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= Real world phenomena
+ Complex geometry
+ Large deformations
+ Topological changes
# Fuzzy objects

= Tedious or impossible to
model with meshes

= Examples
+ Smoke, fire
+ Fluids
« Fur, hair, grass

[http://physbam.stanford.edu/~fedkiw/]
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= Particle systems
= Implicit modeling
¢+ Soft objects
+ Superquadrics
+ Level sets
= Procedural modeling
+ Sweeps
@ Cellular texure generation
+ Terrain simulation
+ Vegetation simulation
» Structure-deforming transformations
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Particle S

= Modeling of objects changing over time
+ Flowing
+ Billowing
+ Spattering
+ Expanding
= Modeling of natural
phenomena:
¢ Rain, snow,
clouds
4 Explosions,
fireworks,
smoke, fire

¢ Sprays, waterfalls, lumps of grass

[Matthias Miller]
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Particle Systems - History

= 1982 Star Trek II: The Wrath of Khan

“A particle system is a collection of many many minute particles that
together represent a fuzzy object. Over a period of time, particles are
generated into a system, move and change from within the system,
and die from the system.”

William T. Reeves

Particle Systems - A Technique for Modeling a Class of Fuzzy Objects
ACM Transactions on Graphics, 1983
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Particle Systems

= Certain number of
particles is rendered
= Particle parameters
change over time:
+ Location
+ Speed
+ Appearance

= Particles die (lifetime) and

are deleted
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Particle Systems (2)

= Particle shapes

may be spheres,

boxes, or arbitrary *

models " *‘
= Size and shape )

may vary over time ' .
= Motion may be

controlled by

external forces,

e.g. gravity
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Particle Systems (3)

= Particles interfere with other particles

Eduard Groller, Thomas TheuRl, Peter Rautek

Particle Systems: Bomb

e

f3

Figure 10-111

Modeling fireworks as a particle system with particles
traveling radially outward from the center of the
sphere.

Eduard Groller, Thomas Theufl, Peter Rautek 10 *

Particle Systems: Grass Clumps

Figure 10-112

Modeling a clump of grass by firing
particles upward within a tapered
cylinder. The particle paths are
parabolas due to the d d
force of gravity.

lifetime can be encoded by color: from green

to yellow

Eduard Groller, Thomas Theuf, Peter Rautek

. #




Implicit Modeling

= No fixed shape and topology
= Modeling of
4 Molecular structures
¢ Water droplets
4 Melting objects
# Muscle shapes
= Shape and topology change
4 In motion
4 In proximity to other objects
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Implicit Modeling
» Implicit equation e.g., f(x,y)=—(x*+y*)=T
m Vs. explicit equation e.g., y=kx+d
= Function R" >R
» Right side constant (typically a threshold T)

2d function intersection with T - plane result
s : (the 2d model)

The surface of an implicit model is defined as
the set of points that fulfill the implicit equation
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Soft Objects: Blobs
= Volume stays constant
during movement Nt M

m Molecular bonding: (/\:)
As two molecules move

away from each other, Ci)

the surface shapes

# Stretch C>O
4 Snap and finally
O O

¢ Contract into spheres
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Implicit Modeling

= No seams
» Oriented surface
(well defined inside and outside)
= Differentiable
m Closed
= Continuous
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Implicit Modeling

= Level sets

¢+ R* >R level curve, iso contour, contour line
¢ RPN level surface, iso surface
¢ R" >N level hypersurface

= Changing the threshold

dew
be

.. . change of topology
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Definition of Blobby Objects

= Sum of Gaussian density functions centered
at the k control points X, = (X, ¥,,Z,)
f(xy,2) =Y be™" -T =0
k
where
rk2 = (X_Xk)2 +(y- Yk)2 +(z _Zk)z

T is a specified threshold, and a, and b, adjust
the blobbiness of control point k

0008828
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Definition of Blobby Objects
» Metaball model uses density functions, which
drop off to 0 at a finite interval

= Soft object model uses same approach with a
different density-distribution characteristic
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Superquadrics

m Generalization of quadric representation
= Additional parameters

= Increased flexibility for adjusting object
shapes

= One additional parameter for curves and two
parameters for surfaces
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Superellipse

= Exponent of x and y terms of a standard
ellipse are allowed to be variable:

2/s 2/s
I ry

= Influence of s:

UOOCE<

1.0 1.5 2.0 2.5 3.0
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Superellipsoid

= Exponent of x, y and z terms of a standard
ellipsoid are allowed to be variable:

21, 2/s, 2/ 205,
(l] " [yJ ' (lj -
I, ry r,

m Influence of s; and s,:

Eduard Groller, Thomas TheuRl, Peter Rautek 21

Procedural Modeling

» High geometric complexity
= Complex model does not exist as geometry
¢ Set of production rules

Demo Procedural Modeling
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Motivation

= One window in
highest resolution
~7 million triangles

= Modeled with 126
KB (18 KB zipped)
of code

= Changing
parameters
yields very
different models
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Sweeps

