Model of a chair. Changing the parameters of the chair leads to
different representations. Images by Sven Havemann3 [2].

Solid-modeling packages usually provide a number of construction tech-
niques, often including sweeps. Sweep representations are useful for con-
structing three-dimensional objects that possess translational, rotational,
or other symmetries. We can represent such objects by specifying a two-
dimensional shape and a curve along which the shape is moves through space.
A set of two-dimensional primitives, such as circles and rectangles, are of-
ten provided as menu options. Other methods for obtaining two-dimensional
figures include closed spline-curve constructions and cross-sectional slices of
solid objects.

Figure 12: Translational sweep

Figure 12 illustrates a translational sweep. The periodic spline curve
on the left of Figure 12 defines the object’s cross section. A translational
sweep is created by moving the control points p0 . . . p3 along a straight path

11



perpendicular to the plane of the cross section. At given intervals along this
path, the cross-sectional shape is replicated and connected with a set of lines.

Figure 13: Rotational sweep

An example of a rotational sweep is given in Figure 13. The cross section
P (u) is rotated around an axis in the plane of the cross section. Any axis can
be chosen for a rotational sweep. If we use a rotation axis perpendicular to the
plane of the cross section in Figure 13, we generate a two-dimensional shape.
A solid object (e.g., a sphere) could also be used as geometric primitive, that
is used to generate another three-dimensional object. In general, a sweep is
specified using a geometric primitive that is moved along an arbitrary path.
For rotational sweeps, the object is moved along a circular path (from 0
to 360 degrees). For non-circular paths a curve of certain length is defined
and the geometric primitive is moved along this curve. In addition the shape,
size, and orientation of the geometric primitive can be varied along the sweep
path.

5 Structure Deforming Transformations

Structure deforming transformations are used in combination with other
modeling techniques to alter the shape of arbitrary objects. They mathe-
matically define a deformation of space and the embedded objects.

Tapering is a non-linear scaling. The equation

~x′ =

 fx(~x) 0 0
0 fy(~x) 0
0 0 fz(~x)

 ~x (16)

defines tapering by transforming each point ~x = (x, y, z) ∈ <3 to ~x′ by
applying scaling factors fx, fy, and fz that are themselves functions of ~x.

12



y=0

y=1

y=2

fy(x) = 1

fy(x) = 1.5 - 0.5y

fy(x) = 0.5

Figure 14: Tapering of a rectangular shape in 2D. The scaling parameter of
the y-ordinate is defined as a function fy that depends on y (i.e., the second
ordinate of ~x). In this example the scaling parameter for the x-ordinate is
set to constant 1 (i.e., fx(~x) = 1).

For example the function

fy(~x) =


1 0 ≤ y < 1

1.5− 0.5y 1 ≤ y < 2

0.5 y ≥ 2

(17)

tapers the input rectangle as shown in Figure 14.
Twisting is a non-linear rotation where the rotation parameters depend

on the coordinates of the input point.

Figure 15: Twisting of a rectangular shape in 3D. The twisting parameter of
the z-rotation is defined as a function f that only depends on the ordinate z
in this example.

13



For instance twisting around the z-axis is given by the equation

~x′ =

 cosf(~x) −sinf(~x) 0
sinf(~x) cosf(~x) 0

0 0 1

 ~x (18)

where f(~x) is the position-dependent twisting parameter.
For instance

f(~x) = z (19)

where z is the third ordinate of ~x, leads to a twist like the one shown in
Figure 15.

Bending is also a non-linear rotation where the rotation parameters de-
pend on the coordinates of the input point. The transformation around a line
parallel to the x-axis is for example given by the coordinate-wise equations:

x′ = x (20)

y′ =


−sin(Θ)(z − r) + y0 ymin ≤ y ≤ ymax

−sin(Θ)(z − r) + y0 + cos(Θ)(y − ymin) y < ymin

−sin(Θ)(z − r) + y0 + cos(Θ)(y − ymax) y > ymax

(21)

z′ =


cos(Θ)(z − r) + y0 + r ymin ≤ y ≤ ymax

cos(Θ)(z − r) + y0 + r + sin(Θ)(y − ymin) y < ymin

cos(Θ)(z − r) + y0 + r + sin(Θ)(y − ymax) y > ymax

(22)

Figure 16 graphically defines the parameters of Equations 21 and 22 for
a bend around the x axis.

References

[1] P. Bourke. Implicit surfaces. http://paulbourke.net/miscellaneous/
implicitsurf/, 1997.

[2] S. Havemann. Generative Mesh Modeling. PhD thesis, TU Braunschweig,
2005.

14



Figure 16: Bending of a rectangular shape. A bending around the x axis
transforms the coordinates y and z. The bending depends on the radius r
the angle Θ and the parameters ymin and ymax.

[3] D. Hearn and M. P. Baker. Computer graphics (2nd ed.): C version.
Prentice-Hall, Inc., 1997.

[4] M. Lentine, W. Zheng, and R. Fedkiw. A novel algorithm for incom-
pressible flow using only a coarse grid projection. ACM Transactions on
Graphics, 29(4), 2010.

[5] F. Losasso, J. O. Talton, N. Kwatra, and R. Fedkiw. Two-way coupled
sph and particle level set fluid simulation. IEEE Transactions on Visu-
alization and Computer Graphics, 14(4):797–804, 2008.

[6] B. Wyvill, A. Guy, and E. Galin. The blobtree. warping, blending and
boolean operations in an implicit surface modelling system. Technical
report, 1999.

15