» Modeling of objects with symmetries:
¢ Translational
4 Rotational
= Represented by
4 2D shape
& Sweep-path
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Translational Sweeps

= Control points of spline
curve P(u)

= Generates the solid,
whose surface is
described by point
function P(u,v) P(u,v)
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Rotational Sweeps

= Spline curve P(u)

rotation axis
= :
=

= Rotated about given
rotation axis

= Sampled at given angles
yields the surface P(u,v)
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General Sweeps

[Kinetix 3D Studio MAX]

= Spline curve P(u)
P(u)

= Moved along a sweep
path (e.g., spline)

= Animated sweep path
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Sweeps - Pros and Cons

= Advantages:

# Generates shapes that are hard to do
otherwise

= Disadvantages:
# Hard to render
+ Difficult modeling

Eduard Groller, Thomas Theuf3l, Peter Rautek 28 *

Example
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Cellular Texture Generation

m A cellular particle
system, that
changes geometry
of surface

¢ cell state
4 cell programs

¢ extracellular
environments
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Cellular Texture Generation

Cell state: position, orientation, shape, chemical
concentrations (reaction-diffusion)

= Cell programs:

+ Go to surface, die if too far from surface, align, adhere to
other cells, divide until surface is covered, ...
+ Differential equations
s Extra cellular environment: neighbor orientation,
concentration, ...
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Cellular T Generation 2

= Levels of Detail (LOD): Use fewer polygons
for further distances
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Cellular Texture Generation 3

= Cell: group of
polygons with
texture and
transparency
maps
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Cellular Texture Generation - Examples

= Handling of unusual topologies
= No problem with parameterization
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Cellular Texture Generation - Examples

» Reaction-diffusion determine pattern of bumps
and thorns
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Cellular Texture Generation - Examples

m Cells (fur)
oriented
like their
neighbors
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Cellulal ture Generation - Examples

Modeling and Visualization of Knitwear

= Knitwear: simulation of thin 3D structure with
instanced volume elements

besic element
(R-1oop)

besic element
(L-1oop)
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Visualization of Knitwear

» Rendering with raycasting
# Surface tiled with volumetric elements
¢ Curved rays
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m Cells (fur)
similarly
oriented
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Visualization of Knitwear

= Volume element: 2D cross-section swept +
rotated along parametric curve
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Knitwear - Examples
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Knitwear - Examples
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Knitwe Examples
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Knitwear - Examples
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Terrain Simulation

= Fractals

= Geographical Data
= Simulations

= Hybrids
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Terrain Simulation




rrain Simulatio

Terrain Simulatio
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Terrain

Height map Hills through noise synthesis

Water concentration (blue=high, yellow=low)
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Specification of Plant Populations
» Space-occupancy Self-thinning:
+ Explicit specification Green: not domnaed
(C?Utf)tin)g plants, Yellow: old
painting

¢ Procedural generation
(cellular automata,
reaction-diffusion)

= Individual based

+ Explicit specification
(survey, interactive
specification)

+ Procedural generation
(point pattern generation
model)
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Realistic Modeling and Rendering of Plants

m Complex models necessary for realistic
appearance
¢ Plant distribution by ecosystem simulation
and/or manual setting
+ Reduce geometric complexity by approximate
instancing (similar plants, groups of plants or
plant organs)

¢ Parametrized models of individual plants
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Plant Ecosystems - Examples
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Plant Ecosystems - Examples
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Plant Ecosystems - Examples

>

Eduard Groller, Thon
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Plant Ecosyste Examples

Plant Ecosystem elf Thinning
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Plant Ecosystems - Examples
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Structure-Deforming Transformations .

= Non-linear transformations
¢ Tapering: non-linear scaling
¢ Twist: non-linear rotation
+ Bend: also non-linear rotation
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Tapering
m Scale factor is a function:
f, (X) 0 0
X'=| 0 f,(X) 0 |-X
0 0 f,(X)

Twist

m Angle of rotation is a function
e.g., for rotation about z-axis
cos f(X) —sin f(x) O
X'=|sin f(X) cosf(X) 0|X

0 0 1
o
flz)=2
e
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Bend
= Also non-linear rotation
-sin (@)(z-1)+yo Yo <Y <Ymax
Yo -sin (B)(z-1)+¥0+c0S (O)Y-Ymin), ¥<Yoin
~sin (©)z-1+yg+cos (B)(Y-Ymax), ¥>¥am
cos(@)(z-1Hygtr JYVorin <Y <Yimax
COS(O)(z-TH+ygH+5in(O)Y-Ymin), ¥<yeia
©0s(@)(z-DH+yotr+sin(ONY-Ymax), ¥>¥eur
Yy
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Example 1
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ics not Covered Here

m Shape grammars

= Procedural architecture
= Fractals (see Fraktale VO WS)

T K E K K X
AT A A X
AT
XK B K K K K
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